#### Towards coupling sardine and anchovy to the NEMURO lower trophic level model

Kenneth A. Rose

Dept. of Oceanography and Coastal Sciences Louisiana State University

> Vera N. Agostini Pew Institute for Ocean Science University of Miami

Participants in the Tokyo Workshop

# Introduction

- Sardine anchovy population cycles
  - well-studied
  - teleconnections across basins
- Recently, increased focus on the spatial aspect of the population cycles
  - contraction/expansion
  - shifts
- Top-down versus bottom-up controls

## Workshop

- "Global comparison of sardine, anchovy and other small pelagics: building towards a multispecies model"
- November 14-17 2005 in Tokyo, Japan
- Support: Japanese Fisheries Research Agency (FRA), Tohoku National Fisheries Research Institute, PICES, GLOBEC, Asia Pacific Network (APN), Inter American Institute for Global Change research (IAI)

# Workshop





#### Sardine

#### Anchovy



Provided by: Carl van der Lingen Sources: King, 1997; E. Stenevik, pers com

#### California Current



#### California Current

Sardine egg distribution



Source: Agostini, unpublished

### Model 1: NEMURO



#### Model 2: NEMURO.FISH

$$\frac{dW}{dt} = \left[C - (R + S + F + E) - H\right] \cdot \frac{CAL_z}{CAL_f} \cdot W$$

#### **Zoop from NEMURO**



- W = weight (g ww)
- C = consumption (1/day)
- **R** = respiration
- S = SDA
- F = egestion
- **E** = excretion
- H = reproduction

#### **Depend on W and temperature**

PD = prey density (1=ZS; 2=ZL; 3=ZP)

- V = vulnerability
- K = feeding efficiency

# Now: NEMURO.SAN

- Biological extensions:
  - Two species (sardine and anchovy)
  - Individual-based
  - Full life-cycle
  - Dynamic predator on sardine and anchovy
- Spatial extensions
   Grid of cells

### **NEMURO.SAN**

Anchovy
Sardine
Predator





#### **NEMURO.SAN: Growth**

$$\frac{dW}{dt} = \left[C - (R + S + F + E) - H\right] \cdot \frac{CAL_z}{CAL_f} \cdot W$$

#### **Zoop from NEMURO**



#### Mortality to NEMURO

- W = weight (g ww)
- C = consumption (1/day)
- **R** = respiration
- S = SDA
- F = egestion
- **E** = excretion
- H = reproduction

#### **Depend on W and temperature**

PD = prey density (1=ZS; 2=ZL; 3=ZP)

- V = vulnerability
- **K** = feeding efficiency

#### **Maximum Consumption**



# **Bioenergetics**

| Process     | Anchovy                             | Sardine                              |  |
|-------------|-------------------------------------|--------------------------------------|--|
| Cmax        | 1.65*W <sup>0.67</sup> * T1         | 0.2*W <sup>0.256</sup> * T2          |  |
| Respiration | 0.086*W <sup>0.81</sup> * Q10 * ACT | 0.0033*W <sup>0.23</sup> * Q10 * ACT |  |
| Egestion    | 0.2 * C                             | 0.16 * C                             |  |
| Excretion   | 0                                   | 0.1 * (C-Eg)                         |  |
| SDA         | 0                                   | 0.175 * (C-Eg)                       |  |

#### **Bioenergetics-Feeding**

| K values<br>Anchovy<br>Sardine | Age 1-2          | Age 3-5          | Age 6+           |
|--------------------------------|------------------|------------------|------------------|
| Small Zoop                     | 0.09             | 0.04             | 0.02             |
|                                | <mark>0.2</mark> | <mark>0.2</mark> | <mark>0.2</mark> |
| Large Zoop                     | 0.6              | 0.08             | 0.06             |
|                                | 1.0              | 1.0              | 1.0              |
| Predatory Zoop                 | 0.3              | 0.2              | 0.08             |
|                                | 0.4              | 0.4              | <mark>0.4</mark> |

# **NEMURO.SAN: Mortality**

- Fishing
  - Age-specific
- Egg to age-1

   Implicit in spawner-recruit relationship
- Natural:
  - Constant
  - Predator-dependent

#### **Predator-dependent**

- Individuals of a third species
  - Do not grow or die
  - Move based on neighboring cell with highest prey biomass (anchovy + sardine)
- Each day compute predator biomass in each cell
- Daily mortality rate of anchovy and sardine individuals in a cell is proportional to predator biomass in that cell

#### **NEMURO.SAN: Reproduction**

- Option 1: Follow eggs through yolk-sac, larval, and juvenile stages
   Better for investigating YOY effects
  - Must specify density-dependence

Option 2: Spawner-recruit relationship

 Aggregate YOY stages
 Easier to code

#### Reproduction

- Spawning season:
   Anchovy: January 1 May 30
   Sardine: January 1 Sept 7
- Compute SSB at beginning of spawning season
- Individuals mature at age-2 (after seeing second January 1 birthday)

#### **Spawner-Recruit**



#### Recruitment

 Add new individuals one year after each day of spawning season



Day of Year

- Initial values:
  - 10.5 g for anchovy and 35.7 g for sardine
  - Anchovy placed near coast at mid-latitude
  - Sardine placed at southern edge

### **NEMURO.SAN: Movement**

- Each individual has a continuous x and y position
- Position mapped to grid to determine cell location
- Three candidate approaches:
  - Neural network with genetic algorithm (Huse and Giske 1998)
  - Kineses (Humston et al 2004)
  - Fitness (Railsback et al 1999) Today

#### Fitness-based Movement

• Evaluate cells in neighborhood



For each cell, project weight and survival to next spawning season

#### Fitness-based Movement

Select cell with highest fitness

- Increment x and y by travel distance in direction of selected cell (8 directions)
   Anchovy 2000 m, sardine 5000 m, predator 500 m
- Plus an equal random component

#### **Numerical Details**

- 4<sup>th</sup> order Runge-Kutta for each timestep in a day
- Movement is daily and predator sees yesterday's locations of anchovy and sardines
- 1000 super individuals per age class per species, and removed when reach age-10 (Scheffer et al. 1995)

### **California Current Version**

 Very preliminary – meant to answer the question: "Can we do it?"

• 40 cells in x-direction x 20 in y-direction

 West coast Vancouver Island version of NEMURO (Rose et al. in press) in top right corner



California Current

### WCVI Environmental Variables



#### Temperature



#### Mixed Layer Depth



#### Nutrient Exchange



#### **Baseline Simulation**

- Conditions: Years 1-10: spin-up 11-20: warm (+2° C) 21-30: cold (-2° C) 31-40: warm (+2° C) 41-50: cold (-2° C)
- Outputs:
  - Annual SSB and mean weight at age-4
  - NEMURO zooplankton concentrations at 3 cells in year 20
  - Daily bioenergetics of two individuals over their lifetime
  - Spatial maps of fish biomass on July 20 for six of the years





#### Anchovy #10 (John)



#### Sardine #10060 (Bernie)





### **Concluding Remarks**

- Presented an idea for the next generation in NEMURO family of models – credit goes to the Tokyo workshop participants
- Demonstrated it is feasible and some of its features and capabilities
  - Two species and individual-based
  - Full life cycle
  - Spatially-explicit

#### Next

#### • Option 1:

(a) Stop, call it theoretical (include predator-prey?)

#### Option 2:

(a) Continue and develop a more rigorous California Current version (biology and physics)
(b) Then apply to other locations (Benguela, Japan) for geographical comparison