Estimation of design wave height through long-term simulation of sea states for the North East Asia regional seas

Dong-Young Lee, Ki-Chun JUN

Korea Ocean Research and Development Institute Ansan P.O. Box 29, Ansan, Korea Wave Information for Application

in-direct method of wave data production To Overcome the space and time limitation by Indirect method of wave data production: "Numerical Wave Modelling"

- Hindcasting

- . extreme wave height(design wave),
- . operational wave height the construction of coastal structures, coastal development
- Nowcasting & Forecasting
 Safe Navigation, Ocean Service for
 Marine Operation

Methods of Design Value Calculation

- 1) Long-term Obs. Wave Data or
- 2) Long-term Hindcast
 - => Extreme Statistical Analysis
- 3) Calculation for Design Storm
- Typhoon: 50 year
 - Extra Tropical Storm : 20-30 years
- Extreme statistics analysis . Return period 10, 20, 30, 50 and 100 years

. Combination after separate statistical analysis for extra-tropical storm and typhoon

Wave Hindcast

1. Contineous hindcast

Period: 1979~2004 Wind Input: ECMWF Wind data Wave Model: 2nd generation Hybrid Parametric Model Grid: 18km (1/6 deg) Period: 1979~2004

2. Extreme case hindcast

for Extra tropical storm

Wind Input: ECMWF Wind data Wave Model: WAM 4, WAVE-WATCH III model Grid: 18km(1/6 deg)

Typhoon case

Period: 1951~2004 Wind input: Typhoon wind model Wave model: HYPA, WAM 4, WAVE-WATCH III model Grid: 18km(1/6 deg)

18 Km Grid System

Example of extreme wave analysis

The grid points of design wave height calculation in 1988.

Grid points for design wave height estimation.

Design Waves for 55km grid (1988)

Design Waves for 18km grid (1988)

Example of retrieval of design waves for arbitrary location

			Return Period(year)					
		DII	10.0 2	20.0	30.0	50.0	100.0	
		Ν	2.0	2.6	3.0	3.5	4.3	
	I = 55	NNE	2.0	2.5	2.7	3.1	3.5	
	J =122	NE	2.0	2.3	2.4	2.6	2.8	
F	X = 54.8	ENE	2.1	2.3	2.5	2.7	2.9	
	Y =121.8	Е	2.4	2.9	3.1	3.4	3.8	
	Latitude	ESE	2.4	2.8	3.1	3.4	3.8	
	Long I cua	SE	2.3	2.8	3.0	3.3	3.7	
	Latitude Longitud	SSE	2.3	2.7	2.9	3.2	3.5	
		S	26	32	3.5	3.9	4 4	
		SSW	3.6	4 6	5.1	59	6.8	
		SW	3.3	4 1	4.6	53	6.2	
			2.8	35	<i>A</i> 0	Δ.6	5.Z	
		۷۷۵۷۷ ۱۸/	2.0	3.5 3.5	-+.0 ∕ ∩	+.0 ∕I 7	5.6	
		V V \	2.7	0.0 0.6	- 1 .0	ヿ ./ つつ	0.0 2 0	
		VVINVV	Z. I	2.0	2.9	ა.ა ი ი	J.O	
		NVV	1./	2.3	2.6	3.0	3.7	
		NNW	1.7	2.2	2.5	3.0	3.6	
		TOT	3.8	4.6	5.3	5.8	6.9	

Example of spatial distribution of design waves height

Comparison of design wave height for return period of 50 years along the coastal grid points estimated for different period of hindcasting duration

Extreme Wave Analysis without typhoon Maemi (2002) data and typhoon Maemi's data

Return Period of Typhoon Maemi Waves along the coast

Typhoon frequency, intensity

NW Pacific Increase of Typhoon PDI

PDI (potential destructi veness Index) is defin ed as the third power o f maximum wind speed over the lifetime of a t ropical cyclone

Figure 2 | Annually accumulated PDI for the western North Pacific, compared to July-November average SST. The PDI has been multiplied by a factor of 8.3×10^{-13} and the HadISST (with a constant offset) is averaged over a box bounded in latitude by 5° N and 15° N, and in longitude by 130° E and 180° E. Both quantities have been smoothed twice using equation (3). Power dissipation by western North Pacific tropical cyclones has increased by about 75% in the past 30 yr.

Variation of Max Wind at 20-30N, 120-130E

Global Warming Effects?

- There is a tendency that the intensity and frequency of typhoon become increasing
- Is it the result of global climate change?
- If so, Coastal Defense Strategy need to be changed considering Global Climate Change, which is so uncertain..
- Intensive monitoring and research
- is needed for west pacific region
- to reduce such uncertainty
- in the future

