Environmental Indicators and Pacific Salmon Conservation

Thomas C. Wainwright, William T. Peterson, Peter W. Lawson, and Edmundo Casillas

NOAA National Marine Fisheries Service Northwest Fisheries Science Center Newport, Oregon

Acknowledgements

- All those who collected the data
- Dan Goodman and Jim Overland provided analytic suggestions
- Funding was provided in part by:
 - NOAA Fisheries and the Environment (FATE)
 - U.S. GLOBEC program through the NOAA Coastal Ocean Program
 - Bonneville Power Administration

Outline

Conservation of Pacific Salmon
 Traditional Harvest Management (HM)
 Conservation Biology (CB) [NOT TODAY!]

Use of Environmental Indicators

- Quantitative Forecasts
- Qualitative "Warnings"

Are Indicators Useful in Harvest Management?

Concluding Advice

Salmon Harvest Management

U.S. West Coast Perspective

Three Steps

- Assessment of Stock History
 - - Spawner Abundance
 Based on various kinds of surveys
 - Harvest Rates
 - Based on catch reporting, tag returns, models
- Forecasts of Stock Abundance

 - Techniques vary by stock and agency
 Stock-Recruit Models, Sibling Regressions, Environmental Regressions (one case)
- Management Decisions
 - Stock-specific escapement goals
 - Allocation: time/area/species openings
 - "weak stock" management

How Can Indicators Be Used in HM?

- **Ouantitative Advice:** Forecasts
 - Stock forecast regression models
 - Loggerwell et al., Scheurrell et al., etc.
 - Multi-Indicator Statistical Approaches
- Qualitative Advice: Warnings
 - Qualitative assessment of state of the environment

 - Example: El Niño
 "An ENSO event is starting, returns will probably be low, we advise caution"
 - Example: Qualitative multi-indicator summaries
 Peterson et al. approach

	Juvenile migration year				Forecast of adult returns	
					Coho	Chinook
	2000	2004	2005	2006	2006	2007
Large-scale ocean and atmo	ospheric ind	icators				
PDO					•	•
MEI					•	•
Local and regional physical	indicators					
Sea surface temperature					•	•
Coastal upwelling					•	•
Physical spring transition					•	•
Deep water temp. & salinity						
Local biological indicators						
Copepod biodiversity					•	•
Northern copepod anomalies					•	•
Biological spring transition					•	•
Spring ChinookJune					•	•

Peterson et al. (2006)

Using Indicators to Improve Forecasts

Rationale

- Salmon marine survival is the main determinant of returns
- Marine survival depends on the state of the ocean
- Indicators of ocean state (physics and ecology) correlate with recent trends in marine survival
- Therefore, using indicators should improve forecasts and management
- This is intuitively obvious!
- But, does it work in practice?

What Requirements Must Be Met?

- Advice from Kaje & Huppert (2007, Nat. Res. Model.)
 - 1. Forecasts must match the management system
 - in time and space
 - direct linkages of indicators to stock response
 - 2. Forecasts must have sufficient skill
 - 3. Forecasts must lead to a clear management response
 - 4. Forecasts must be valuable
 - must increase economic value or improve meeting conservation goals
 - must be better than the existing management method

Case Study: OPIH coho salmon

- Attempt to quantify predictive relationships
- 3-step process:
 - Compute regressions of fish stock on individual indicators
 - Use regressions to forecast recruits 1-year ahead
 - Evaluate forecast skill
- Problems
 - Indicator time series lengths vary, many recently developed indicators have very short (< 10 years) series
 - Relationships vary over time

An Example: OPI Hatchery Coho

Correlations, 5-year Intervals

Correlations, 20-year Intervals

Correlations, Long-term Data

1-Step Ahead Forecasts

Conclusions

Strong Short-term Correlations <<u>DO NOT EQUAL></u> Long-term Relationships

High "Hindcast" R² <<u>DOES NOT EQUAL></u> Forecast Skill

More Direct Linkages <<u>DOES EQUAL></u> Better Skill

Are These Indicators Useful?

Revisiting Kaje & Huppert requirements

- 1. Forecasts must match the management system
 - In time and space -- YES, for regional indicators
 - direct linkages of indicators to stock response -- YES
- 2. Forecasts must have sufficient skill -- Marginal
- 3. Forecasts must lead to a clear management response -- YES
- 4. Forecasts must be valuable -- Not Evaluated
 - must increase economic value or improve meeting conservation goals
 - must be better than the existing management method

Simple Time-Series Forecast

Concluding Advice

- Nature is variable
 climate regime changes and ecosystem phase shifts influence indicator relationships
 R² doesn't equal prediction
 Little relationship with forecast skill, especially for short time series
 To provide management-relevant forecasts, we need to look at utility, not just
 - explanatory power
 - At a minimum, evaluate forecast skill, not just hindcast goodness-of-fit
 - Best to evaluate predictors in a Management Strategy Evaluation (MSE) framework
- While Ecosystem Indicators may not be useful in tactical (short-term) harvest management, they are important in strategic planning