

Shanghai Ocean University

Oil spill trajectory prediction using the GNOME model and satellite images

Yongliang Wei, Zeyan Tang and Jianqiang Liu 2015.10.15

College of Marine Sciences

Contents

Introduction
 Oil spill modeling
 Impacts of data resolution
 Summary

1. Introduction

Marine oil spill

Serious threat to marine environment and ecosystem
Numerous costs to cleanup
2010: Deepwater Horizon (Mexico Bay, USA)
2011: Penglai 19-3 (Bohai Sea, China)

> Marine oil spill by remote sensing

1. Optical remote sensing

Available in daytime

2. Microwave remote sensing

Synthetic Aperture Radar (SAR)
Side-look, active, imaging radar
Day/night, all weather condition
Backscattered radar cross section through Specular & Bragg resonant mechanism

Bragg resonant

Specular

Oil spill look-alikes in SAR image

- Low wind speed
- Organic films
- Sea ice, ...

SAR Marine User manual, 2004

Two questions related to oil spill remote sensing

- 1. Oil spill detection
- 2. Trajectory prediction

General NOAA Operational Modeling Environment
By NOAA/Emergency Response Division
Free software

Gasoline
Kerosene/jet fuels
Diesel
Fuel oil #4
Medium crude
Fuel oil #4
Non-weathering

• 'Splot': a volume of spilled oil • Track oil using Lagrangian method $\vec{L} = \vec{L}_0 + \int_{t_0}^{t_0 + \Delta t} V_t(x(t_0), y(t_0), t_0) dt$

•Driving forces: surface winds and currents

•Output: ✓ Best Guess Solution ✓ Minimum Regret Solution

2. Oil spill modeling

Satellite images and GNOME: Penglai19-3 ENVISAT-ASAR

HJ-1 CCD

GNOME settings:

Current: NCOM (Navy Coastal Ocean Model), 0.125°×0.125°, 3-hour Wind: ASCAT (Advanced Scatterometer), 0.25°×0.25°, 1-day Start time: 2011/06/11 02:00 UTC Model time interval: 1 hour Oil type: Medium crude

Xu, Q., et al., 2013

Xu, Q., et al., 2013

3. Impacts of data resolution

 Data with different resolutions from varies sources
 Remote sensing dataset increase rapidly
 Remote sensed current and wind data usually have low resolutions

Satellite images and GNOME: Deepwater Horizon ENVISAT-ASAR

GNOME settings:

Current: NCOM (Navy Coastal Ocean Model)

Wind: ECMWF (European Center for Medium-Range Weather Forecasts)

Start time: 2010/04/22 00:00 UTC

Model time interval: 1 hour

Release amount: 5000 barrels/day

Oil type: Non-weathering

Data Resolution	Current	Wind
Spatial	0.125°×0.125°	$0.5^{\circ} \times 0.5^{\circ}$ $0.25^{\circ} \times 0.25^{\circ}$ $0.125^{\circ} \times 0.125^{\circ}$
Temporal	3-hour	6-hour 12-hour

Wind: 6-hour, 0.125° vs 0.25°

Wind: 6-hour, 0.125° vs 0.5°

Wind: 6-hour vs 12-hour, 0.125°

8.8

Wind: 6-hour, 0.125°, BGS vs MRS

Wind: 6-hour, 0.125°, 0.25°, 0.5°, MRS

Wind: 6-hour, 0.125°, BGS vs MRS

Wind: 6-hour, 0.125°, BGS vs MRS

A problem: A significant difference between SAR imaged and GNOME predicted locations

Possible reasons:

- 1. The initial oil spill location on 20100422 is not clear, as well as the surface distributions of oil spill on the following days;
- 2. Outside interferer;
- 3. Uncertainties of driving forces

GNOME settings: Current: NCOM, 0.125°, 3-hour Wind: ECMWF, 0.125°, 6-hour Start time: 2010/04/26 16:00 UTC Model time interval: 1 hour Amount already released: 15000 barrels Release amount: 5000 barrels/day Oil type: Non-weathering

Wind: 6-hour, 0.125°, BGS vs MRS

Wind: 6-hour, 0.125°, BGS vs MRS

4. Summary

GNOME can predict oil spill trajectory with reasonable accuracy;

- A finer spatial resolution can give more details on predicted trajectories;
- A finer temporal resolution can give more accurate predicted trajectories;
- The combination of oil spill location retrieved from satellite images and GNOME can produce more accurate results
- Current with different resolutions will be tested in future

Thank you very much!