

Cooperative Management of Trans-boundary Fish Stocks

Kanae Tokunaga, Ph.D. The University of Tokyo – Ocean Alliance PICES 2015 Qingdao, China October 24, 2015

The University of Tokyo – Ocean Alliance

Science on Consensus Building Methods Related to Ocean Use

Holistic approach to manage coastal and marine resources

- Fisheries and aquaculture
- Shipping
- Energy
- Recreation
- etc.

→ Building **consensus** among resource users

Trans-boundary Fish Stocks

- 1995 UN Fish Stocks Agreement
- Consensus
 → International cooperation
- Incentives for cooperation
- What are the economic benefits from cooperatively managing the trans-boundary fish stocks?

Previous Economic Studies on Managing Trans-boundary Fish Stocks

Shared stocks:

- Munro (1979)
- Levhari & Mirman (1980)

Migrating stocks:

- Golubtsov & McKelevy (2007)
 - Split-stream Harvesting
- Sanchirico & Wilen (1999);
 Costello & Polasky (2008)
 - Patchy Environment

Split-stream Harvesting

- EEZs surrounded by international waters
- Fish stocks migrate within and across EEZs
- What's the present value of net benefits from cooperating vs. independently managing the stocks?

 $\dot{S_{\alpha,t}} = F(S_{\alpha,t}) - x_{\alpha,t} - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha,t} + \delta_{\beta}S_{\beta,t}$ $\dot{S_{\beta,t}} = F(S_{\beta,t}) - x_{\beta,t} - (\phi_{\beta} + \delta_{\beta})S_{\beta,t} + \delta_{\alpha,t}S_{\alpha,t}$

- EEZs surrounded by international waters
- Fish stocks migrate within and across EEZs
- What's the present value of net benefits from cooperating vs. independently managing the stocks?

$$\dot{S}_{\alpha,t} = F(S_{\alpha,t}) - x_{\alpha,t} - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha,t} + \delta_{\beta}S_{\beta,t}$$
$$\dot{S}_{\beta,t} = F(S_{\beta,t}) - x_{\beta,t} - (\phi_{\beta} + \delta_{\beta})S_{\beta,t} + \delta_{\alpha,t}S_{\alpha,t}$$
Growth - Harvest

- EEZs surrounded by international waters
- Fish stocks migrate within and across EEZs
- What's the present value of net benefits from cooperating vs. independently managing the stocks?

 $\dot{S}_{\alpha,t} = F(S_{\alpha,t}) - x_{\alpha,t} - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha,t} + \delta_{\beta}S_{\beta,t}$ $\dot{S}_{\beta,t} = F(S_{\beta,t}) - x_{\beta,t} - (\phi_{\beta} + \delta_{\beta})S_{\beta,t} + \delta_{\alpha,t}S_{\alpha,t}$

% To international waters

- EEZs surrounded by international waters
- Fish stocks migrate within and across EEZs
- What's the present value of net benefits from cooperating vs. independently managing the stocks?

$$\dot{S_{\alpha,t}} = F(S_{\alpha,t}) - x_{\alpha,t} - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha,t} + \delta_{\beta}S_{\beta,t}$$
$$\dot{S_{\beta,t}} = F(S_{\beta,t}) - x_{\beta,t} - (\phi_{\beta} + \delta_{\beta})S_{\beta,t} + \delta_{\alpha,t}S_{\alpha,t}$$

% To neighbor's waters

- EEZs surrounded by international waters
- Fish stocks migrate within and across EEZs
- What's the present value of net benefits from cooperating vs. independently managing the stocks?

$$\dot{S_{\alpha,t}} = F(S_{\alpha,t}) - x_{\alpha,t} - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha,t} + \delta_{\beta}S_{\beta,t}$$
$$\dot{S_{\beta,t}} = F(S_{\beta,t}) - x_{\beta,t} - (\phi_{\beta} + \delta_{\beta})S_{\beta,t} + \delta_{\alpha,t}S_{\alpha,t}$$
% from neighbor's waters

Fish Growth Function

 δ_{α} : % from neighbor (in) δ_{β} : % to neighbor (out) ϕ_{β} : % to int'l waters

Cooperative Management

Maximize joint net benefit (= revenue – cost) given resource constraints

Independent Management

Steady State Conditions

Cooperative Management

$$[\rho - F'(S_{\alpha}^{C}) + (\phi_{\alpha} + \delta_{\alpha})][p - c(S_{\alpha}^{C})] - \delta_{\alpha}[p - c(S_{\beta}^{C})] + c'(S_{\alpha}^{C})[F(S_{\alpha}^{C}) - (\phi_{\alpha} + \delta_{\alpha})S_{\alpha}^{C} + \delta_{\beta}S_{\beta}^{C}] = 0$$
$$[\rho - F'(S_{\beta}^{C}) + (\phi_{\beta} + \delta_{\beta})][p - c(S_{\beta}^{C})] - \delta_{\beta}[p - c(S_{\alpha}^{C})] + c'(S_{\beta}^{C})[F(S_{\beta}^{C}) - (\phi_{\beta} + \delta_{\beta})S_{\beta}^{C} + \delta_{\alpha}S_{\alpha}^{C}] = 0$$

Independent Management

$$[\rho - F'(S^I_{\alpha}) + (\phi_{\alpha} + \delta_{\alpha})][p - c(S^I_{\alpha})] + c'(S^I_{\alpha})[F(S^I_{\alpha}) - (\phi_{\alpha} + \delta_{\alpha})S^I_{\alpha} + \delta_{\beta}\bar{S}_{\beta}] = 0$$

$$[\rho - F'(S^I_{\beta}) + (\phi_{\beta} + \delta_{\beta})][p - c(S^I_{\beta})] + c'(S_{\beta})[F(S^I_{\beta}) - (\phi_{\beta} + \delta_{\beta})S^I_{\beta} + \delta_{\alpha}\bar{S}_{\alpha}] = 0$$

Numerical Illustration Outline

 δ_i : % to/from neighbor (Between Migration) ϕ_i : % to int'l waters (Leakage)

- 1. Steady states stocks (No leakage)
- 2. Steady state stocks (No leakage vs. 5% leakage)
- 3. Steady state stocks (No migration)
- 4. Cooperative management dynamics
- 5. Independent management dynamics
- 6. Cooperation surplus (No leakage)
- 7. Cooperation surplus (No leakage vs. 5% leakage)

Cooperation Independent

1. Steady State Stocks (No Leakage)

3. Steady state stock comparison: No Migrations between the Two Countries

4. Cooperative Management Dynamics

5. Independent Management Dynamics

6. Cooperation Surplus No leakage

7. Cooperation Surplus No leakage vs. (5%, 5%) leakage rate

Allocation of the Benefits

Nash bargaining rule

 $\max_{\pi_{\alpha},\pi_{\beta}}$

$$(\pi_{\alpha} - \pi^{I}_{\alpha})^{\sigma}(\pi_{\beta} - \pi^{I}_{\beta})^{1-\sigma}$$

subject to $\pi_{\alpha} + \pi_{\beta} = \bar{\pi}$

Benefits are shared 50:50 if the two countries have the equal negotiation power

Proportionate rule

$$(NB)_i^{Coop} - (NB)_i^{Ind}$$

If equal migration rates, benefits are shared 50:50 If no leakage, a country with the

higher migration rate gains more

Long story short,

- Cooperative management yields greater net benefits when fish migrates across boarders
- Leakages reduce cooperation benefits
- Gains from cooperation can be shared by the cooperating countries (i.e. Present value of the net benefits from the joint maximization does not always equal the share!)

Long story short,

- Cooperative management yields greater net benefits when fish migrates across boarders
- Leakages reduce cooperation benefits
- Gains from cooperation can be shared by the cooperating countries (i.e. Present value of the net benefits from the joint maximization does not always equal the share!)

What about domestic fisheries management!?

Implication for the Domestic Management

- Chicken-and-egg problem
 - Need domestic management
 - Domestic management not in place because of escapement
- Benefits may be small due to leakages of stocks outside of the EEZ
- Possibly, international cooperation may forge better domestic stocks management

Implication for the Domestic Management Fisheries Management in Japan

- Fisheries are managed and operated independently by regional coops for the most part
- Fishermen are concerned with their stocks escaping to neighboring countries waters
- Is cooperative management possible?

Conclusion and Future Research Direction

- This study is a good representative of tropical tuna fisheries in the Western and Central Pacific
- In the Northern Pacific, the problem is multilayered (domestic & international)
- Possibly, international cooperation could forge cooperation among domestic fisheries

Thank You

Kanae Tokunaga Email: katokunaga@oa.u-tokyo.ac.jp