Identifying Biological Hot Spots in the Northern California Current

Douglas C. Reese College of Oceanic and Atmospheric Sciences, Oregon State University

Richard D. Brodeur Northwest Fisheries Science Center, NOAA Hatfield Marine Science Center

Background

- Logical starting point
 - Begin by identifying where hot spots occur
- Also need to know:
 - How persistent they are
 - Community characteristics
 - Community composition, dominant species, biodiversity, etc.
 - Driving forces that structure these areas

Current understanding

Species diversity and dominance of surface zooplankton and coastal pelagic nekton have been determined to vary between geographic regions

Species assemblages have been shown to vary both with distance from shore and latitude

 California Current ecosystem has undergone dramatic shifts in abundance and species composition at both the lower and higher trophic levels

Objectives of the Study

Identify regions of high levels of phytoplankton and surface zooplankton productivity

- Identify regions of persistent high levels of surface zooplankton and nekton biodiversity
- Identify dominant members and the structure of the nektonic communities within these regions

Examine the habitat characteristics associated within these areas

Study Region

Study Region

Data Collection

Sampling was conducted during a 2 week period in June and August of 2000 and 2002 as part of the U.S. GLOBEC mesoscale surveys

Stations were sampled along both regular transects and also in areas of special biological interest

At each station a CTD cast, neuston tow and pelagic surface trawl were made and a chlorophyll sample collected

Identifying Biological Activity

Several biological parameters examined:

- Chlorophyll concentrations
- Surface zooplankton biovolume and diversity
- Nekton abundance
- Nekton species diversity
- Nekton biomass

 Hot spot = An area with greater than average biological activity in terms of nekton density, species richness, and/or biomass

Identifying Hot Spots

Geostatistical modeling techniques

- Designed to model spatially dependent data by incorporating spatial autocorrelation
- Optimally predict values at intermediate sites

Assess error associated with predictions

- Geostatistics vs. classical methods
 - When accounting for spatial autocorrelation, conclusions about environmental control over distribution and abundance changed dramatically

 Although our data are not synoptic, maps of temperature and chlorophyll closely match with satellite imagery

Statistical Procedures

- Group differences in species composition between hot spots and non-hot spots were tested with a multi-response permutation procedure (MRPP)
- Ordination of the sample stations in species space was done using non-metric multidimensional scaling (NMS) using the geographic location of hot spots as a categorical variable
- Correlations of environmental variables with each axis were used to measure the relationships of these variables to species data
- Identification of the primary species for each hot spot was done using indicator species analysis (ISA)

June 2000

Nekton Species Richness

Nekton Density 45'0'0" Nekton Density (#/km3) 0 - 20,000 20,000 - 40,000 40,000 - 60,000 0.0 60,000 - 80,000 80,000 - 100,000 100,000 - 120,000 120,000 - 140,000 140,000 - 160,000+ Oregon 44'0'0'7 43'0'0" Cape Blanco 42'0'0" California 126'0'0"W 125'0'0'W 124'0'0'W

August 2000

Nekton Species Richness

June 2002

August 2002

Hot Spots

June 2000 Hotspots

August 2000 Hotspots

June 2002 Hotspots

August 2002 Hotspots

MRPP Results

Chance-corrected within-				
Cruise	group agreement, A	<i>p-</i> value		
June 2000	0.1480	<0.0001		
August 2000	0.1748	<0.0001		
June 2002	0.0789	0.0001		
August 2002	0.0947	<0.0001		

H₀: No difference in community composition between hot spots and no hot spotsResults indicate significant differences for each cruise

NMS Ordinations

June 2000

 $R^2 = 0.653$ for 3-D ordination Axis 1: $R^2 = 0.254$ Axis 3: $R^2 = 0.230$ Temp r = 0.752

 $R^2 = 0.621$ for 3-D ordination Axis 2: $R^2 = 0.197$ Axis 3: $R^2 = 0.257$ Temp r = 0.625

NMS Ordinations

June 2002

3 \$XA

> $R^{2} = 0.757 \text{ for } 3\text{-D ordination}$ Axis 2: $R^{2} = 0.424$ Axis 3: $R^{2} = 0.225$ Chl r = -0.475 Temp r = 0.385

August 2002

Axis 2

 $R^{2} = 0.707 \text{ for } 3\text{-D ordination} \\ Axis 2: R^{2} = 0.327 \\ Axis 3: R^{2} = 0.209 \\ Temp r = -0.438 \\ R^{2} = 0.209 \\$

Indicator Species Analysis

	Hot Spot North	Hot Spot South	No Hot Spot
June 2000	Bocaccio juv Cabezon juv Dover sole larvae Pacific clubhook squid Several rockfish spp juv	Chinook subad & adult Steelhead juv Market squid Pacific herring adult Surf smelt adult Whitebait smelt juv	No significant Indicator Species
August 2000	Coho subad & adult Coho yearling Jack mackerel adult Pacific mackerel adult Pacific sardine adult	Chinook subad & adult Chinook subyearling Chinook yearling Steelhead juv Medusafish adult Surf smelt adult Wolf eel juv	No significant Indicator Species
June 2002	Chinook yearling Coho yearling Pacific sanddab adult	Rex sole larvae Rockfish juv Wolf eel juv	No significant Indicator Species
August 2002	Northern Anchovy adult	King-of-the-Salmon juv Pacific herring adult Ragfish juv Surf smelt adult	No significant Indicator Species

Habitat Comparisons Between Hot Spot Regions

Nekton Comparisons Between Hot Spot Regions

Nekton Density (#/km^3)

Nekton Species Richness

Results – Dominant Members of Hot Spots

Indicator Species Analysis

- Most common member of northern hot spot
 - Coho yearlings
- Most common members of southern hot spot
 - Chinook subadults and adults
 - Surf smelt adults
 - Pacific herring adults

Northern hot spot more important to young nekton
Southern hot spot species tended to be adults

Conclusions

- General locations of hot spots in north and south were persistent across seasons and years
- Size of hot spots varied seasonally and annually
- Communities within hot spots varied seasonally and annually
- Temp, salinity, density, and depth were significant parameters explaining different communities in north and south hot spots especially in 2000, but was not as clear in 2002
- None of the environmental variables examined seemed to reliably indicate the presence or lack of a hot spot

Acknowledgements

- For field work and technical assistance
 - Bob Emmett
 - Todd Miller
 - Suzan Pool
 - Paul Bentley
 - Joe Fisher
 - Bruce McCune
- Funding sources
 - U.S. GLOBEC Program
 - NMFS, Northwest Fisheries Science Center

