Longline catch indices show variable fit to density of inshore rockfish (Sebastes spp.)

Shannon Obradovich ${ }^{1}$, Lynne Yamanaka ${ }^{2}$, Murdoch McAllister ${ }^{1}$
${ }^{1}$ Institute for the Oceans and Fisheries, University of British Columbia ${ }^{2}$ Pacific Biological Station, Fisheries and Oceans Canada

DBC

Does catch reflect abundance?

Based on Hilborn and Walters (1992)

Longline survey for inshore rockfish (Sebastes spp.)

Inshore rockfish longline experiments

```
23: 42: 44, GMT
```


$\frac{03.04: 10}{3}$

Inshore rockfish longline experiments

$$
00: 04: 16, \mathrm{GMT} \quad 1111 \mathrm{~N}_{1} 1111 \mathrm{THEt} \quad 4.05 .10
$$

Competition from non-rockfish species

- Hooks deployed on the August 2010 survey:
- 4.2\% inshore rockfish
- 19.5\% spiny dogfish (Squalus acanthias)

Hook-based exponential model

$$
N_{t}=N_{0} * \exp (-\lambda * t)
$$

Time (t)

$\lambda=$ instantaneous rate of bait loss (relative abundance index)
$\mathrm{N}_{\mathrm{t}}=$ Number of baited hooks at time t
$\mathrm{N}_{0}=$ Number of baited hooks deployed at $t=0$

Hook-based exponential model

$$
\begin{aligned}
& N_{t}=N_{0} * \exp (-\lambda * t) \\
& \lambda=\lambda_{\text {Target }}+\lambda_{\text {Non-target }}
\end{aligned}
$$

Time (t)
$\lambda=$ instantaneous rate of bait loss (relative abundance index)
$\mathrm{N}_{\mathrm{t}}=$ Number of baited hooks at time t
$\mathrm{N}_{0}=$ Number of baited hooks deployed at $t=0$

Hook-based exponential model

$$
\begin{aligned}
& N_{t}=N_{0} * \exp (-\lambda * t) \\
& \lambda=\lambda_{\text {Target }}+\lambda_{\text {Non-target }} \\
& C_{T \text { arget }}=\frac{\lambda_{T \text { arget }}}{\lambda} * N_{0} *(1-\exp (-\lambda * t))
\end{aligned}
$$

$\lambda=$ instantaneous rate of bait loss (relative abundance index)
$\mathrm{N}_{\mathrm{t}}=$ Number of baited hooks at time t
$\mathrm{N}_{0}=$ Number of baited hooks deployed at $t=0$
C = Number of individuals (e.g. in Target species) caught at time t

Hook-based exponential model

$$
\begin{aligned}
& N_{t}=N_{0} * \exp (-\lambda * t) \\
& \lambda=\lambda_{\text {Target }}+\lambda_{\text {Non-target }} \\
& C_{T \text { arget }}=\frac{\lambda_{\text {Target }}}{\lambda} * N_{0} *(1-\exp (-\lambda * t))
\end{aligned}
$$

- Assumes λ is directly proportional to the true abundance
- Assumes λ is constant during the longline soak time (t)

Research questions

- Is there a linear relationship between the instantaneous rate of bait loss (λ) and the observed density of inshore rockfish?
- Does λ show a better fit with observed density than CPUE?
- Is λ constant over the soak time?

Methods: Field experiments

- Experimental longline sets $(\mathrm{n}=13)$ in March 2010
- Varied inshore rockfish/ dogfish abundance
- Low hook occupancy (8\% rockfish, 5\% dogfish)

Methods: Field experiments

ROV - Pass 1
Pass 2
$\stackrel{\leftarrow}{\text { Pass } 3}$

Methods: Catch indices

- On-deck CPUE

$$
C P U E_{i, s}=\frac{C_{i, s}}{\text { nhooks }_{i} * \operatorname{soak}_{i}}
$$

- On-deck λ (instantaneous rate of bait loss), calculated from catch proportions

$$
\lambda=\lambda_{\mathrm{YE}}+\lambda_{\mathrm{QB}}+\lambda_{\mathrm{OT}}+\lambda_{E M}
$$

- Underwater (UW) λ, Bayesian estimation using time each hook was observed

CPUE and observed density

λ and observed density

UNDERWATER
$\mathbf{r}^{2}=0.60$
slope $=0.025$

Mean observed density (individuals / m²)

λ and observed density

ROV observation of the longline

$$
1 \text { 1,1, } 105^{\circ} \text {, } 111,1,5, \quad \frac{03}{3} \cdot 05.10
$$

72M NE02010MAROF TRANSECT 5

Estimating λ at different times during the set

Pass 1 ~ 30-60 minutes soak time Pass $3 \sim 90-120$ minutes soak time

Main findings

- For yelloweye, λ has a better fit than CPUE with observed density, but not for quillback (under low hook occupancy).
- There appears to be little added value from underwater information. Deck data performs well!
- Estimates of λ change over the soak time.

Future work

Are the results representative of performance at higher levels of competition?

- August 2010 experiments
- Why do the relative abundance indices perform poorly for quillback with low hook occupancy?

Size selectivity?
Fine-scale spatial behaviour?
Dominance between species?

Acknowledgements

- Fisheries and Oceans Canada
- Rob Flemming, Karina Cooke
- Crew of the CCGS Neocaligus
- Russ McNeil, Gord Roberton, Doug Bray, Jamie Grilse, Darren West
- Crew of the FV Sun Isle
- Dave Renwall, Paul Osborne
- Natural Sciences and Engineering Research Council of Canada

Thank you!

