Bottom-up and top-down controls of walleye pollock in the Eastern Bering Sea

Franz J. Mueter

Sigma Plus, Fairbanks, Alaska, USA fmueter@alaska.net Brenda L. Norcross Michael C. Palmer IMS, SFOS, University of Alaska

Bottom-up control

• Recruitment limited by primary production (environmental variability)

Ice extent / timing of retreat

Fate of primary production

Early ice retreat

- Late bloom
- Warm SST
- High pelagic prod.

Late ice retreat

- Early (ice-edge) bloom
- Cold SST
- High benthic prod.

Yellowfin sole and walleye pollock

Cold Pool extent

Cold Pool extent

Index of association modified and updated from Wespestad et al. (2000)

Surface transport

From: Wespestad et al. (2000). ICES J. Mar. Sci 57:272-278

Surface transport

Summer stratification

$R^2 = 0.38, p = 0.002$

Summer conditions <u>best</u> explained past variability in survival rates of walleye pollock

Best overall model: Retrospective analysis

 $log(R_{t}/S_{t}) = b_{0} + b_{1} * SSB_{t-2} + b_{2} * Strat_{t-1} + b_{3} * (Wind_{t-1})^{2} + b_{4} * Lat_{t-2} + \varepsilon_{\tau}$

Summary: Bottom-up controls

- Ice extent / timing of ice retreat
 - Fate of primary production $\sqrt{}$
 - Oscillating Control Hypothesis ?
- Cold pool extent
 Cold pool hypothesis
- Surface transport
 Larval transport hypothesis
- Summer stratification / wind mixing
 - New hypothesis?

Match / mismatch hypothesis

Stratification index from Carol Ladd (pers. comm.)

Top-down control

• Recruitment limited by predation from top-predators

Top-down control: Consumption of walleye pollock

- Total consumption of walleye pollock as high as 3.5 million t (Livingston & Lang 1996)
- Model estimates based on diet composition
 - -~40% of juvenile production (age 0-1) consumed by adult pollock (age 2+)

-~5% of the diet of age 2+ pollock consists of age 0-1 pollock

(Kerim Aydin, pers. comm.)

Cannibalism: Stock-recruit relationship

• Strong density-dependence in spawnerrecruit relationship

Predation mortality

- Predation mortality accounts for 33% of remaining variability in log-survival (1979-2001)
- Or as much as 76% of total variability in logsurvival

Top-down control

- Predation mortality depends on
 - Abundance of predators
 - Primarily adult pollock
 - Availability of juveniles to predators
 - Spatial overlap: horizontal / vertical

Top-down control

• Index of spatial association as predictor of log-survival and recruitment

Bottom-up and top-down controls

Special thanks to: Carol Ladd, PMEL Nick Bond, PMEL Dave Kachel, PMEL Jim Ianelli, AFSC Pat Livingston, AFSC VE