Impacts of External Forcing on the Decadal Climate Variability in CMIP5 Simulations

Yongqiang Yu and Yi Song

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

PICES, Qingdao, October 22, 2015

Outline

- Introduction
- Hiatus and Accelerated Warming in Historical Simulations
- Comparison between CMIP5 simulations with and without external forcing
 Impact of Volcanic Eruption in CMIP5 Simulations

Global Mean Temp. Rising Slowdown since 1998 (Hia

The recent decade is also the warmest decade

IPCC (2013)

Possible Causes for Hiatus during the Past 15

Does the external forcing impact decadal climate variability?

Model and Data

1. CMIP5 Simulations: Pi Control run, Historical, His Nat, His Gl 2. Observation (HADiSST, ISCCP, Reanalysis data etc.)

Model	PiControl	Historical	HisNat	HisGHG	Model	PiControl	Historical	HisNat	HisGHG
ACCESS1-0	Y				GISS-E2-H	Y	Y	Y	Y
ACCESS1-3	Y				GISS-E2-H-CC	Y			
BCC-CSM1-1	Y	Y	Y	Y	GISS-E2-R	Y	Y	Y	Y
BCC-CSM1-1-M	Y				GISS-E2-R-CC	Y			
BNU-ESM	Y		Y	Y	HadCM3		Y		
CANESM2	Y	Y	Y	Y	HadGEM2-CC	Y	Y		
CCSM4	Y	Y	Y	Y	HadGEM2-ES	Y	Y	Y	Y
CESM1-BGC	v		-	1	INMCM4	Y			
CESMI-CAM5	v				IPSL-CM5A-LR	Y	Y	Y	Y
CESMI-CANIS	v				IPSL-CM5A-MR	Y			
CESMI-FASICHEM	1				IPSL-CM5B-LR	Y			
CESMI-WACCM	Y				MIROC-ESM	Y	Y	Y	Y
CMCC-CM	Y				MIROC-ESM-CHEM	Y		Y	Y
CNRM-CM5	Y	Y	Y	Y	MIROC5	Y			
CNRM-CM5-2	Y				MPI-ESM-LR	Y	Y		
CSIRO-Mk3-6-0	Y	Y	Y	Y	MPI-ESM-MR	Y			
FGOALS-s2	Y	Y			MPI-ESM-P	Y			
FIO-ESM	Y				MRI-CGCM3	Y	Y	Y	Y
GFDL-CM3	Y	Y	Y	Y	NorESM1-M	Y	Y	Y	Y
GFDL-ESM2G	Y	Y			NorESM1-ME	Y			
GFDL-ESM2M	Y	Y	Y	Y	Total	39	19	16	16

- Pi Control Run: No anthropogenic and natural radiation forcing
- Historical run : realistic anthropogenic and natural radiation forcing 1850-2000
- Historical Nat run : only natural radiation forcing 1850-2000
- Historic GHG run : only anthropogenic GHG during 1850-2000

- Introduction
- Hiatus and Accelerated Warming in Historical Simulations
- Comparison between CMIP5 simulations with and without external forcing
 Impact of Volcanic Eruption in CMIP5 Simulations
 Conclusion and Implication

Hiatus Decades: Less than -0.15°C/decade (2-3 cases for each simulation);

Accelerated Warming Decades: larger than 0.3°C/decade (2-3 cases for each simulation)

Linear trend of Global Mean ocean content

Hiatus decades

Accelerated decades

Hiatus Decade: STC enhanced

Accelerated warming STC weakened

AMOC (Atlantic Meridional Overturning Circulation)

Outline

- Introduction
- Hiatus and Accelerated Warming in Historical Simulations
- Comparison between CMIP5 simulations with and without external forcing
 Impact of Volcanic Eruption in CMIP5 Simulations
- Conclusion and Implication

Two Approaches for Ensemble Mean

AMEM:

- 1. Calculate Variance or correlation for each simulation
- 2. Calculate multi-model ensemble mean of variance or correlation

Both he internal variability and responses to external forcing are retained.

FMEM:

- 1. Calculate multi-model ensemble mean for any variable
- 2. Calculate Variance or correlation of multi-model ensemble mean

The internal variability is canceled out, only response to external forcing is retained.

✓ Standard Deviation of TAS using AMEM method

Lag Correlation between SW and TAS AMEM(black) FMEM (red)

FMEM Regression analysis : Global mean SW vs TAS

Outline

- Introduction
- Hiatus and Accelerated Warming in Historical Simulations
- Comparison between CMIP5 simulations with and without external forcing
- Impact of Volcanic Eruption in CMIP5 Simulations
- Conclusion and Implication

Volcanic impact on climate: short-range or long term?

Previous studies suggested Volcanic impact lasted 1-2 years (Gillett et al. 2004; Trenberth and Dai 2007; Shen et al. 2008; Peng et al. 2010).

Wang et al. (2012) and Santer et al. (2014) indicated Volcanic contribution to decadal changes

Global Mean SW at TOA and Surface Air Temperature

Ensemble mean SST and SLP Anomalies

SST and SLP Anomalies for two IPSL Models

Summary

The coupled models can reproduce the hiatus and accelerated warming period to some extent Hiatus and Accelerated warming exhibit IPO pattern in the Pacific > The external forcing can enhance or modulate decadal variability, e.g. the IPO. > The strong volcanic eruption may induce decadal variability such as IPO, AO, and AAO