Structural Controls on Food Webs: a Fluvial Perspective

Mary Power, U.C. Berkeley PICES XIII, Honolulu, HA

Wasp waists and beer bellies?

Size structure matters unless species has parental care

I. Grazer traits: large and armored vs small and vulnerable

II. Food web regime change down drainage networks

Eel River: Grazing insects

Ozark and prairie streams: snails and the grazing minnow, Campostoma

Rio Frijoles: four species of armored catfish 'Replicate' habitats (e.g. pools, riffles)

Repeated reassembly of webs following flood scour or dewatering

Dominant grazers: armored catfish

Hypostomus plecostomus, Ancistrus spinosus, Chaetostoma fischeri, Rineloricaria uracantha

Sunny vs dark pools: 16x variation in algal growth rates

Loricariids were correspondingly denser in sunny pools

Rainy season Dry season

Pre-reproductive catfish also had similar growth and survival in dark, half-shaded, and sunny pools

Despite the ability of loricariids to track, and therefore damp out, algal variation on a pool-to-pool scale, they did not track algal availability along depth gradients within pools.

Large (hardened) loricariids outgrow most gape-limited aquatic predators...

but remain vulnerable to fishing birds and mammals, in shallow water

Grazing minnow, Campostoma anomalum

Brier Creek, south-central Oklahoma

Less pool-to-pool variation in primary productivity

In contrast to the Rio Frijoles, Brier Creek was uniformly sunny,

But had striking variation among pools in algal abundance

Micropterus salmoides, M. punctulatus

Homage to Estes...?

When floods re-arranged these players, the status of pools (green vs barren) sometimes changed but the reach scale pattern was maintained

Split pool experiment: bass removed, Campostoma added to one side

Within 5 weeks, the side to which we had added Campostoma was grazed to a barren state, while the side without the grazers remained green.

Bass addition experiment: Campostoma disappeared or emigrated. Algae recovered within 5 weeks. In one experimental run, ca. 50% of the drop in minnow numbers was due to emigration (predator avoidance).

Pool-to-pool contrasts in algal states established by 2- vs 3-level food chains

Eel River, N. coastal CA: Mediterranean climate regime

In March, scouring floods leave river bed barren of algae and rock-bound benthos

May-June: vegetative regrowth of filamentous green algae (Cladophora glomerata)

July: algae detach to form floating mats;

August: algal collapse before winter floods

Cladophora phenology, 1988-2002

Fish effects on algae?

juvenile steelhead (Oncorhynchus mykiss)

California roach (Lavinia (Hesperoleucas) symmetricus)

1989-flood 1990-drought 1991-drought 1993-flood, spring spate 1997-flood

Thanks, Jennifer Nielsen!

Flood: 1989: 4 level 1993: 3 level

1997: 4 level

No flood: 1990: 2 level 1991: 2 level

- Partial predictability down drainage networks in
 - discharge,
 - habitat structure,
 - solar radiation,
 - solutes
 - disturbance
- Confluence nodes
 - pulses of enrichment
 - adjacency of contrasting habitats

Headwaters less frequently scoured, much less productive than mainstems...

LIDAR data

From Bill Dietrich

Regime change down drainage networks...

- How do food webs change down drainage networks?
- erergy sources
- **Interactions**

Where in the landscape do 'regime changes' ocaur?

How might these boundaries change with environmental change?

Jacques Finlay, U. Minn Camille McNeely, Berkeley

McKinley Creek, 1 km²

Caddis eat algae but don't limit it

Finlay et al ms; McNeely Ph.D.

Elder Creek, 17 km²

All channel consumers built of algal carbon

McNeely, Ph.D.:

Tile grazer exclusion - early summer accumulation of algae after 25 days

Moving upstream the threshold for algal support of predators:

McNeely et al. (JNABS 2002): Removing armored caddisflies released diatoms and increased algal intake by mayflies

Towards mapping spatial boundaries of (trophic) regime change, and predicting shifts under altered forcing...

