Regional scale climatological forcing of *Calanus finmarchicus* dynamics in the Gulf of Maine and the Gulf of St. Lawrence

David G. Kimmel¹, Stéphane Plourde², Andrew Leising³, James J. Pierson⁴, Jeffrey Runge⁵, Frédéric Maps⁵

¹East Carolina University, ²Institut Maurice-Lamontagne, ³Southwest Fisheries Science Center, ⁴UMCES Horn Point Laboratory, ⁵Gulf of Maine Research Institute

Fisheries and Oceans Canada Pêches et Océans Canada

- The NAO and Calanus finmarchicus in the western North Atlantic Ocean
- Classifying regional scale weather variability in the western North Atlantic Ocean
- Downscaling weather patterns to surface conditions
 - The Gulf of Maine, Scotian Shelf, Newfoundland Shelf and Gulf of St. Lawrence
- A comparison of weather variability and *C. finmarchicus* abundance time-series

The North Atlantic Oscillation (NAO)

Positive NAO Index

Negative NAO Index

The NAO

- Advantages as a forcing function
 - Works on larger (basin) spatial scales
 - Works on longer (decadal) temporal scales
- Disadvantages as a forcing function
 - Phenomena on smaller spatial and temporal scales do not correlate well with NAO
 - Winter only

The NAO and C. finmarchicus

Value	Location	Lag (y)	Mechanism	Reference
+	Gulf of Maine	4	SST, advection	Conversi et al. 2001
+	Northwest Atlantic basin	4	Advection	Greene et al. 2003
+1	Gulf of Maine	3	Advection	Piontkovski et al. 2006
-	Eastern Scotian Shelf	2	Temperature effect	Head and Sameoto 2007

1. Total copepod index

Research question

Can we classify climate variability over shorter time scales?

Can we relate these classifications to surface conditions?

Can we relate classified climate and surface condition variability to *C. finmarchicus* abundance?

Synoptic climatology

Weather patterns

- Classified daily climate patterns over 1950-2009
- Identified 7 distinct weather patterns
- Weather patterns show seasonal variability

Weather patterns and surface conditions

Creating a weather pattern index

Weather pattern index is + : lower T, more storm driven Weather pattern index is - : higher T, less storm driven

Weather pattern index and the NAO

- No relationship at any lag
- $R^2 = 0.01$

Downscaling to oceanographic conditions

Downscaling to oceanographic conditions, Gulf of Maine

Sea Surface Temperature

Mixed layer depth

Colder patterns are negatively correlated to SST, at one month lag and positively correlated to MLD

Downscaling to oceanographic conditions, Scotian Shelf, Newfoundland

Temperature (25 m)

Temperature (25 m)

Cross-correlation = r^2 =0.43 Correlation is positive; 3 month lag Cross-correlation = r^2 =0.38 Correlation is positive; 3 month lag

Colder patterns are positively correlated to 25 m T, at 3 month lag

Downscaling to oceanographic conditions, Gulf of St. Lawrence

Temperature (10 m)

Temperature (10 m)

Cross-correlation r^2 =0.53 (LSLE) Cross-correlation r^2 =0.73 (NWGSL) Correlation is negative; no lag

Cross-correlation r^2 =0.67 Correlation is negative; no lag

Colder patterns are negatively correlated to 10 m T, no lag

C. finmarchicus Gulf of Maine

3.0 2.5 WPF1 C5 2 2.5 log₁₀ abundance (number m⁻²) ۷ 1.5 1 1 Weather pattern Factor 1 2.0 1١ ı 1 0.5 1.5 0 v 11 1.0 И V -0.5 0.5 -1 0 -1.5 7/1/2007 7/1/2002 7/1/2003 7/1/2004 7/1/2005 7/1/2006 7/1/2008 Time

C. finmarchicus C5, no lag Cross-correlation *r*²=0.49 Correlation is *negative* Lag (month)

St.	0	1	2	3
C1	0	0.35	0.42	0.28
C2	0.26	0.50	0.45	0.18
C3	0.43	0.54	0.40	0.08
C4	0.60	0.47	0.49	0.02
C5	0.49	0.17	0.19	0.19
C6m	0.16	0	0	0.04
C6f	0	0	0.14	0.19

Colder patterns are negatively correlated to C. finmarchicus

C. finmarchicus Scotian Shelf

Lag (month)

St.	0	1	2	3
C1	0.04	0.38	0.57	0.44
C2	0.11	0.37	0.51	0.32
C3	0.10	0.34	0.43	0.26
C4	0.26	0.39	0.30	0.06
C5	0.23	0	0	0.14
C6m	0	0	0.04	0.05
C6f	0	0	0.11	0.20

C. finmarchicus C4, 1 month lag Cross-correlation *r*²=0.39 Correlation is *negative*

Colder patterns are negatively correlated to C. finmarchicus, 1 month lag

C. finmarchicus Newfoundland Shelf

C. finmarchicus C5, 2 month lag Cross-correlation *r*²=0.47 Correlation is *positive* Lag (month)

St.	0	1	2	3	4
C1	0.35	0.29	0.08	0	0.17
C2	0.28	0.10	0	0.20	0.31
C3	0.23	0.04	0.07	0.34	0.31
C4	0.03	0.07	0.29	0.37	0.25
C5	0.07	0.25	0.47	0.38	0.18
C6 m	0.19	0	0	0	
C6f	0	0	0	0.25	

Colder patterns are positively correlated to C. finmarchicus, 2 month lag

C. finmarchicus NW Gulf of St. Lawrence and SW Gulf of St. Lawrence estuary

Lag (month)

Lag (month)

St.	0	1	2	3
C1	0.39	0.29	0	0
C2	0.33	0.18	0	0
C3	0.21	0.10	0	0.10
C4	0	0.10	0.17	0.10
C5	0.18	0.27	0.25	0.13
C6m	0	0	0.10	0.20
C6f	0	0.23	0.35	0.36

St.	0	1	2	3
C1	0.10	0	0.13	0.27
C2	0.10	0	0.16	0.31
C3	0.19	0.07	0	0
C4	0.08	0	0	0
C5	0	0	0	0
C6 m	0	0	0	0
C6f	0.10	0	0	0

NWGSL

SWGSL

Oceanic stations

- Driven primarily by atmosphericoceanic interaction
- *C. finmarchicus* 4-5 abundance is correlated to weather pattern variability in the oceanic stations with increasing time lag for more northern stations

Gulf of St. Lawrence stations

- C. finmarchicus abundance changes are not related to weather pattern variability within the Gulf of St. Lawrence
- Most likely mechanism for changes in *C. finmarchicus* abudances are local biological interactions

Conclusions

- Synoptic climatology approach successfully classifies shortterm climate variability
 - The NAO shows no relationship to oceanic surface conditions or *C. finmarchicus* dynamics on a monthly time scale
- Weather pattern variability correlates to SST and MLD in both the oceanic stations (GOM, SS, NL) and SST within the Gulf of St. Lawrence
 - May allow short-term predictions of surface conditions
- Short-term C. finmarchicus abundance changes are linked to weather variability in oceanic stations and likely driven by local dynamics in the Gulf of St. Lawrence
 - Synoptic climatologies may be used at even shorter time scales (within season) to explain conditions leading to exit or entry into dormancy