Acoustic identification and density estimate of a lanternfish *Diaphus theta* off Hokkaido, Japan

PICES 15th Annual Meeting Oct 13-22, 2006, Yokohama

H. Yasuma^{*} K. Miyashita O. Yamamura

^{*} Field Science Center for Northern Biosphere Hokkaido University, Japan

Diaphus theta (Myctophidae)

The most abundant mesopelagic fish in the northwestern Pacific

Contribute to the transportation of organic matter, through diel vertical migration

No adequate method exists for quantitative monitoring

Objective

To develop the acoustic method for getting the quantitative information of *D. theta*

Contents

Target strength

General characteristics of the difference in target strength between 38 and 120 kHz

Estimates of target strength using a theoretical swimbladder mode

A field data analysis conducted off Hokkaido, Japan (MIE-2) Echo discrimination and density estimates of *D. theta* using echo-sounder with 38 and 120 kHz

Target Strength (TS (dB))

• TS values differ depending on the frequency use(\overline{T} .S difference: $\angle TS$) $\angle TS = TS$ (at 120 kHz) – TS (at 38 kHz)

- The values of ⊿TS vary with species. (useful for fish discrimination?
- Swimbladder size (or Body size) is the critical parameters for ⊿TS.

Characteristics of the ⊿TS

⊿TS ranges and major organisms, off Japan (Yasuma et al. 2006)

- Non-swimbladder : Smaller body size → Positive ⊿TS
- Swimbladder : Smaller swimbladder → Negative ⊿TS

To know the TS and \triangle TS \rightarrow "With or without" swimbladder ? Swimbladder shape?

Swimbladder size and ⊿TS of *D. theta*

Swimbladder size and ⊿TS of *D. theta*

Target	$\Delta \mathbf{Ts} \ \mathbf{Range}$	-
Small zoo plankton (Copepods, Amphipods etc.)	16 <	
Large zooplankton (Krill etc.) Small fish -without swimbladder- (Myctophids, Gonostomatids, Larval anchovy etc.)	$16 \sim 2$	
Large fish -without swimbladder- (Myctophids>60mm	a) $2 \sim -4$	
Fish -with swimbladder- (Anchovy, Pollock, Myctophi	id, etc)	<i>D.Theta</i> (> 60mm)
Fish -with small swimbladder- (Mystenhids, Leuvel encheury (night))	< -4	
(wryctophus, Larvar anchovy (lught))		<i>D. Theta</i> (< 60mm)

Summary - Target strength -

D. theta had a well inflated swimbladder

TS equations were determined using theoretical model TS=18.5Log(L)-71.7 (38kHz) TS=19.5Log(L)-73.5 (120kHz)

TS difference will change on the boundary of 60mm in body length.

 $> 60 \text{mm} \rightarrow \exists TS = 0 (38 \text{kHz} = 120 \text{kHz})$

 $< 60 \text{mm} \rightarrow \Delta \text{TS} < 0 \text{ (} 38 \text{kHz} = 120 \text{kHz} \text{)}$

Field data analysis

Survey Sep. 2005 (MIE- 2 Cruise) Day and Night observation

Echo-sounder EK-60 (SIMRAD co.) Freqency: 38kHz, 120kHz Echo data analysis Echoview (Sonar Data co.♪

Biological sampling MOCNESS (10 m²) MOHT net (5 m²) etc.

MOHT

MOCNESS

Day and Night Echogram (Line-A)

Day - Night vertical distribution of *D. theta*

Estimated fish density - Acoustics vs. Sampling gears (ind/m³) -

MOCNESS (10m²)

Track of the gear
Acoustic estimation

MOHT

Estimated fish density - Acoustics vs. Sampling gears (ind/m³) -

Acoustic - MOCNESS

		Dav			Niaht		
St.	<u>Depth</u>	MOC.	Aco.	Aco./MOC.	MOC.	Aco.	Aco./MOC
1	0-100 100-200 200-300	0 0 0	6.7× 10 ⁻³ 2.1× 10 ⁻³ 2.9× 10 ⁻²	- -	1.2× 10 ⁻² 2.0× 10 ⁻⁴ 0	1.9× 10 ⁻² 5.7× 10 ⁻³ 9.6× 10 ⁻³	2 29 -
2	0-100	0	2.7× 10 ⁻³	-	2.7× 10 ⁻⁴	2.8× 10 ⁻²	103
	100-200	2.5× 10 ⁻⁴	9.0× 10 ⁻²	354	5.7× 10 ⁻⁴	4.7× 10 ⁻²	84
	200-300	9.0× 10 ⁻⁴	3.5× 10 ⁻²	39	0	5.6× 10 ⁻³	-
3	0-100	0	2.5× 10 ⁻³	-	1.7× 10 ⁻³	1.6× 10 ⁻²	10
	100-200	0	5.3× 10 ⁻³	-	5.4× 10 ⁻⁴	1.5× 10 ⁻²	28
	200-300	0	2.4× 10 ⁻²	-	2.2× 10 ⁻⁴	9.7× 10 ⁻³	44
4	0-100	0	1.0× 10 ⁻³	-	3.4× 10 ⁻⁴	7.8× 10 ⁻³	23
	100-200	0	1.1× 10 ⁻¹	-	0	2.1× 10 ⁻³	-
	200-300	0	1.2× 10 ⁻¹	-	2.3× 10 ⁻⁴	8.8× 10 ⁻³	38

Estimated fish density - Acoustics vs. Sampling gears (ind/m³) -

Acoustics - MOHT

		Dav			Night	
<u>_St.</u>	MOHT	Aco.	Aco./ MOHT	<u> </u>	Aco.	Aco./ MOHT
1	3.2× 10 ⁻²	1.2× 10 ⁻¹	4	4.9× 10 ⁻²	1.1× 10 ⁻¹	2
3	3.1× 10 ⁻³	1.0× 10 ⁻²	3	3.7× 10 ⁻³	4.0× 10 ⁻²	11
4	2.0× 10 ⁻³	8.0× 10 ⁻²	40	7.6× 10 ⁻⁴	2.9× 10 ⁻²	38

Summary - Field data -

Thick scattering layer of *D. theta* was found in the depth about 300m, in daytime.

D. theta could be discriminated from other major species (Walleye pollock, Krill etc.) by using of the TS difference between 38 and 120 kHz.

Diel vertical migration of *D. theta* was measured quantitatively.

→ In surface layer (~100m), fish density became larger (about 10-fold) at night than in daytime.

Fish densities estimated by acoustic method were dozens or hundreds of times higher than two types of gears.