MONITOR/ESSAS Workshop (W3), PICES 17th Annual Meeting, Dalian, Oct. 24, 2008

Double haloclines in the Canada Basin under the warming climate

Jiuxin Shi, Jinping Zhao and Shujiang Li

Key Lab of Polar Oceanography and Global Correct Change () Ocean University of China

Outline

Background Arctic Ocean halocline Pacific inflow to the Arctic Ocean Double haloclines in Canada Basin Spatial distribution Annual cycle Inter-annual variations: 2003~2008 Summary

Arctic Ocean Halocline

⇒ a. Mixed layer Cold and fresh ⇒ b.Cold Halocline Layer (CHL) ■T~ freezing point ■ S increase from 32 to 34 ⇒ c. Atlantic Layer Warm and saline

S

Pacific inflow in the Bering Strait

Transport volume: 0.8Sv , NorthwardFresher and warmer

ADED

Transports of the Pacific-origin water in the Chukchi Sea

Two patierns of the Pacific-origin water circulation in the Arctic Ocean: Summer

(Steele et al., 2004)

Pacific-origin watermasses

- ⇒ Alaskan Coastal Water (ACW):
- ⇒ summer Bering Sea Water (sBSW): θ_1
- ⇒ winter Bering Sea Water (wBSW) θ_{\min}

 $\theta_{max}, 31 < S < 32$ $\theta_{max}, 32 < S < 33$ $\theta_{min}, S \sim 33.1$

(Steele et al., 2004)

⇒SCICEX97⇒SCICEX98

Eastern vs Western: CHL vs DH

Inter-annual variaitons: 2003 vs 2008:

dS/dzSouthern CB

2003 ~2008

LH deepens ~40m (200m→240m)

(Data: CHINARE2003,2008

In 2008:
LH deepens greatly

 $\theta = -1.3$

⇒wBSW deepens

2003 vs 2008: northeast of Chukchi Plateau

2003 ~2008

LH deepens ~60m (140m \rightarrow 200m)

2004 2005

2006 2007

- No obvious changes in θ, S of LH
- LH became depper and deeper gradually from 2003 to 2008.

2003 vs 2008: east of Chukchi Plateau

LH deepens $\sim 50m$ (120m \rightarrow 170m)

Depth of the Atlantic Layer

Upper halocline

 Seasonal halocline associated with SubSurface Warm Water (SSWW)

Surface of the Arctic Ocean

WarmerFresher

Summary

- Double-halocline structure exists in the southern Canada Basin where the Pacific-origin water existed, which is absolutely different from the CHL in the Eurasian Basin.
- The lower halocline is formed by the overlying of the Pacificorigin water (wBSW) upon the Atlantic-origin water, and the upper one is by the summer and winter modifications (ACW or sBSW to wBSW) of the Pacific-origin water.
- Both the haloclines are all the year-round, even though seasonal and inter-annual variations have been detected.

Thanks!

