PICES XV (2006) in Yokohama

Overview of present state and future projection of North Pacific climate simulated by CCSR/NIES/FRCGC coupled models

Hiroyasu HASUMI (CCSR) Takashi SAKAMOTO (FRCGC) and many more from CCSR/NIES/FRCGC

Japan K-1 Project Team

Research consortium of

- Center for Climate System Research (CCSR), the University of Tokyo
- -National Institute for Environmental Studies (NIES)
- -Frontier Research Center for Global Change (FRCGC)

has contributed to the IPCC AR4

Two models of different resolution → What does resolution matter in climate projection? (with a focus on the North Pacific)

Coupled GCM

MIROC (Model for Interdisciplinary Research On Climate) version 3.2

	High	Medium
Atmosphere: CCSR/	T106 (~1.1°)	T42 (~2.8°)
NIES/FRCGC AGCM 5.7	56 levels	20 levels
Ocean: CCSR Ocean	~0.28°x0.19°	~1.4°x0.5°-1.4°
Component Model 3.4	47 levels	43 levels
Land: MATSI RO	~0.56°	~2.8°
River: TRIP	0.5°	~2.8°
Sea ice: dynamic (EVP)-	same as ocean	same as ocean
thermodynamic (O-layer)		

Coupled GCM

Biases in annual-mean SST of the control (preindustrial condition) runs

6

Hi-CGCM - Obs.

Experiments

Runs for IPCC AR4 and CMIP Coordinated Ex.

Large-scale feature of global warming

SAT and rain: (2071-2100 of A1B) - (1971-2000)

Daily rainfall frequency over Japan (120E-140E, 30N-40N)

What does resolution matter?

Change of rainfall over Japan by high-res. model

What does resolution matter? Annual-mean 100 m velocity

What does resolution matter? Curl τ change: (2071-2100 of A1B) – (1971-2000)

 Acceleration of the Kuroshio accounted for by Sverdrup transport ~5 Sv
 Actual acceleration ~30 Sv

Sakamoto et al. (2005)

Wind change: (2071-2100 of A1B) - (1971-2000)

- Weakened trades
- Intensified Aleutian Low

... El Nino-like response (Many models project El Nino-like SST rise under global warming)

Sakamoto et al. (2005)

Coupled effect of resolution dependence?

- Higher resolution AGCM → better atmosphere (Baiu/Meiyu front, tropical cyclone, ...)
- Higher resolution OGCM → bettern ocean (Kuroshio, eddy and variability, ...)
- Does atmospheric (oceanic) resolution affect ocean (atmosphere)?
- Is there any air-sea feedback affecting resolution dependence?

What is improved by resolution? How and why?

Control climate simulations by models with different combinations of resolution

- T106(1°) AGCM + 1/4°x1/6° OGCM
 high-AGCM high-OGCM → hAhO
- T42(3°) AGCM + 1° OGCM medium-AGCM medium-OGCM \rightarrow mAmO
- T106 AGCM + 1° OGCM
 high-AGCM medium-OGCM → hAmO
- T42 AGCM + 1/4°x1/6° OGCM medium-AGCM high-OGCM → mAhO
 T213(0.5°) AGCM + 1/4°x1/6° OGCM super-high-AGCM high-OGCM → sAhO

Kuroshio axis for high-OGCM cases (16°C contours at 200 m depth)

Atmospheric resolution and the Oyashio (subpolar gyre) hAhO

Wintertime sea level pressure

Stronger Aleutian Low \leftarrow ? \rightarrow Stronger Oyashio

Summary

- Question: What is improved by resolution in climate simulations and projections?
 How and Why?
- Running models of various combination of atmospheric and oceanic resolution

... Ongoing work