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RATIONALE

Better define evolution of North Pacific regime shifts and their
mechanisms — start with ““1976”

Link climate variability with ecosystem response

Identify environmental signals for regime shifts in distinct
regions, populations

Build on earlier studies (e.g. Hare & Mantua, 2000), but use
other analytical methods

Methodology for examining the behavior of climate change and
regime shifts in environment and marine populations



Spatial Modes of Regime Shifts

e PCA1-

- Steady increase 1970-93
- CCS—-GOA/NP oscillation

e PCA 2 -
- Abrupt changes in 1976, 1989

- Bering Sea oscillation
- Equatorial Pacific linked

* PCA 3 (physical) -

» Bering Sea—West Coast oscillation
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Spatial Modes of Regime Shifts

« Modes may reflect regional,
rather than basin-wide shifts

1976 shift may be gradual

 Ecosystem response may not
be co-located with forcing
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Time Series

- State-space analysis of individual series

» Most series from Hare & Mantua

-
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(1) State-space decomposition of time series

Data(t) = Trend(t) + Seasonal(t) + Irregular(t) + Error(t)

Trend - non-linear and non-parametric
Seasonal - non-stationary, changes in phase and amplitude
Irregular - can include AR or stationary, stochastic cyclic term

Error - allow for observational error

Statistical criteria for determining “best” model

(2) Stationary, stochastic cycle

Uy CoS A\, sin A\, Yy K¢
Tl=p e ¢ A RS A t=1,...,7, (1)
V] —sin A, cos Ac Vi _q Ky

where . is the frequency, in radians, in the range 0 < A\, < 7, k; and k; are two
mutaully uncorrelated white noise disturbances with zero means and common
variance o2, and p is a damping factor. A stochastic cycle becomes a first order
autoregression if A\, is 0 or w. Moreover, it can be shown that as p — 1, then

02 — 0 and the stochastic cycle reduces to the stationary deterministic cycle:

Py = g cos A\t + g sin At t=1,...,T. (2)



Cyclic Behavior

e Many series exhibit stochastic cyclic components
- interact with trends to affect strength of shifts

» Many fishery series exhibit highly regular cycles
- model artifacts ?
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North Pacific Atmospheric Indices

e Long-term trend from 1950

e Small “shift” in 1976

e Decadal fluctuations
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Ocean Temperature Trends

* Bering Sea
- cooling begins in 1979
- cyclic warming in 1972

* Gulf of Alaska
- warming begins in 1972
- no clear change in 1976

e California Current
- warming begins in 1972
. accelerates in 1976

greater signal in south, SST A
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Ocean Temperature Trends

* Bering Sea
- cooling begins in 1979
- cyclic warming in 1972
- Includes PDO signal

* Gulf of Alaska
- warming begins in 1972
- no clear change in 1976
- reflects transport increase

e California Current
- warming begins in 1972
. accelerates in 1976

greater signal in south, SST 1 /

- stratification may differ
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North Pacific Fisheries Trends
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North Pacific Fisheries Trends

3

* Bering Sea/ Gulf of AK g
- pollock recruits drop in 1979

. shrimp decline 1972-75  °
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North Pacific Fisheries Trends
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* Bering Sea/ Gulf of AK .
- pollock recruits drop in 1979 1

0

- shrimp decline 1972-75 i

- local temperature forcing .

* No. Pacific salmon 3
. catch changes in 1972 i

- AK increases in 1976 2
- responds to sub-sfc temp g
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SUMMARY OF RESULTS

Ocean signals change in ca. 1972, accelerate in ca. 1976
Large-scale atmospheric forcing primarily a 1976 shift

Fisheries-

e North Pacific Salmon- 1972 shift with 1976 acceleration
linked to ocean temperature

e (California Current- 1972 shift, with biological lags (?)
responding to thermocline temperature, esp. in No. CC

e Bering Sea- 1976 shift
due to local ocean forcing, linked to large-scale

PC analysis may be dominated by a few series,
must link processes to individual population series



CONCLUSIONS

“1976” regime shift began ca. 1970, evolved over 10-year period

Regional, rather than basin, regime shifts
Local factors modulate large-scale climate variability

Some populations respond to internal ocean variability, others large-
scale climate variability

Regime shifts may be driven by stationary or white-noise processes,
or a combination of trend & cyclic/AR behavior

Prospect of predicting shifts may not be good

But improved monitoring to recognize ecological responses &
mechanisms affecting each population will improve ability to
forecast ecosystem response



