Inter-calibration of micronekton sampling gears during the 2005 MIE-II cruise

Yamamura O, Sugisaki H, Abe S, Sadayasu K,

- Matsukura R, Miyashita K, Hino A & Tokai T
- MIE-I: off Hawaii
 - High diversity and Low density mesopelagic fauna
 - Gears compared
 - Tucker trawl
 - IKMT
 - FMT (HUFT)
 - Cobb trawl

MIE-II

Area surveyed

MIE-II

- September October, 2005
- R/V Hokko-maru (HNFRI, 904t)
- Doto area (off SE Hokkaido Island)
- Participants
 - HNFRI, TNFRI, HU
- Gears compared:

- MOHT
- FMT: fine (3mm) and coarse (9mm) m
- Otter Trawl + Multisampler codend will

MOHT: Matsuda-Oozeki-Hu Trawl (Oozeki et al., 2004)

- September October, 2005
- R/V Hokko-maru (HNFRI, 904t)
- Doto area (off SE Hokkaido Island)
- Participants

Comparison procedure

- D/N sampling at 4 stns.
- At shelf edges (BD: 385-480m, x = 444m) -
- Otter trawl: daytime only (n = 2)
- Oblique tows aiming at 300 m (MOHT, FMT)
- Discrete sampling from 300 to 0 m (NiOC, MT)
 Samples were roughly sorted immediate after towing, then fixed
 Identified, counted, weighted & measured in the laboratory
 Catchability was assessed based on volume filtered

42. N

143, E

145. E

144₆ E

146. E

Consequence of towing operations

Catch composition

- Myctophids, especially Diaphus theta dominated the overall catch (82% in N and 71% in W),
- reflecting the depth sampled (0-300m)
- Gears were compared using the catches of D. theta

Body length frequency distribution of *D. theta*

Catchability for small-sized fish (≤40 mm, Stn.

- N of fish per vol of water filtered at Stn. 1
- Relative measure with MOC (D) = 1.0
- MOC ≅ FMT << MOHT
- No or slight day/night difference

Catchability for large-sized fish (41-80 mm)

- based on N of fish caught at Stn. 2-4
- Relative measure with MOC (D) = 1.0
- MOC ≅ FMT(3mm) < FMT(9mm) < (MOHT)
- No D/N difference, except for 3mm FMT
- MT: low efficiency

Catchability of large-sized fish (cont'd)

- No or slight D/N difference, except for 3mm FMT
 - suggesting limited visual avoidance
- MT
 - Low catchability due to large mesh size in the wing and belly, but caught largest quantity of micronekton
 - Poor condition of specimens due to turbulence in the codend
 - not recommended for sampling <80mm micronekton, but effective for sampling more evasive larger micronekton and nekton

Catchability of large-sized fish (cont'd)

- FMT 3mm
 - Lowest efficiency during daytime
 - Perhaps due to visual avoidance, due lowest towing speed and the presence of bridle ahead
 - Inadequate for micronekton sampling
- FMT 9mm
 - Limited catchability, but sample micronekton more effectively than MOC-10
- MOHT
 - Sample micronekton most effectively
 - Excellent sample condition (often alive!)
 - Highly recommended for micronekton sampling

Summary

- Catchability of 4 sampling gears were tested for micronekton sampling: MOC, FMT, MOHT and MT
- MOHT showed the highest efficiency for micronekton sampling
- MOHT is strongly recommended for the sampling of micronekton
- However, MOCNESS is still essential for discrete sampling

Further analysis

- Incorporating results from MIE-I (using data of FMT)
- Analyze and compare MOC-1 samples
 - Size selectivity and catchability of Euphausia pacifica
- Other gears to be tested:
 - 4m² MOCNESS
 - IKMT (MIE-I)
- Size selectivity analysis (ongoing)
- Comparison with EK-60 backscattering data (ongoing)