Analysis of a beach as a timeinvariant linear input-output system of marine litter (Kataoka et al., MPB, 2013)

Tomoya Kataoka (NILIM) *Hirofumi Hinata (Ehime University) Shigeru Kato (Toyohashi University of Technology)

2005 Hurricane Katrina

Motivation1

To understand **beach responses** to marine litter inputs from offshore

In order to access impacts of the litter on the beach environment and/or take measures for scenarios of natural disasters or run-off

accidents

2011 Tohoku-oki Earthquake

Motivation 2

Beach → Hot spot of microplastic generation

"The most likely site for generation of micro plastics in the marine environment is the beach." (Andrady, MPB, 2011)

Plastics → exposed to higher solar UV radiation, higher temperature, higher oxygen concentration

Residence Time of (Macro) Plastics on Beaches → Key Parameter

Previous Studies on Beached Macro Plastics

Abundance and categorization of beached litter

e.g., Walker et al., 1997; Kusui and Noda, 2003; Ivar do Sul and Costa, 2007; Ryan et al., 2009; Ribic et al., 2012.

Residence Time

e.g., Garrity and Levings (1993); Williams and Tudor, 2001; Bowman et al., (1998)

Mark-recapture (MR) Experiment G&L→50 target items in 1*50m transect were sprayed with the same color

Objective

Time decay of population Linear System Analysis

Unit impulse response of the beach to litter input

We consider a beach as a linear black box and measure the residence time by the MR experiment, and investigate the system characteristics and beach response to idealized litter inputs by applying linear system analysis.

MR Experiment Study Field

MR Experiment Date and Target Items

Date: 2011/09/30 ~ (@ 2-3 months)
 2011: 09/30, 10/27, 11/24, 11/26
 2012: 01/26, 03/23, 06/29, 08/21, 11/08, 12/27
 2013: 02/27, 05/08, 06/27, 08/31, ...

<u>Target Items:</u>

 Plastic Fishing Floats (Hardly moved by wind, Found on many Japanese beach, Buoy2 containing a high concentration of Pb (Nakashima et al., EST, 2012))
 Putting ID number and Measuring Position by Handy GPS Receiver (measurement error: 3m)

Time series of Immigration, Remnant Emigration and Total

*Beach surveys measure the total population, not the immigration.

Residence Time of Wadahama Beach

Relation between Immigration, Remnant and Total

Exponential Decay

Wadahama Beach as a time-invariant liner system

Unit Impulse Response (UIR) $h(t) = exp(-kt) = exp(-\frac{t}{224})$ residence time

Wadahama Beach as a time-invariant liner system

Amplitude and Phase Characteristics

→ Linear System Analysis → Mediator between Ocean Models and Beach Monitoring

Future work

It is not realistic to conduct long-term MR experiments of all beaches involving human effort.

➔ We are developing a mathematical model of residence time as a function of hydro statistics, so that we will be able to produce a residence time map for a region of interest with much less effort.

➔ The map would allow us to assess the impacts of marine litter caused by natural disasters and/or loss of flow accidents on beaches and to take measures to minimize the overall damage in the region.

Characteristics of Wadahama Beach System

Frequency
Response (FR)
$$H(\omega) = \int_0^\infty h(t) \exp(-i\omega t) dt$$
.

Amplification Characteristics

$$A(\omega) = |H(\omega)|$$

Phase Characteristics

$$\theta(\omega) = \tan^{-1} \frac{im(H(\omega))}{re(H(\omega))}$$