Fighting a hard battle: effects of hypoxia and temperature on euphausiids in the North Pacific

Lingbo Li, Julie Keister, and Tim Essington University of Washington Lingboli.fish@gmail.com

Coastal hypoxic systems

Projected future ocean: Increasing temperature and decreasing O₂

IPCC 2013; Keeling et al. 2010

Importance of euphausiids in the North Pacific

Field & Francis (2006)

Oxygen and temperature effects on *Euphausia pacifica*

- Field: avoidance of high temperature (> 15°C)
 - Taki 2008
- Field: avoidance of low oxygen
 - Jaffe et al. 1999; Mackie & Mills 1983
- Lab: 1.5 mg O₂/l + 10°C
 Adult mortality: Low
 - Tremblay & Abele 2015

Goals of this study

#1.Do *E. pacifica* show threshold responses to oxygen and temperature?

#2. How does their distribution covary with environmental conditions?

Coastal hypoxic systems in the North Pacific

Diaz, and Rosenberg Science 2008

Hood Canal, Puget Sound, WA

Seasonal hypoxia

Long history of fish kills

Two stations: Dabob and Union

Field collections at Union & Dabob 2012 & 2013, monthly June-Oct cruises

Depth-stratified MultiNet® plankton net

- Day & night oblique tows
- 200 & 335 µm mesh
- CTD: SeaBird Electronics SBE911 plus
 - Temperature
 - Dissolved oxygen (calibrated with Winkler titration)
 - Salinity
 - Fluorescence
 - PAR (Photosynthetically Active Radiation)

Life stages of Euphausia pacifica

Eggs and nauplii

Furcilia IV-VII

Calyptopes I-III

Furcilia I-III

Images by Amanda Winans

Goals of this study

- 1.Do *E. pacific* show threshold responses to oxygen and temperature?
- Piecewise regressions

2. How does their distribution covary with environmental conditions?

Threshold searching: dissolved oxygen

Dissolved oxygen (mg/l)

Furcilia I – III density

Average depth (m)

Threshold searching: temperature

Goals of this study

1.Do *E. pacific* show threshold responses to oxygen and temperature?

- 2. How does their distribution covary with environmental conditions?
- GLMM (Generalized Linear Mixed Models)
 - Random effects: tow
 - Fixed effects: depth, temperature, and dissolved oxygen
- Corrected AIC as a model selecting criterion

Binomial candidate models for each stage

- Presence/Absence The best model for each stage
 - Depth Juveniles & adults
 - Oxygen
 - Temperature Eggs & nauplii
 - Depth + Temperature
 - Depth + Oxygen
 - Temperature + Oxygen Calyptopes; Furcilia I-III
 - Depth + Temperature+ Oxygen
 - With/without confounding effects (Year, Month & Station)
- Strong random effects***
- Oxygen and temperature interactions excluded

Conclusions

- Within our oxygen range, furcilia I-III is the only stage that demonstrated clear avoidance of low oxygen (<3.6mg/l)
- We need more high temperature observations to study the thermal limit of *E. pacifica*
- Furcilia I-III distribution is most related to both temperature and oxygen

Next steps: *E. pacifica* habitat and stress comparison in the North Pacific

Hypoxia Low Temperature **High Sea Surface Temperature Cold Bottom** Hypoxia + High Temperature

Acknowledgements

- The Keister lab
- The Essington lab
- John Horne
- Sandy Parker-Stetter
- Huilian Liu

• The crew of R/V Clifford A. Barnes

THANK YOU VERY MUCH !!

Lingbo Li Lingboli.fish@gmail.com