A biophysical model for walleye pollock in the Gulf of Alaska to study recruitment variability:

A coupled modeling approach

Carolina Parada, Sarah Hinckley & Albert Hermann

Alaska Fisheries Science Center
Pacific Marine Environmental Laboratory
NOAA, Seattle

Life history of walleye pollock in Gulf of Alaska ...

Spawning and Nursery grounds

Recruitment variability: Assessment model Age-2

Objective ...

Implement an Individual-based model for walleye pollock coupled to hydrodynamic and NPZ models to estimate pre-recruitment indices

Experiments: Hydrodynamic model

The *hydrodynamic model* (SPEM, Haidvogel *et al.*, 1991) is a

- 3-D prognostic,
- rigid lid,
- Eddy resolving model of velocity and salinity fields
- Topography-following: sigmacoordinates
- Horizontal orthogonal curvilinear coordinate grid
- Horizontal model grid (258x98) has a coastal resolution of 4 km
- 9 vertical layers
- The model was forced by winds and fresh-water runoff from 1978-2002.

Experiments: NPZ Model

The NPZ mode/ has a 3-layered structure similar to that described in Frost (1993).

- The model runs through the spring transition period from the middle of March to the middle of June.
- NPZ provides a temporally and spatially varying food source for young pollock

Experiments: NPZ 1978-2002

Experiments: IBM 1978-2002

The *IBM* for eggs to juveniles of pollock age-0 was run from 1978-2002 coupled to SPEM and NPZ

The initial conditions independent of the spawner biomass (same every year)

Setting the spawning parameters:

Area: Shelikof Strait

Date: Middle March to Middle April

Depth: 100-200 m

Pre-recruitment indices from IBM:

Proportion of individuals in a determined stage that arrive at nursery area weighed by the residence time.

Experiments 1: Transport to nursery Area

Indices extracted from the IBM:

Larval index (Feeding larvae) at Nursery area: Proportion of individuals in the larval stage that arrive at the nursery area weighed by the residence time.

Juvenile index at Nursery area:

Proportion of individuals in juvenile stage that arrive at the nursery area weighed by the residence time.

Transport...

- Eggs
- Yolk sac larvae
- Feeding larvae
- Juvenile Age-0

1994

Data and assessment Age-2...

Modeled Larval Index & Age-2 from assessment

Modeled Larval Index & Juvenile Age-1 data

Modeled Juvenile Index & Age-1 data

Modeled Juvenile Index & Age-2 from assesment

Include mortality sources -predation given by Cod and Flatfishes

Conclusion

- A poor correlation was found between modeled larval Index and juvenile Age-2 assesment for 1978 to 2002.
- However, a better correlation was observed between Larval index and Age-2 during late 70's to late 80's (R2=0.18) and up to the middle of the 80's (R2=0.79).
- A poor correlation was found between modeled juvenile Index and the Age-2 assessment for the whole time series 1978 to 2002, improving between late 70's to middle 80's.
- These preliminar results seems to be consistent with the ideas from Bailey (2000) where he proposed a shift in the recruitment control
- The poor correlation between modeled juvenile index from IBM and age-2 assessment might be related to the lack of mortality sources in the model.
- A following step would be to incorporate in the IBM a source of mortality associated to the level of predators such as Cod and flatfishes considering interannual and spatial variability.

Discussion: SPEM model

- •Over-estimation speed of modelled currents
- •Domain boundaries (limitation of experiment designs)
- •Temperature fields

11 March

Day:711984 Track individuals 58 57 56 53 52 -166 -164 -162 -160 -158 -156 -154 -152 -150

12 April

Discussion: NPZ model

- •Need to perform a sensitivity analisis to the:
 - •initial conditions
 - •Model parameters

•Gather data to fit model (i.e. Line 8)

Discussion: IBM

- •Sensititvity to the:
 - •Initial conditions of spawning (Shelikof Strait)
 - Nursery area definition
- •Need to incorporate important processes:
 - •Juvenile movements (i.e. Swimming toward "food concentration")
 - Predation
- Technical problem (Number of particles released)

Acknowledegments ...

- •Liz Dobbins
- •Mick Spillane
- •Jeff Napp
- •Collen Harpold
- •Matt Wilson

- •Bill Rugen
- •Kevin Bailey
- •Martin Dorn
- •Billy Ernst
- •Carlos Alvarez

Experiments 1: Intermediate Area

Larval index (yolk sac) at Intermediate area: Proportion of individuals in the yolk sac larval stage that arrive at the intermediate area weighed by the residence time.

Larval index (Feeding larvae) at Intermediate area: Proportion of individuals in the feeding larval stage that arrive at the intermediate area weighed by the residence time.

Juvenile index at Intermediate area: Proportion of individuals in juvenile stage that arrive at the intermediate area weighed by the residence time.

Experiments 2: Spawning Area

Shelikof Strait

11 March

12 April

North of Shelikof Strait

11 March

12 April

Sensitivity analysis... Varying initial conditions for N03

Initial Conditions: influence intensity of the response of Phytoplankton. Low initial [N03] conditions trigger a low second peak of Phytoplankton that will induce a early growth decay of zooplankton

Sensitivity analysis... Varying magnitude of Mixed layer depth

Magnitude of the mixed layer depth: influence inversely the response of Phytoplankton and zooplankton

Sensitivity analysis... Varying value of parameters ng and qp

$$\frac{dN_m}{dt} = -\frac{\xi}{z_m} \left[\sum_{z=0}^{z_m} P_m \ PMAX \tanh \left(\frac{\alpha PAR_z}{PMAX} \right) \left(\frac{N_m}{d+N_m} \right) \right] + 0.4 \sum_i \left(\frac{e_i P_m H_{i,m}}{f_i + P_m} \right) + \frac{k_v}{z_m} \left(N_{z_{m+1}} - N_m \right)$$

$$\frac{dP_m}{dt} = -\frac{1}{z_m} \left[\sum_{z=0}^{z_m} P_m \ PMAX \tanh \left(\frac{\alpha PAR_z}{PMAX} \right) \left(\frac{N_m}{d+N_m} \right) \right] - \sum_i \left(\frac{e_i P_m H_{i,m}}{f_i + P_m} \right) + \frac{k_v}{z_m} \left(P_{z_{m+1}} - P_m \right)$$
Grazing term
$$\frac{dH_{1,m}}{dt} = \left(\frac{Y_1 e_1 P_m^{ng}}{f_1^{ng} + P_m^{ng}} H_{1,m} - m_1 H_{1,m}^{qp} \right) + \frac{k_v}{z_m} \left(H_{1,z_{m+1}} - H_{1,m} \right)$$

$$\frac{dH_{i,m}}{dt} = (\tau_{i-1}H_{i-1,m}) + \left(\frac{Y_i e_i P_m^{ng}}{f_i^{ng} + P_m^{ng}} H_{i,m} - m_i H_{i,m}^{qp} - \tau H_{i,m}\right) + \frac{k_v}{z_m} \left(Hi, z_{m+1} - H_{i,m}\right)$$

The idea of using these parameters comes from the study of Georgeana Blamey and David Musgrave in Alaska.

Sensitivity analysis... Varying value of parameters ng and qp

Parameter estimate... Data v/s model

