W5 Agenda Workshop on Monitoring and Assessment of Environmental Radioactivity in the North Pacific

Numerical simulations on the transport and dispersion of ¹³⁷Cs in the upper ocean due to the Fukushima disaster

Chang Zhao, Fangli Qiao*, Guansuo Wang, Changshui Xia *The First Institute of Oceanography, SOA, China KyungTae Jung Korea Institute of Ocean Science and Technology, Korea*

Oct.15th, 2015, Qingdao, China

*Corresponding Author: Fangli Qiao, Email: <u>giaofl@fio.org.cn</u>

Outline

1 Introduction

2 Model description and Method

3 Surface spreading of the Fukushima-derived cesium

4 Southward(Vertical) spreading of the Fukushima-derived cesium

5 Conclusions

Outline

1 Introduction

2 Model description and Method

3 Surface spreading of the Fukushima-derived cesium

4 Southward(Vertical) spreading of the Fukushima-derived cesium

5 Conclusions

We live in a radioactive world (and ocean)

 Natural sources are larger than man-made sources

Fukushima total still poorly known

We can measure less than 1 Bq

In the ocean (and human body) different radionuclides have different fate and toxicity

1 Bq = 1 Becquerel = one radioactive decay per second 1 PBq = peta-Becquerel = one million billion Bq 10¹⁵ Bq = 1,000,000,000,000 Bq Cesium is soluble in seawater

¹³⁷Cs half-life = 30 years ¹³⁴Cs half-life = 2 years

Sources of Fukushima radionuclides to the ocean

80% Fukushima contamination in ocean. There are still some large uncertainties on the sources and fate of the different radionuclides released to the environment.

Atmospheric deposition

Mid-March 2011

Through river runoff

small and continues

3

Through underground water flow

small and continues

2 Direct discharge

Early April 2011 peak now small and continues

Y. Masumoto

What are cesium-137 sources and sinks today?

200m

Fukushima Dai-ichi ~0.3 TBq/month

Rivers Water <0.2 TBq/month Sediment ~0.8 TBq/month

Seafloor 100 TBq

> Ocean 15 TBq

Cs sediment losses 0.1-1 TBq/month

Tbq = 10¹² Bq adapted from J. Kanda

at forth food on the over hore ben about of the

Over time, Cs moves east and mixes deeper in ocean

Outline

1 Introduction

2 Model description and Method

3 Surface spreading of the Fukushima-derived cesium

4 Southward(Vertical) spreading of the Fukushima-derived cesium

5 Conclusions

(1) How many ¹³⁷Cs from Fukushima Nuclear Accident into the ocean 1E+017

Estournel 2012

Model description

As for ¹³⁷Cs, the amounts deposited into the sea surface was estimated to be 5 PBq.

(2) Experiment description

Model description

Ocean General Circulation Model (OGCM)

- **1)** The circulation ocean model is based on POM.
- **2)** The model domain, 75°S-65°N, 0°-360°E.
- **3)** Horizontal resolution, $0.5^{\circ} \times 0.5^{\circ}$.
- 4) Vertical sigma layers, 21.
- 5) The model topography is interpolated from the global 5' by 5' ETOPO5 dataset.

6) The circulation model is driven by monthly climatological (COADS) wind stresses and heat fluxes.

7) The initial temperature and salinity field are set to the Levitus annually averaged temperature and salinity, and the initial velocity is set as 0.

8) Spin up 20-year.

Model description

Calculation of radionuclides concentrations in the ocean

$$\frac{\partial C_{\rm d}}{\partial t} = (adv + dif) - \lambda C_{\rm d} - K_{\rm d}\rho_{\rm s}(z)w_{\rm s}\frac{\partial C_{\rm d}}{\partial z}$$

 C_d is the radionuclide concentration (Bq/m³)

 λ is the decay constant of the nuclides s⁻¹,

 K_d The distribution coefficient (m³/g) 137-Cs: $K_d=2.0*10^{-3}$

 $\rho_s(z)$ is the concentration of the suspended materials kg/m³ $\rho_s(0)=0.25$ g/m³ $\rho_s(z) = \rho_s(0) \times 10^{-0.0005z}$

 w_s is the settling velocity of suspended materials m/s $w_s = 100$ m/day.

adv + dif Radionuclide concentration convection-diffusion

Daisuke Tsumune, 2003. Numerical simulation of ¹³⁷Cs and ^{239,240}Pu concentrations by an ocean general circulation model. Journal of Environmental Radioactivity 69: 61–84

(3) ¹³⁷Cs Boundary Conditions

Model description

Model result

Validation Surface Chronological distribution of ¹³⁷Cs

* Model Station

Povinec (2005)

Model validation

Observation: Povinec (2005)

Model validation

Model result

Validation Surface Chronological distribution of ¹³⁷Cs

Observation: Povinec (2005)

Model result

(1) Model validation

Surface observation time: 1960s; 1970s

(1) Model validation

Model result

Outline

1 Introduction

2 Model description and Method

3 Surface spreading of the Fukushima-derived cesium

4 Southward(Vertical) spreading of the Fukushima-derived cesium

5 Conclusions

The factors of 5 and 10 are 86.2% and 96.5%, respectively

CS (Bq/m3)

Outline

1 Introduction

2 Model description and Method

3 Surface spreading of the Fukushima-derived cesium

4 Southward(Vertical) spreading of the Fukushima-derived cesium

5 Conclusions

September 2012

Figure 1. Sampling locations for radioactive cesium in the western North Pacific. Red circle indicates the Fukushima Dai-ichi Nuclear Power Plant, and green circles indicate the sampling stations. Brue arrows indicate surface velocity fields (>1.0 m/s) estimated from a satellite altimeter. The date of the fields is a closer one to the cesium observation. The red bold line and red broken line indicate the Kuroshio Current (KC) and Kuroshio Extension (KE), respectively. The positions of KC and KE were estimated by satellite altimeter data and sea surface drifter data.⁵

Kaeriyama et al. 2014

Kaeriyama et al. 2014

Dash line October 2011 Solid line November 2012

¹³⁷Cs (Bq/m³) ¹³⁷Cs (Bq/m³) 137Cs (Bq/m³) 100 0 100 þ Depth (m) 500 [°] 500 ⁰ (c) W13 (a) W09 (b) W11

Figure 4. Vertical profiles of ¹³⁷Cs at (a) W09 (north of the KE), (b) W11 (KE), and (c) W13 (south of the KE). Gray circles with a solid line represent values recorded in October 2011. White circles with a broken line represent values recorded in November 2012. Arrows indicate the detection of ¹³⁴Cs. Error bars indicate counting error $(\pm 1\sigma)$. When ¹³⁷Cs was under the detection limit (<3 σ), the detection limit was plotted (see also SI Table S1).

Kaeriyama et al. 2014

Kumamoto et al. 2014

Up ¹³⁴Cs; Down Temperature;

Kumamoto et al. 2014

China seas

Model result

This figure is the distribution of ¹³⁷Cs in section Yollow Sea, East China Sea and South China Sea.

Outline

1 Introduction

2 Model description and Method

3 Surface spreading of the Fukushima-derived cesium

4 Southward(Vertical) spreading of the Fukushima-derived

5 Conclusions

Conclusions

- Fukushima-derived radionuclides spreading by both surface and subsurface ocean.
- We should set up some new models to study Fukushima-derived radionuclides spreading in the ocean.

-----Fine resolution (Horizontal and Vertical) -----New sources radionuclides form Fukushima (Atmospheric, Rivers and Underground water)

Thank you !

