Autumn depression in pCO_2 in the Japan Sea and contribution of Changjiang diluted water

Naohiro Kosugi¹,

Daisuke Sasano¹, Masao Ishii¹, Kazutaka Enyo² and Shu Saito²

¹Meteorological Research Institute ²Japan Meteorological Agency

Purposes of this research are...

To supply <u>new CO₂ datasets</u> obtained by vessels of Japan Meteorological Agency <u>in autumn</u> <u>from 2010 to 2014 in the Japan Sea.</u>

To compare CO_2 chemistry in the autumn Japan Sea with that in the western North Pacific.

To discuss the reasons for CO_2 variations in the Japan Sea.

Air-Sea CO₂ flux in the marginal sea

Marginal sea is <u>NOT</u> a part of open ocean.

- Riverine input of nutrients, carbonates and particles
- Shallow continental shelves
- Anthropogenic discharge from populated area

CO₂ sink in the global marginal sea was estimated to 0.19-0.45 PgC/year. (>40% larger than in the open ocean per area) [Laruelle et al., 2014]

Geography of the Japan Sea

Climatology of surface salinity

Discharge of Changjiang River peaks in June - July.

CDW affects biogeochemistry in the East China Sea.

However, its impact on the Japan Sea is still unclear.

Parameters for analysis

Continuous measurement of surface pCO_2 with an equilibrator and NDIR (LI-COR LI6252)

Column profile of T, S with CTD (SBE) and subsamples for DIC and TA

Gridded reanalysis data of climate (JRA-55 by JMA) and of ocean (MOVE-G by MRI)

Surface *p*CO₂ (between Sep. and Dec.)

5 cruises in the Japan Sea and 17 in the North Pacific

22nd October 2015

Relation between SST and *p***CO**₂

Regional difference in *p***CO₂**

(Top) Heat efflux [Sep.-Nov.] (bottom) Decrease in SST [Aug.-Nov.]

What is another reason for low *p*CO₂?

Salinity-TA plot

Yearly salinity-TA plot (Temp > 10°C)

22nd October 2015

TA and pCO_2 with various TA_0

Initial: T = 24 °C, S = 34.6, DIC = 2000 µmol/kg, TA = 2280 µmol/kg

Dilution by precipitation

22nd October 2015

Summary and conclusion

In the Japan Sea, autumn pCO_2 was lower than that in western North Pacific in the same season.

Two reasons for low pCO_2 in the Japan Sea

- 1. Large decrease in SST because of steep thermocline
- 2. Excess riverine alkalinity in CDW

We revealed complexities of CO_2 chemistry in the Japan Sea (and possibly other marginal sea!).