PICES XVI Annual Meeting 2nd Nov. 2007

Prediction of Japanese common squid (*Todarodes pacificus*) fishing grounds using Generalized additive models in the Japan Sea

Nanami Kumagai¹, Hidetada Kiyofuji², Hideaki Kidokoro³ and Sei-Ichi Saitoh¹ 1 Graduate School of Fisheries Sciences, Hokkaido University 2 Joint Institute for Marine and Atmospheric Research, University of Hawaii 3 National Research Institute of Fisheries Science

Introduction

Japanese common squid (*Todarodes pacificus*) Spawner Northward migration Northward migration Spawning ground

Investigating squid fishing grounds from 1960's (Uda, 1960; Tameishi, 2003; Kiyofuji and Saitoh, 2004) Suggesting qualitatively the environmental factor in fistribution of fishing grounds.

Multivariate model-Building such as *GAM and **GLM are now used within the fisheries context (Swartzan *et al.*,1992; Dickey & Nash,2000; Agenbag et al.,2003; Howell and Kobayashi, 2006)

> *GAM: Generalized Additive Model **GLM: Generalized Linear Model

It is very important to clarify the <u>mechanism</u> of distribution of squid fishing grounds

Autumn

Winter

spawner

Objectives

- To clarify the relationship between squid fishing grounds and their oceanographic conditions in the Japan Sea
- To predict potential fishing grounds using satellite remote sensing

Data and Methods

Satellite data

Japan Sea , 1997 - 2000

Biomass data

CPUE

CPUE data of squid jigging fishery collected by the National Research Institute of Fisheries Sciences (1997 ~ 2000)

CPUE = Number of Catch / (Number of jigging machine x time)

Data and Methods

Japan Sea , 1997 - 2000

Seasonal change of squid fishing grounds (1997-2000, April - November)

Prediction of fishing grounds using the GAM with **CPUE and remote sensing data**

In(CPUE+1)=s(SST)+s(CHL)+s(SSHA)+s(Geostrophic Current)

CPUE

80 100 120 140 160

CPUE

5

6

4

7

8

Prediction of fishing grounds using the GAM with CPUE and remote sensing data Apr. – Jul.

Prediction of fishing grounds using the GAM with CPUE and remote sensing data Aug. - Nov.

Prediction of fishing grounds using the GAM with CPUE and remote sensing data

Prediction of fishing grounds using the GAM with CPUE and remote sensing data

1999 Predicted < Observed 2000 Predicted = Observed

Prediction of fishing grounds using the GAM with remote sensing data (Oct. 14th 2002)

Conclusion

Relationship between squid fishing grounds and environmental variables

____ SST >> SSHA > GC >> CHL

Strong effect depend on ecological significance (Physiology, migration, ...)

Prediction of fishing grounds using the GAM analysis

- Enable to detect fishing grounds using GAM with four environmental parameter from satellite remote sensing data.
- The prediction of fishing ground will enable to be applied to navigation, improving the model more accurately. – Future work

Thank you!

Introduction

Japanese common squid (Todarodes pacificus)

- Most popular of squids
- Annual catches have fluctuated widely
- Target species in TAC (Total allowable catch) system in 1998

Seasonal change of squid fishing positions (1997-2000, April - November)

Prediction of fishing grounds using the GAM with CPUE and remote sensing data

