$$
\begin{aligned}
& \text { Empirical modeling the stock fluctuations } \\
& \text { of sardine in the gapan/East Sea }
\end{aligned}
$$

Yury Zuenko and Svetlana Davidova

Goals:

1. To create an empirical model suitable for the stock and catch forecasting
2. To estimate the main factors responsible for the stock fluctuations

Totalcatch of sardine inthe I apan/East Sea

Spawning stock of sardine in the I apanese EEZ surveyed since 1986 has similar fluctuations

However, the regression betweencatch and spawning stock is not line ar

The approximation $\mathbf{S}=37 \mathbf{C}^{0.63}$ was used for calculation the stockin the years before 1986 from the data oncatch

> Simple reproductive model with constant fecundity \mathbf{f} and mortality \mathbf{m}

$$
S_{j}=\Sigma_{i=3,4,5,6}\left[S_{j-i} * f^{*}(1-m)^{i}\right]
$$

$$
\mathrm{R}=0.70
$$

The model determines only 50% of the catch variance and is not suitable for the forecasting.

We suppose that the model should be enhanced by taking into account environmental factors

We suppose that environmental conditions both on spawning grounds and feeding grounds are important

Sardine spawn in the southern part of the Sea.
Larvae feed in the same area, but adults - mostly in the northern part of the Sea.

Hypothesis: number of each generation depends both on number of eggs and their survival

Possible environmental factors influencing on the eggs and larvae survival are:
-thermal conditions on spawning grounds in winter (for eggs); -feeding conditions on spawning grounds in spring (for larvae); -feeding conditions on feeding grounds in previous year (for pre-spawning adults)

Plankton abundance depends generally on SST in spring

Zooplankton in the north Japan Sea (Dolganova, Zuenko, 2004)

Zooplankton in the south Japan Sea (Hirota, Hasegawa, 1999)

From the other hand, sufficient feeding of larvae depends on the match of its hatching with plankton 6loom (Cushing match/mismatch hypothesis)

Thus, abundance of each generation can be influenced by:

- number of parents ($\mathrm{S}_{\text {spawning }}$)
- age (adults mortality is supposed here as low and constant) (i)
- natural potential fecundity of the species (\mathbf{f}) that is corrected by:
- thermal conditions on feeding grounds in previous year (T_{N})
- thermal conditions on spawning grounds in winter (T_{W})
- thermal conditions on spawning grounds in spring $\left(\mathrm{T}_{\mathrm{S}}\right)$
- match of hatching with blooming (M)
- density of spawners
or

$$
S_{j}=S_{\text {parents }}\left(f+k_{N} T_{N}+k_{W} T_{W}+k_{S} T_{S}+k_{M} M+k_{D} S_{\text {parents }}\right)_{*}(1-m)^{i}
$$

where $\mathbf{k}_{\mathrm{N}}, \mathrm{k}_{\mathrm{W}}, \mathrm{k}_{\mathrm{S}}, \mathrm{k}_{\mathrm{M}}, \mathbf{k}_{\mathrm{D}}$ - are coefficients
$\mathcal{H o w}$ to estimate the value of "match"?

Extent of match is estimated quantitatively as Euclidean distance on the diagram "winter SST anomalies - spring SST anomalies" from the point of real winter/spring SST anomalies to the line of their "optimal" ratio, which has to be defined from empirical data

Spawning stock of sardine is formed bygenerations $3+$ (partially), $4+, 5+$, and $6+$

Thus, the spawning stockin the year j is:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{j}} & =\Sigma_{\mathrm{i}=3,4,5,6}\left[\mathrm { K } ^ { * } \mathrm { S } _ { \mathrm { j } - \mathrm { i } } * \left(\mathrm{f}+\mathrm{k}_{\mathrm{N}} \mathrm{~T}_{\mathrm{N}(\mathrm{j}-\mathrm{i}-1)}+\mathrm{k}_{\mathrm{W}} \mathrm{~T}_{\mathrm{W}(\mathrm{j}-\mathrm{i})}+\mathrm{k}_{\mathrm{S}} \mathrm{~T}_{\mathrm{S}(\mathrm{j}-\mathrm{i})}+\right.\right. \\
& \left.\left.+\mathrm{k}_{\mathrm{M}} \mathrm{M}_{(\mathrm{j}-\mathrm{i})}+\mathrm{k}_{\mathrm{D}} \mathrm{~S}_{\mathrm{j}-\mathrm{i}}\right) *(1-\mathrm{m})^{\mathrm{i}}\right]
\end{aligned}
$$

$\mathrm{K}=1$ for the ages $4+, 5+, 6+; \mathrm{K}<1$ for the age $3+$

The same stock is exploited by fishery
This multiple regression model differs from simple reproduction model by strong dependence on environmental factors

Averaged $I \mathcal{M A}$ data on SST were used as parameters $\mathcal{T}_{\mathcal{V}}, \mathcal{T}_{\mathcal{W}}$, and \mathcal{T}_{S}
T_{N} is indicator of feeding conditions on feeding grounds which depends on spring SST
T_{w} is thermal conditions in winter, before spawning
T_{S} is indicator of feeding conditions for larvae which depends on spring SST

Besides, $\mathbf{T}_{\mathbf{w}}$ and \mathbf{T}_{s} are used for quantitative estimation of the Cushing factor:
$\mathrm{M}=\left(\mathrm{T}_{\mathrm{w}}-\mathrm{aT}_{\mathrm{s}}-\mathrm{b}\right) /\left(\mathrm{a}^{2}+1\right)^{1 / 2}$

SST year-to-year fluctuations

General tendencies are similar in both areas and seasons, but in some years the anomalies are very different between them

All factors are statistically inde pendent, with exclusion the significant positive correlation between $\mathcal{T}_{\mathcal{W}}$ and \mathcal{T}_{S}

Correlation matrix

	stock	T_{W}	T_{S}	T_{N}	M
stock		-0.10	-0.05	-0.17	-0.01
$\mathrm{~T}_{\mathrm{W}}$	-0.10		0.55	0.16	-0.15
$\mathrm{~T}_{\mathrm{S}}$	-0.05	0.55		0.12	-0.08
$\mathrm{~T}_{\mathrm{N}}$	-0.17	0.16	0.12		-0.10
M	-0.01	-0.15	-0.08	-0.10	

Fitting the model to the realcatch data

$$
\begin{array}{ll}
\text { _ S only } & \mathbf{R}^{2}=0.49 \\
\text { _S }+T \mathrm{w} & \mathbf{R}^{2}=0.66 \\
\text { S }+T n+T w & \mathbf{R}^{2}=0.70 \\
-\mathrm{S}+\mathrm{Tn}+\mathrm{Tw}+\mathrm{M} & \mathbf{R}^{2}=0.83
\end{array}
$$

$— \mathrm{~S}+\mathrm{Tn}+\mathrm{Tw}+\mathrm{M}+\mathrm{Ts} \mathrm{R}^{2}=\mathbf{0 . 8 5}$ real catch

The best simulation was done by the model which included all 5 environmental predictors $\mathrm{S}_{\mathrm{j}}=\boldsymbol{\Sigma}_{\mathrm{i}=3,4,5,6}\left[\mathrm{~K}^{*} \mathrm{~S}_{\mathrm{j}-\mathrm{i}} *\left(\mathrm{f}+\mathrm{k}_{\mathrm{N}} \mathrm{T}_{\mathrm{N}(\mathrm{ji-1}-1)}+\mathrm{k}_{\mathrm{w}} \mathrm{T}_{\mathrm{W}(\mathrm{i}-\mathrm{i})}+\mathrm{k}_{\mathrm{s}} \mathrm{T}_{\mathrm{S}(\mathrm{i}-\mathrm{i})}+\mathrm{k}_{\mathrm{M}} \mathrm{M}_{(\mathrm{i}-\mathrm{i})}+\mathrm{k}_{\mathrm{D}} \mathrm{S}_{\mathrm{j}-\mathrm{i}}\right) *(1-\mathrm{m})^{i}\right]$ but two of them (T_{w} and T_{S}) were statistically dependent
For the best fitting, the values of coefficients are:
$\mathrm{K}=0.4 ; \mathrm{f}=2.41 ; \mathrm{k}_{\mathrm{N}}=-0.67 ; \mathrm{k}_{\mathrm{W}}=-0.52 ; \mathrm{k}_{\mathrm{s}}=-0.43 ; \mathrm{k}_{\mathrm{M}}=-1.37 ; \mathrm{k}_{\mathrm{D}}=-0.0004 ; \mathrm{m}=0.23$

After the \mathcal{T}_{S} exclusion, the final model has 4 inde pendent predictors: $\mathcal{S}, \mathcal{M}, \mathcal{T}_{\mathcal{W}^{\prime}}$ and $\mathcal{T}_{\mathcal{W}}$
$\mathrm{S}_{\mathrm{j}}=\Sigma_{\mathrm{i}=3,4,5,6}\left[\mathrm{~K} * \mathrm{~S}_{\mathrm{j}-\mathrm{i}}\left(2.41-0.67 \mathrm{~T}_{\mathrm{N(i-i-1)}}-0.52 \mathrm{~T}_{\mathrm{W}(\mathrm{i}-\mathrm{i})}-1.37 \mathrm{M}_{(\mathrm{i}-\mathrm{i})}-0.0004 \mathrm{~S}_{\mathrm{j}-\mathrm{i}}\right) * 0.77 \mathrm{i}\right]$

Following the model, the years with low SST on feeding grounds in spring and low and stable SST on spawning grounds are favorable for sardine reproduction

Pe riods of low spring SST (Figh plankton abundance) on feeding grounds were: Cate 1960s, early 1980 s, late 1990 s

Sardine stock began to increase in the first period, reached the maximal value after the second, but the last cooling didn't stop the disaster

Pe riod of low winter SST on spawning grounds continued from late 1960 s till midd le 1980 s

During this period, the stock of sardine increased considerably
"Optimal" for sardine ratio between winter and spring SST

The coefficient a >0, that means the stable anomalies are "preferable" for sardine reproduction

Ratio between winter and spring SST on spawning grounds was usually favorable for sardine reproduction, but in late 1960 s and late 1980 s it was unfavorable

The first period possibly delayed the beginning of sardine bloom, and the second was one of the reasons of its finishing

However, in late 1990s all environmental factors were favorable for sardine, and spawning stock was still considerable. So, the model predicts restoration of population.

$$
\text { Why was the model wrong in late } 1990 \text { s? }
$$

We suppose that it was reasoned by influence of fishery, not included in the model

In our opinion, the restoration was interfered by overfisfing

Annual catch of sardine was usually about $1 / 5$ of its stock, or less in the years of low stock. In opposite, it began to increase after 1995 and reached 70\% in 2000.

Conclusion

1. Multiple regression density-dependent reproductive model simulates the sardine catch fluctuations satisfactory $\left(R^{2}=0.83\right)$ when consider the main environmental factors, both for feeding grounds and spawning grounds.
2. The most important for sardine reproduction environmental factors are:

- thermal (=feeding) conditions on feeding grounds in the year before spawning;
- thermal conditions on spawning grounds in winter;
- match of the time of larvae hatching with the time of plankton blooming.

3. Spring SST on spawning grounds are not important itself for survival of the sardine larvae, although its correspondence with winter SST is important for matching the times of hatching and blooming.
4. The sardine stock fluctuations are caused by natural factors mainly, but overfishing is able to distort the natural process significantly. The overfishing prevented restoration of the sardine stock in late 1990s when environmental factors were favorable for successful reproduction of this species.
5. Recent environmental conditions are unfavorable for the sardine reproduction.

Good bye!

