Who or What is Regulating Zooplankton Production?

Jeffrey M. Napp¹, George L. Hunt², Jr., Sue E. Moore¹, and Christine T. Baier¹

 ¹NOAA – Fisheries, Alaska Fisheries Science Center
 ²Dept. of Ecology and Evolutionary Biology, Univ. of California, Irvine

Why is it Important to Know?

- Depletion of prey by populations may limit their own recruitment (density-dependence)
- Availability of zooplankton prey may limit production at higher trophic levels
- Removal of major zooplankton predators may benefit other competitors and result in a restructuring of the food web

Point #1 Density-dependent affects on recruitment

"Superabundance" of Gulf of Alaska Walleye Pollock in 1981

	1981		Other Years	
	(in patch)	(out patch)	(in patch)	
Larval Density (No. 10 m ⁻²)	27,440	1,670	6,000	
Nauplii as % Prey	10	80		
Mortality (d ⁻¹) @ 20 days	0.138		0.027	

Duffy-Anderson et al. (2002)

Point #2 Limitation of production at higher trophic levels

California Current Ecosystem

Point #3 Restructuring of food webs

Trophic Cascade Hypothesis

Predator Release Regime Shift Fishing

Adult Pollock

Apex Predators

Juvenile Pollock Forage Fish

Merrick (1997)

Production = Biomass x Growth

$\mathbf{P} = \sum_{i=1}^{J} \mathbf{N}_{i} \mathbf{W}_{i} \mathbf{g}_{i}$

Control From Below – Does It Occur?

zooplankton

Phytoplankton

µ-zooplankton

Physics

Example #1

Food Limitation: Southern California Bight

(Calanus pacificus					
		% of Population Biomass				
		Loss	Maintain	Gain		
	April	40	30	30		
	June	45	5	55		

Mullin & Brooks (1976)

Temperature Limitation

- Huntley & Lopez (1992) $- R^2 = 0.91$
- Hirst & Lampitt (1998)
 - Broadcast
 - T & BW; $R^2 = 0.49$

- Sac

• T only; $R^2 = 0.52$

Control From Above – Does It Occur?

Baleen Whales Seabirds

Fish

Gelatinous Zooplankton

Mesozooplankton Zooplankton

Examples #5 & #6

Control From Above

Ohman (1985)

- Examined *Pseudocalanus* population in a semi-enclosed bay deep inside a fjord
- 5 different indices of population control were examined – 4 which would indicate food limitation and one which examined "founder" effects.
- No indication of food limitation, therefore must be predation.

Stage-specific mortality of Calanus spp.

Eiane *et al.* (2002)

Example #7

Control From Above & Below

- Georges Bank
- Growth is Modeled
- Mortality is Closure
- Goal is for model to replicate time series of abundance/biomass observed in nature

What is Limiting Zooplankton Production in the Southeastern Bering Sea ?

Temperature Limitation

Coyle and Pinchuk (2002)

Temperature Limitation

Calanus marshallae

	Bottom Temperature	Ice Extent	BloomOnset
When C1 Appear	P<0.05	P<0.05	P<0.05
May Concentration of Copepodites	NS	P<0.05	NS

Predation By Soft-Bodied Zooplankton

- 32 % standing stock4.7% production
- Brodeur *et al.*, (2002) Sagitta elegans Consumption
 - 12 75 % standing stock
 44 78 % production

Baier and Terizaki, unpublished

Predation By Fish

http://www.seafreez.com/Capelin.html

- Fish Consumption
 - > 100 % standing stock
 28 % production
- Bristol Bay Sockeye Salmon
 Consumption
 - 8 21 % standing stock
 - 5 % production

Ciannelli *et al*. (2004) Nishiyama (1982)

Whale Consumption

1999 Whale Surveys

- Maximum Fin Whale Consumption
 - ca. 6 % of standing stock
 - ca. 0.6 % production

Courses Standing

Tynan (2004) Moore *et al.*, (2002)

Seabird Consumption

PICES Subregion BSC

 Consume 0.02 g C m⁻²

 Pribilof Islands

 Consume 0.03 g C m⁻²

 Zooplankton Equivalents

 a. 1 % of standing stock

ca. 0.1 % production

Ciannelli *et al.* (2004) PICES Scientific Report No. 14 (2000)

Control from Above

	Percent Removed						
	Plankton		Fish		Fin	Birds	Total
	Chaetognaths	Jellyfish	Ensemble	Salmon	Whales		
Standing Stock	12 - 75	32	> 100	8 - 21	6	1	> 200
Production	44 - 78	5	28	5	< 1	< 1	> 100

Conclusions

- Both control mechanisms are operative; how do they interact?
- Need growth rate measurements at low temperatures.
- Species composition affects the result.
- Spatially-explicit rates, especially predation mortality.
- Simulations/models important to examine different mechanisms under different conditions.

Food Limitation: Georges Bank

Calanus finmarchicus

Campbell et al. (2001)