A sardine growth model coupled with the NEMURO lower trophic level ecosystem model

Shin-ichi Ito Akihiko Yatsu Yasuhiro Yamanaka Kenneth A. Rose Carl D. vd Lingen Lucho Cubillos Salvador E. Lluch-Cota Goh Onitsuka

Akinori Takasuka Masahiko Noto Taketo Hashioka **Bernard A. Megrey Manuel Barange** Larry Jacobson

Yoshioki Oozeki Michio J. Kishi Maki Noguchi Aita Francisco E. Werner Yunne Shin Vera N. Agostini Yasuko Kamezawa

Motivation: failure of Pacific saury model

Slage	Iegion
larvae	Kuroshio
juvenile & young	mixed region
small	Oyashio
adult	mixed region
adult matured	Kuroshio
adult	mixed region
adult	Oyashio
adult	mixed region
adult matured	Kuroshio

NEMURO.FISH successfully reproduce realistic growth of saury (Ito et al., 2004). It also successfully reproduce growth difference between different seasonal cohorts (Mukai et al., in press).

However, it could not reproduce realistic interannual variation of growth (Ito et al., in press).

Model vs Observation

Discussion

possibility 2 : sardine effect

sardine feeding : 2-3% of body weight (Noguchi et al.) include sardine feeding pressure on ZL in NEMRUO

Model reproduced decreasing of ZL in 1980's competition with sardine is important

NEMURO.FISH (sardine version)

Courtesy of A. Yatsu

These curves were estimated from the results of Takasuka et al. (2005) and Takahashi et al. (2005)

Maximum consumption rate

2-box version

Table 2. Life stages of Pacific sardine in the sardine bioenergetics model

Stage	age(day)	period	region
Larva	1-59	Feb.01-Mar.31	Kuroshio
juvenile & young	60-300	Apr.01-Dec.31	mixed
adult mature 1	300-420	Jan.01-Apr.30	Kuroshio
Adult	421-700	May.01-Dec.31	mixed
adult mature 2	-	Jan.01-Apr.30	Kuroshio
Adult	-	Mar.01-Dec.31	mixed
adult mature 3	-	Jan.01-Apr.30	Kuroshio
Adult	-	Mar.01-Dec.31	mixed
adult mature 4	-	Jan.01-Apr.30	Kuroshio
Adult	-	Mar.01-Dec.31	mixed
adult mature 5	-	Jan.01-Apr.30	Kuroshio
Adult	-	Mar.01-Dec.31	mixed
adult mature 6	-	Jan.01-Apr.30	Kuroshio
Adult	-	Mar.01-Dec.31	mixed
adult mature 7	-	Jan.01-Apr.30	Kuroshio
Adult	-	Mar.01-Dec.31	mixed
adult mature 8	-	Jan.01-Apr.30	Kuroshio

Table 3. Summary of parameter values used in the sardine bioenergetics model.					
<u>Symbol</u>	Parameter description	Value			
Consum	Consumption, C _{MAX}				
a_{c}	Intercept for C_{MAX} at $(te2+te3)/2$	0.240, 0.240			
b_{C}	coefficient for C_{MAX} versus weight	-0.342, -0.342			
tel	Temperature for <i>xk1</i> (in °C)	$11^{a}, 11^{b}, 6^{c}, 6^{d}$			
te2	Temperature for <i>xk2</i> (in °C)	16 ^a , 16 ^b , 22 ^c , 22 ^d			
te3	Temperature for <i>xk3</i> (in °C)	17 ^a , 17 ^b , 23 ^c , 23 ^d			
te4	Temperature for <i>xk4</i> (in °C)	21 ^a , 27 ^b , 27 ^c , 27 ^d			
xk1	Proportion of C_{MAX} at <i>te1</i>	0.1			
xk2	Proportion of C_{MAX} at $te2$	0.98			
xk3	Proportion of C_{MAX} at <i>te3</i>	0.98			
xk4	Proportion of C_{MAX} at <i>te4</i>	0.1			
Metabolism, R					
a_R	Intercept for <i>R</i>	0.0033			
b_R	Coefficient for R versus weight	-0.227			
C_R	Coefficient for <i>R</i> versus temperature	0.020			
d_R	Coefficient for <i>R</i> versus swimming speed	0.026			
S	Coefficient for Specific Dynamic Action	$0.150^*, 0.175^\#$			

* values for stage 1 saury, # values for stage 2 and higher saury

		<u></u>	
<u>Symbol</u>	Parameter description	Value	
Swimmi	ng Speed, U		
$a_{\scriptscriptstyle A}$	Intercept $U (< 6 ^{\circ}\text{C}) (\text{in cm/s})$	2.0	
a_A	Intercept $U (\geq 6 ^{\circ}\text{C}) (\text{in cm/s})$	9.52, 8.69	
b_{A}^{A}	Coefficient U versus weight	0.33, 0.33	
C_A	Coefficient U versus temperature (< 6 °C)	0.149	
C_A	Coefficient U versus temperature (≥ 6 °C)	0.0	
Egestion and Excretion, F and E			
a_{F}	Proportion of consumed food egested	0.16	
\underline{a}_{F}	Proportion of consumed food excreted	0.10	
* [±] values	for stage 1 saury, # values for stage 2 and higher saur	У	

Table 3. Summary of parameter values used in the sardine bioenergetics model.

Table 4. Vulnerability coefficients v_{ii} for the sardine bioenergetics model.

Stage	Region	PL	ZS	ZL	ZP
1	Kuroshio	0.0	1.0	0.0	0.0
2	mixed water	1.0	1.0	0.0	0.0
3	Kuroshio	1.0	1.0	0.0	0.0
4	mixed water	1.0	1.0	0.0	0.0

Vulnerability coefficients for each zooplankton compartment

Table 5. Half-saturation constants K_{ij} for the sardine bioenergetics model. Values were adjusted to provide the best fit between model-predicted growth and observed growth.

Half-saturation constants for each zooplankton compartment

Stage	Region	PL	ZS	ZL	ZP
1	Kuroshio	-	0.30	_	-
			0.05		
2	mixed water	0.30	0.30	-	-
		0.05	0.05		
3	Kuroshio	0.45	0.45	-	-
		0.60	0.60		
4	mixed water	0.45	0.45	-	-
		0.60	0.60		

Table 1. Bottom boundary conditions for temperature and nutrients in NEMURO

boundary condition	Kuroshio	mixed water	Oyashio
water temperature (°C)	19.10	14.70	4.58
nitrate (molN/l)	6.0x10 ⁻⁶	18.0x10 ⁻⁶	25.0x10 ⁻⁶
silicate (molSi/l)	6.0x10 ⁻⁶	25.0x10 ⁻⁶	30.0x10 ⁻⁶

result from NEMURO.FISH

result from NEMURO.FISH

This model is two box version and coupled with LTL model.

February-SST anomaly (°C) averaged in the KESA (broken) and natural mortality coefficient anomaly during the period from post larva to age-1(solid).

Mar. 30 (about 60 days after spawned: just before moving to MWR)

Jul. 5 (about 155 days after spawned: end of high prey density season)

Dec. 30 (about 300 days after spawned: just before spawning)

A sardine growth model coupled with the NEMURO lower trophic level ecosystem model

- 1. sardine version NEMURO.FISH was coded.
- 2. appropriate growth of Japanese sardine was available.
- 3. need to improve the estimation of parameters. especially in early life stages
- 4. slow down of sardine growth was found in early life stages. mainly by temperature effect

Future Tasks

California Current System Humboldt Current System Benguela Current System Kuroshio/Oyashio Current System

Benguela Current System Courtesy of C. V. Lingen

Life history cycle of SB anchovy and sardine:

Separate spawning and nursery areas, transport from south coast spawning area to west coast nursery area is considered a critical determinant of recruitment success;

16° 17° 18° 19° 20° 21° 22° 23° 24° 25° 26° 27°

South coast may act as a sardine nursery area on occasion.

BOX2: 16E, 32S BOX1: 18E, 35S

California Current System

Courtesy of Jacobson & Agostini

BOX1: 122W, 33N BOX2: 126W, 45S

Kuroshio/Oyashio Current System

Courtesy of Yatsu

