

Longline catch indices show variable fit to density of inshore rockfish (Sebastes spp.)

Shannon Obradovich¹, Lynne Yamanaka², Murdoch McAllister¹

¹Institute for the Oceans and Fisheries, University of British Columbia ²Pacific Biological Station, Fisheries and Oceans Canada

Does catch reflect abundance?

Based on Hilborn and Walters (1992)

Longline survey for inshore rockfish (Sebastes spp.)

Copper

Yelloweye

Quillback

Inshore rockfish longline experiments

Inshore rockfish longline experiments

Competition from non-rockfish species

- Hooks deployed on the August 2010 survey:
 - 4.2% inshore rockfish
 - 19.5% spiny dogfish (Squalus acanthias)

120

Time (t)

 λ = instantaneous rate of bait loss (relative abundance index) N_t = Number of baited hooks at time *t* N_0 = Number of baited hooks deployed at t = 0

Time (t)

 λ = instantaneous rate of bait loss (relative abundance index) N_t = Number of baited hooks at time *t* N₀ = Number of baited hooks deployed at *t* = 0

$$N_t = N_0 * \exp(-\lambda * t)$$

$$\lambda = \lambda_{T \arg et} + \lambda_{Non-t \arg et}$$

$$C_{T \operatorname{arg} et} = \frac{\lambda_{T \operatorname{arg} et}}{\lambda} * N_0 * (1 - \exp(-\lambda * t))$$

 λ = instantaneous rate of bait loss (relative abundance index) N_t = Number of baited hooks at time *t* N_0 = Number of baited hooks deployed at *t* = 0 C = Number of individuals (e.g. in Target species) caught at time *t*

$$N_t = N_0 * \exp(-\lambda * t)$$

$$\lambda = \lambda_{T \arg et} + \lambda_{Non-t \arg et}$$

$$C_{T \operatorname{arg} et} = \frac{\lambda_{T \operatorname{arg} et}}{\lambda} * N_0 * (1 - \exp(-\lambda * t))$$

- Assumes λ is directly proportional to the true abundance
- Assumes λ is constant during the longline soak time (t)

Research questions

- Is there a linear relationship between the instantaneous rate of bait loss (λ) and the observed density of inshore rockfish?
- Does λ show a better fit with observed density than CPUE?
- Is λ constant over the soak time?

Methods: Field experiments

- Experimental longline sets (n = 13) in March 2010
- Varied inshore rockfish/ dogfish abundance
 - Low hook occupancy (8% rockfish, 5% dogfish)

Methods: Field experiments

ROV – Pass 1

Methods: Catch indices

On-deck CPUE

$$CPUE_{i,s} = \frac{C_{i,s}}{nhooks_i * soak_i}$$

 On-deck λ (instantaneous rate of bait loss), calculated from catch proportions

$$\lambda = \lambda_{YE} + \lambda_{QB} + \lambda_{OT} + \lambda_{EM}$$

 Underwater (UW) λ, Bayesian estimation using time each hook was observed

CPUE and observed density

Mean observed density (individuals / m²)

$\boldsymbol{\lambda}$ and observed density

Mean observed density (individuals / m²)

$\boldsymbol{\lambda}$ and observed density

Mean observed density (individuals / m²)

ROV observation of the longline

Estimating λ at different times during the set

Pass 1 ~ 30-60 minutes soak time Pass 3 ~90-120 minutes soak time

Main findings

- For yelloweye, λ has a better fit than CPUE with observed density, but not for quillback (under low hook occupancy).
- There appears to be little added value from underwater information. Deck data performs well!
- Estimates of λ change over the soak time.

Future work

- Are the results representative of performance at higher levels of competition?
 - August 2010 experiments
- Why do the relative abundance indices perform poorly for quillback with low hook occupancy?
 - Size selectivity?
 - Fine-scale spatial behaviour?
 - Dominance between species?

Acknowledgements

- Fisheries and Oceans Canada
 - Rob Flemming, Karina Cooke
- Crew of the CCGS Neocaligus
 - Russ McNeil, Gord Roberton, Doug Bray, Jamie Grilse, Darren West
- Crew of the FV Sun Isle
 Dave Renwall, Paul Osborne
- Natural Sciences and Engineering Research Council of Canada

Thank you!