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Multi-species regime shift

Climate changes and multi-species regime shifts

» Small pelagic fish have exhibited cyclic population dynamics in
the complex marine ecosystems worldwide.

» The patterns have been associated with climate changes.

» However, the biological processes have remained unclear.
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Multi-species regime shifts of small pelagic fish and synchronous anchovy and sardine
alternations under the reversed temperature regimes across the Pacific in response to Pacific
Decadal Oscillation (PDO) (Mantua et al. 1997).
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Preliminary question
Why do even subtle environmental changes sometimes

trigger drastic fish regime shifts?
Key question
Why do anchovy flourish and sardine collapse or vice

versa under the same ocean regime?
Target question
Why were anchovy and sardine regime shifts

synchronous across the Pacific?

Extended question
Why do some species show synchronous patterns,

while others show out-of-phase patterns?

First, we explored the simplest and most direct pathway to
explain the biological processes of multi-species regime shifts.
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Differential optimal temperatures for
growth rates during early stages
between anchovy and sardine
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Preliminary question
Why do even subtle environmental changes sometimes

trigger drastic fish regime:shifts?

Key question X ‘
Why do anchovy flourish and sardine collapse or vice

versa under the same ocean regime?
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Relationships between growth ing early
history stages and sea tempe rature: > were e) ni

for Japanese anchovy and sardlne

“Optimal growth temperature® hypothesis:
A potential biological mechanism for

anchovy and sardine regime shifts?
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Samples

At 50 stations during 1990-2004 ~ Larval anchovy
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Sampling areas and stations for Japanese anchovy and sardine
larvae in the western North Pacific.
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Relationship between recent 3-day mean growth rates and sea
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Conceptual framework of a potential mechanism for fish regime
shifts based on the differential optimal growth temperatures.
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What temperatures are they likely to experience?
Is the difference in optima really significant?

Spawning ground

» Assumption: Sea surface temperatures (SSTs) in the spawning
regulate larval growth rates after hatching.
» EQgg-density-weighted mean SSTs for anchovy and sardine

i)

Egg and larval surveys

Anchovy eggs
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Takasuka et al. Time series data
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Retrospective test of the hypothesis with the times series data of egg-density-
weighted mean SST, growth rate, RPS and biomass for anchovy and sardine.
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“Optimal growth temperature” hypothesis

» Potential biological mechanism for anchovy and
sardine alternations.

> The theory is independent of and synergistic with
the existing hypotheses.

» Optimal temperature would provide a necessary
condition rather than a sufficient condition.

. “Growth-survival” paradigm
II. Direct temperature impacts
IIl. Differential optimal growth temperatures



Contrastmg spawning temper@
| of anchovy and sar
between opposite sides of the

Target question |
+..Why were anchovy and sardine regime shifts

synchronous across the Pacific?
(despite the reversed temperature regimes)

Picture from http:/ /www.demis.nl
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» Spawning temperature optima were compared ~.
between Japanese anchovy and sardine In the |
western North Pacific. f ;‘

» . The results were compared with those In the
California Current by Lluch-Belda et al. (1991).

léstern Boundary Current system vs. Upwelling system

Picture from http:/ /www.demis.nl
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Long-term data set of egg and larval surveys
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Pacific coast of Japan from 1978 to 2004.

> Off the Pacific
coast of Japan

> Past 27 years
(1978-2004)

» 102,905 tows

> Over 3,000 tows
pPer year :

Sampling stations of the historical egg and larval surveys off the
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F req UenCy . The methods of LIuch-Belda et al. (1991)

(1) All samples were classified into SST intervals of 0.1°C.
(2) They were sorted for “positive” samples for anchovy and sardine eggs and larvae.
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Frequency distributions of plankton samples (stations) classified
Into the sea surface temperature intervals of 0.1°C.
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(3) Spawning temperature index (quotient) was calculated as ratio of relative
frequencies of ‘positive’ samples vs. all samples for each SST interval.
(4) Assumption: The value of index > 1.0: Preferred or selected
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Relative frequency distributions of plankton samples (stations)
classified into the sea surface temperature intervals of 0.1°C.
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Spawning temperature index for Japanese anchovy (E. japonicus)
and sardine (S. melanostictus) in the western North Pacific.
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Spawning temperature index > 1.0
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Reversed species-specific temperature optima
under the reversed temperature regimes

would provide a possible theoretical solution

to the synchronous alternations across the Pacific.
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Multi-species regime shifts reflected
In spawning temperature optima of small
pelagic fish in the western North Pacific
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Extended question

Why do some species show out-of-phase patterns,
while others show synchronous patterns?
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Multi-species comparison
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Similarities and differences in spawning temperature patterns
reflect those in the long-term population dynamics patterns.
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Implications

Despite the complex nature of marine ecosystems, ...

Temperature-based hypotheses

» The dominant mechanism of the large-scale events may be
simple and direct.

» Species-specific temperature optima ideas could provide at

least a theoretical solution to what has been hard to explain by
the other factors.

» Direct temperature impacts on fish population dynamics
might be greater at the large scales than expected before.

Synergistic mechanisms

» No single factor is enough to explain the whole picture.

» There should be synergistic effects of the other factors.

» In fact, sardine have not yet indicated any sign of recovery,
despite the relatively favorable conditions in recent years.
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Spatial and temporal overlaps of
anchovy and sardine spawning
In the western North Pacific
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Question arising
How much do anchovy and sardine eggs

co-occur In the western North Pacific?
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Objectives

Sardine’s collapse

» Why have not sardine populations recovered?

» A controversial issue: Fishing mortality?

» Another possible aspect: Interspecies interactions

Spawning overlaps

» A possible source of direct competitions during early stages.
» Spawning peaks differ between anchovy and sardine.

» But their spawning seasons can be overlapped.

» Sardine show ca. tenfold greater fluctuations than anchovy.
» Spawning grounds and periods indicate expansion/contraction.

As a first step, ...

» Spatial and temporal overlaps of anchovy and sardine
spawning were described qualitatively and quantitatively.
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Long-term data set of egg and larval surveys
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Sampling stations of the historical egg and larval surveys off the
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Egg abundance and spawning area

» Monthly egg abundance calculated in terms of 15°x15’ squares.

» Spawning area calculated by summing areas of squares
positive for anchovy and/or sardine eggs

Sardine : Anchovy
May, 2004 . May, 2004

Occurrence and overlap status

» “S-positive”: sardine eggs occurred

» “SA-positive”: sardine and anchovy eggs co-occurred

» “A-dominated”: sardine < anchovy in egg abundance

» “A-dominated-2”: sardine < 1/2 anchovy Iin egg abundance

» “A-dominated-10": sardine < 1/10 anchovy in egg abundance
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Sardine

Note: Figures will be shown as overlaid images
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Month or Year Sardine: the minor species in the

overlapped areas dominated by anchovy

» Spawning area was calculated by summing areas of each category.

» Egg abundance was calculated by summing egg abundances in the areas of
each category.

Q: e.g. What is the ratio of sardine egg abundance in the “A-dominated” areas
to total sardine egg abundance?
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Averaged for 27 years
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Seasonal changes in spawning areas and egg abundances of
anchovy and sardine with a focus on their spawning overlaps.
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Spawning area (10* km?)
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Seasonal changes in spawning areas of anchovy and sardine for

different phases with a focus on their spawning overlaps.
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Egg abundance

Phase A B C
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Decadal shifts of spawning areas of anchovy (Jan. to Dec.) and
sardine (Oct. to Sep.) with a focus on their spawning overlaps.
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to Sep.) with a focus on their spawning overlaps.
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Annual egg abundance
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sardine (Oct. to Sep.) with a focus on their spawning overlaps.
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Implications

Spawning overlaps

» Spawning overlaps were described qualitatively and
guantitatively.

» Relative contributions of mechanisms would be phase-specific.

» Overlaps might be critical for sardine but not for anchovy.

Factors responsible

» Spawning periods and temperature optima
» Offshore expansion / inshore contraction

Competition?

» “School trap” hypothesis (Bakun & Cury 1999): The minor species
becomes more minor because of being minor in the mixed-species schools.

Temperature optima and synergistic factors
» Sardine could be a “recovery-harder’ species than anchovy.
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An extension of the “optimal

Temperature shifts environmental window” idea
) (Cury & Roy 1989 in CJFAS)
Growthrate &
Spawnin § — Species A
P S —— Species B
Physiological .g Species C
condition %
N Temperature may be replaced by
any other factor.
Temperature
Multi-species regime shifts Relative importance of mechanisms
8 might vary with phases.
(7))
C
9
I
=
= Hard to recover
o with interspecies

interactions?

Multi-decadal time series

Conceptual framework of multi-species regime shifts based on
differential species-specific temperature optima.
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