Using GIS to locate hotspots for bluefin tuna

Rob Schick¹ & Molly Lutcavage²

¹NOAA Fisheries – Southwest Fisheries Science Center/Santa Cruz Lab

²UNH – Department of Zoology

Bluefin and SST fronts

- We looked at 3 years of survey data, and found significant assoc. with SST fronts
- Yet the story was inconsistent at finer time scales
- SST emerged as a more important variable
- Schick et al., 2004, Fish.
 Oceanogr. 13:4 225-238

Bluefin Data

- Fishery linked random aerial surveys
- Presence-absence data from these over-flights
- Oceanographic variables sampled at each p/a data point

Spatial Extrapolation

Adapted from Miller et al., 2004, BioScience 54(4), 310-320

Definition

- Locate hotspots for bluefin tuna
 - Use statistical model & GIS to examine unsampled areas in GOM
 - Map out habitat cells on a daily timestep
 - Sum within and across years to explore persistence

Definition

Objectives Conceptual Predictors Scaling Extrapolation Predictions Uncertainty Evaluate

Data-driven statistical model

```
species ~ d.front + front.dens + temp + depth + slope
```

 H_o: With GLM, fish are seen no closer to fronts than random

Definition

- Sea Surface Temperature
- Distance to a SST front
- Time-lagged density of SST fronts
- Bottom depth
- Bottom slope

Prediction

Objectives Conceptual Predictors Scaling Extrapolation Predictions Uncertainty Evaluate

- What is CART?
 - Recursive data partitioning algorithm
 - With class data, split variable is chosen such that it minimizes the deviance for the tree
 - Akin to a classification key
 - Results printed graphically

See De'ath & Fabricious, 2000, Ecology 81(11): 3178 - 3192

Fitted Classification Tree

Objectives Conceptual Predictors Scaling Extrapolation Predictions Uncertainty Evaluate

July 30th 1995, All variables: Raw Data

1) root

Spatial Extrapolation: Prediction

Spatial Extrapolation: Prediction

- To develop an index of persistence:
 - -Summed the daily grids
 - Divided by the number of days
 - Classify that into bins
 - Results...?

Evaluation

Objectives	Conceptual	Predictors	Scaling	Extrapolation	Predictions	Uncertainty	Evaluate
	•			•		<u> </u>	

- Measure Uncertainty
 - -Total = (aleatory + epistemic)
 - Aleatory: randomness
 - Epistemic: incomplete knowledge
- What's driving the shift in distribution?
- Test against independent data

Discussion

- What is a hotspot?
 - Do they differ at different life history stages?
 - Do they differ w/r/t to behavior?
- Organism driven vs. env. driven?
 - Do hot spots generically exist in GOM
 - Or are they organism specific?

Take home Message

- Hotspots do exist in GOM, and are used by bft
- Hotspots are spatially and temporally variable
- Though a small portion of GOM is persistently "hot"...
- ...Likely that hotspots present a clearer signal at yearly time steps
- Next steps:
 - 1. Use commercial catch data
 - 2. explore landscape pattern w/r/t hotspots (does use change w/diff. spatial structure?)
 - 3. scaling
 - 4. Incorporate more oceanographic variables
 - 5. data predictors (prey)

Tree to GIS output

Objectives	Conceptual	Predictors	Scaling	Extrapolation	Predictions	Uncertainty	Evaluate
------------	------------	------------	---------	---------------	-------------	-------------	----------

> print(jul3095.raw.tree)
n= 150

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 75 0 (0.5 0.5)

3) front.dens>=1.1 125 52 **1** (0.42 0.52)

7) d.front>=1618 118 45 **1** (0.38 0.62)

15) temp< 15.6 27 4 **1** (0.15 0.85) *

July 30th 1995, All variables: Raw Data

Santa Cruz Laboratory

Hotspots & their use by pelagic predators PICES 13th Annual Meeting, Honolulu, HI October 18th-22nd, 2004

Prediction

- CART +/-'s
 - + Non-parametric
 - + Handle mult. data types
 - + Auto. stepwise selection
 - + Easy to diagnose and interpret
 - + Locates interactions between predictors
 - Searches for thresholds
 - Orthogonal partitions not always optimal
 - Decreasing power ~ n
 - Overfits the data, but...

Fitted Classification Tree

July 30th 1995, All variables: Raw Data

Prediction

- GIS
- docell scripting to locate prescribed combinations of predictors
- Fit model on a daily time step