

Seamounts, deep-sea corals, and fisheries in the Pacific Ocean

Malcolm Clark

NIWA, New Zealand

Derek Tittensor

Dalhousie University, Canada

Alex Rogers

ZSL, United Kingdom

presentation to

PICES Biogenic Habitats in the Deep sea Victoria, November 2007

Talk outline

Background to deepsea fish species and seamount trawl fisheries

- Sustainability issues
 - Effects of bottom trawling
 - Concern about sessile benthos
- Predictive modelling of coral distribution
- Application to seamount management

"Deepwater" seamount fishes

Several definitions (>200 m FAO, ICES, >500 m NZ, AUS) Slow growth, high longevity, low productivity Demersal seamount fisheries are a mix of these... "Seamounts" covers seamounts, knolls, hills, pinnacles

Species	Scientific name	Main depth range (m)
Alfonsino	Beryx splendens	300-600
Black cardinalfish	Epigonus telescopus	500-800
Rubyfish	Plagiogenion rubiginosum	250-450
Black scabbardfish	Aphanopus carbo	600-800
Redbait	Emmelichthys nitidus	200-400
Sablefish	Anoplopoma fimbria	500-1000
Pink Maomao	Caprodon spp	300-450
Southern boarfish	Pseudopentaceros richardsoni	600-900
Pelagic armourhead	Pseudopentaceros wheeleri	250-600
Orange roughy	Hoplostethus atlanticus	600-1200
Oreos	Pseudocyttus maculatus, Allocyttus niger	600-1200
Bluenose	Hyperoglyphe antarctica	300-700
Redfish	Sebastes spp (S. marinus, S. mentella, S. proriger)	400-800
Roundnose grenadier	Coryphaenoides rupestris	800-1000
Toothfish	Dissostichus spp	500-1500
Notothenid cods	Notothenia spp	200-600

Global seamount distribution

Elevation >1,500 m Total of 14,000, about 9,000 in Pacific

Global seamount trawling

Seamount trawl fisheries

Seamount fishery catch

Species	Total catch (t)	
Alfonsino	170,000	
Cardinalfish	55,000	
Pelagic armourhead	800,000	
Orange roughy	420,000	
Oreos	150,000	
Roundnose grenadier	220,000	

Total estimated seamount catch 2 - 2.5 million tonnes (minimum)

Catch history

- General trends of decreasing catches over time
- Frequent occurrence of fisheries with early large catches, followed by very low catches
- Often irregular or sporadic catches
- Switching species/areas in some instances

Sustainability concerns

- For fisheries
- For the habitat

Environmental conservation

- Ecosystem requirements
 - Essential fish habitat. e.g. long-term influence of effects of fishing, damage to habitat, removal of key benthic fauna such as corals
 - Environmental responsibility. e.g., the need to protect biodiversity

Tasmanian seamounts

From Koslow et al. 2001

Macro-invertebrate	Light fished	Heavy fished
Biomass (kg)	7.0 (+/- 5.8)	1.1 (+/- 3.4)
No. of species	20 (+/- 4)	9 (+/- 6)

09:14:48

04/18/00

10 Leak 18.17 V Batt

13.8 °C Temp 1018 Meter Depth

NZ: Distribution of coral

Fished

Mean cover <0.05%

Unfished

Mean cover 15%

Seamount closures

- Typical management has been to close seamounts to all trawling.
- Tasmania, Hawaii,
 USA, North Atlantic
 (RFMOs), New
 Zealand

Seamount management

 Fine when we know something on which to base management

Only about 300 of the >14,000 have been sampled (Seamounts Online 2007)

So, what can we do when we don't know anything??

- Recent work undertaken by the CoML programme on seamounts (CenSeam)
- Compile and summarise data for the distribution of large seamounts, deep-sea corals on seamounts, and deep-water seamount fisheries
- Predict distribution of deepwater corals, and identify the seamounts on which they are most likely to occur
- Qualitatively assess the vulnerability of communities living on seamounts to putative impacts by deep-water fishing activities

Data sets

- SAUP seamount location and depth (14,000 seamounts from satellite altimetry) (Kitchingman et al. data)
- Physical oceanographic data available from World Ocean Atlas
- Deep-sea coral distribution (Rogers et al. data compilation)
- Predictive coral distribution analysis (ENFA) (Derek Tittensor, FMAP)
- Seamount fish and fisheries distribution (Clark et al. data compilation)

ENFA approach

- Environmental Niche Factor Analysis
- Compares observed distribution of a species to background distribution of environmental factors
- Reveals important factors in determining distribution
- Assesses how different the environmental niche a species occupies is from the background environment, and how narrow this niche is
- Suited to presence only data

ENFA physical variables

Parameter	Units	Source	Reference
Temperature	°C	WOA	Conkright et al., 2002
Salinity	Pss	WOA	Conkright et al., 2002
Depth	m	WOA	Conkright et al., 2002
Surface chlorophyll	μg l ⁻¹	WOA	Conkright et al., 2002
Dissolved oxygen	ml l ⁻¹	WOA	Conkright et al., 2002
Percent oxygen saturation	%	WOA	Conkright et al., 2002
Overlying water	mg C m ⁻² yr ⁻¹	VGPM	Behrenfeld and Falkowski,
productivity			1997
Export primary	g C m ⁻² yr ⁻¹	VGPM	Behrenfeld and Falkowski,
productivity			1997
Regional current velocity	cm s ⁻¹	SODA	Carton et al., 2000
Total alkalinity	μmol kg ⁻¹	GLODAP	Key et al., 2004
Total dissolved inorganic	μmol kg ⁻¹	GLODAP	Key et al., 2004
carbon			
Aragonite saturation state	μmol kg ⁻¹	Derived from	Key et al., 2004;
		GLODAP data	Orr et al., 2005;
			Zeebe and Wolf-Gladrow
			2001

Table 5.1: Environmental parameters used to predict habitat suitability [GLODAP = Global Ocean Data Analysis Project; SODA = Simple Ocean Data Assimilation 1.4.2; VGPM = Vertically Generalized Productivity Model; WOA = World Ocean Atlas 2001] (From Clark et al 2006)

Stony corals (centred at 150m, 500m, 1000m, 1500m)

Octocorals (centred at 500m, 1000m, 1500m, 2000m)

Habitat suitability for STONY corals

Key (above and below) Hebitat anitability Ke	Habitat suitability %	High percentage values indicate more suitable
0-10 10-20	50-60 60-70	habitat.
20-30	70-80	
30-60 60-50	80-90 90-100	
	_	

Driven by:
Aragonite saturation (left) and
Dissolved oxygen (right).
Top = 500m, bottom = 1000m

Seamount protection context (UNGA 2006, FAO 2007, SPRFMO 2007)

- Vulnerable Marine Ecosystems (e.g., seamounts, cold-water corals)
 - Predicted distribution of large seamounts
 - Habitat suitability models for cold-water (stony) corals
 - Information on historical fishing distribution
 - Information on likely target fish species
 - Depth distribution of fisheries
 - Gives a series of overlays to identify areas of relative "risk"

2 groups of major trawl fisheries

- Alfonsino fisheries: approximately 250 750 m.
 Bycatch species include black cardinalfish, southern boarfish, bluenose.
- Orange roughy fisheries: approximately 750 –
 1250 m. Bycatch species include various oreos species (black, smooth, and sometimes spiky).

Some conclusions and challenges

- Deepwater species and seamount fisheries can have a role as low volume, high value, fisheries.
- Environmental considerations and an "ecosystem approach" need to be included in management.
- Some positive signs for habitat conservation and deep sea fisheries worldwide (seamount closures, BPAs)
- Balanced approach with open and closed areas can work
- Identification of sensitive habitat needs to occur before any substantial trawling. In absence of extensive (and perhaps expensive) research, environmental proxies have a role to play (but need more validation!!). Global data set collation and analysis (e.g. CoML programmes) potentially gives ability to extend beyond national boundaries
- Benthic impact assessment and protocols being talked about within the EU and SPRFMO as an integral part of fishery operation are encouraging, and the way forward.....

Acknowledgements

- This presentation has used material from a number of NIWA research projects funded by the Foundation for Research, Science and Technology (including FRST CO1X0508 (Seamounts)) and the Ministry of Fisheries (ENV200516).
- Global seamount data are from a Blackwells book just published: Pitcher et al: Seamounts-ecology, fisheries, and conservation.
- The predictive modelling work was carried out by CenSeam
- CenSeam funded attendance at this conference

