Spatiotemporal Variation of 2 Benthic Communities Associated with Weathervane Scallop Beds off Alaska

6

0

0

0

0

Jessica R. Glass and Gordon H. Kruse **University of Alaska Fairbanks** School of Fisheries and Ocean Sciences Juneau, Alaska, U.S.A.

Fishery Distribution for Weathervane Scallops (*Patinopecten caurinus*)

Scallop Dredge Sampling

Two 4.6 m wide dredges
10 cm diameter rings
100% observer coverage
1 haul/day/vessel for species composition

Fishery Bycatch

Study Objectives

1) Quantify spatial distribution of benthic species on scallop beds

2) Quantify changes over time

3) Relate to environmental & anthropogenic variables

Observer Data (ADF&G) Catch per unit effort (kg/m²) **Kingdom** • 1996-2012 **Phylum** Class • 4,420 hauls Order • 10 registration districts Family • 42 individual scallop beds Genus • 300 taxa \rightarrow 79 taxa **Species**

Environmental Variables

Depth

- Vessel logbooks (ADF&G)
- Surface sediments
 - Bering Sea & Aleut. Is. (NMFS)
 - Gulf of Alaska (USGS)
- Near-bottom temperature
 - GAK1
 - Bering Sea trawl surveys
- Freshwater input (Royer model)
 - Proxy for surface currents

Anthropogenic Variables

- Trawling effort (NMFS)
 - Catch in Areas database
 - Bottom and pelagic trawls
 - Proportion of bed trawled
- Dredging effort (ADF&G)
 - Proportion of bed dredged

Spatial and Temporal Resolution

Spatial

- District-scale
 - 1997, 2000, 2010
 - Bed-scale
 - Kodiak Shelikof
 - Kodiak Northeast
 - Yakutat/D16/Prince William Sound

• Temporal (1996-2012)

- Kodiak Shelikof (Bed 1)
- Kodiak Northeast
- Yakutat/D16/Prince William Sound
- Bering Sea

PRIMER

Visualization of Approach

Sampled Hauls

Data: CPUE for each taxa

NMDS Results: Spatial Differences in 2010

Significant Spatial Differences

- Spatial differences across all districts and between
 some beds (P = 0.001)
 - ANOSIM
 - 1997 (Clarke's R = 0.533)
 - 2000 (Clarke's R = 0.646)
 - 2010 (Clarke's R = 0.682)
 - Largest differences between Yakutat and Aleutian Islands
- Spatial differences tend to be correlated with sediment and depth

Dominant Taxa

Pectinidae (scallops)

Rajidae (skates)

Pleuronectiformes (flatfishes)

Asteroidea (sea stars)

Bed-scale Differences Example: Kodiak Northeast

Bed-scale Differences Example: Kodiak Northeast

NMDS: Kodiak Northeast (each point represents 1 yr)

Kodiak Northeast

ANOSIM: (Clarke's R = 0.515, P = 0.001)

Differences between all beds except Bed 1 & 2

Strongest Difference: Bed 3 & Bed 6 Clarke's R= 0.872

Correlated with sediment & depth (P = 0.001)

SIMPER: Kodiak Northeast

	Bed 3	Bed 6	
	68-88 m	80-117 m	
	Sand/gravel	Silty sand	
Таха	Avg. CPUE	Avg. CPUE	Contrib. %
Actiniaria (Sea anemones)	42.21	4.25	6.97
Lithodidae (King crabs)	2.58	36.55	6.21
Rajidae (Skates)	19.78	44.63	4.67
Oregoniidae (Tanner crabs)	22.21	42.33	3.89
Asteroidea (Seas stars)	57.58	37.78	3.8
Ophiuridae (Brittle stars)	15	0.14	2.67
Luidiidae (Sea stars)	14.26	0	2.62
Paguridae (Hermit crabs)	23.8	34.34	2.35

Kodiak Shelikof District

Kodiak Shelikof District

Greatest differences between beds 1 & 6

Correlated with dredging effort 1997: (*P* = 0.001) 2010: (*P* = 0.001)

Sediment data unavailable

Wide depth range

Kodiak Shelikof Dredging Effort 1996-2012

SIMPER: Kodiak Shelikof: Spatial Differences Due to Dredging?

	Bed 1	Bed 6		
	Avg.	Avg.		
Таха	CPUE	CPUE	Contrib%	Cum.%
Brachiopoda (Brachiopods)	3.22	49.19	7.18	7.18
Cancridae (Dungeness crabs)	4.72	45.02	5.97	13.15
Holothuroidea (Sea cucumbers)	3.02	33.67	4.29	17.44
Ascidiacea (Tunicates)	1.9	30.5	4.11	21.55
Polychaeta (Polychaete worms)	9.17	28.79	4.04	25.59
Rajidae (Skates)	49.69	51.63	3.55	29.14
Demospongiae (Sponges)	1.89	27.57	3.3	32.44
Gorgonocephalidae (Basket stars)	0.52	27.66	3.27	35.72

Temporal Analyses

- Significant temporal differences for districts analyzed
- Changes in taxa were site-specific
- Split between 1996-1999 and 2000-2012
 - Changes over 2000-2012, as well, but less significant

District	ANOSIM (<i>P</i> = 0.001)	Spearman Rank (<i>P = 0.001</i>)
Kodiak Shelikof (Bed 1)	Clarke's R = 0.257	Dredging effort
Kodiak Northeast	Clarke's R = 0.220	Depth, dredging effort
Yakutat/D16/Prince William Sound	Clarke's R = 0.273	Freshwater discharge
Bering Sea	Clarke's R = 0.485	Dredging effort

Eastern Bering Sea

Temporal Analysis Example: Eastern Bering Sea

Changes in Bering Sea over 1996-2012

Tanner crabs, scallops, flatfishes, skates

Polychaeta, sponges, sea pens, whelks, barnacles

Roundfish, jellyfish

ANOSIM 1996-2012 (Clarke's R = 0.485, *P* = 0.001)

Dredging effort (*P* = 0.001)

Trawling effort

- No significant correlation
 Little overlap
- Proportion trawled: 0 –
 0.224
 - Highest overlap in Bering Sea

Conclusions

Spatial differences across all districts and between beds

- Stronger patterns than temporal changes
- Correlated with sediment, depth, and dredging effort (Kodiak Shelikof)
- Temporal changes over 1996 to 2012
 - Correlated with dredging effort and freshwater discharge

Split between 1996-1999 and 2000-2012 may be due to:

- Changes in observer sampling
- Changes in fleet behavior with formation of cooperative
- Other factors

Funding Acknowledgements

- BOEM/University of Alaska Coastal Marine Institute
- North Pacific Research Board
- UAF MESAS, NSF IGERT Program
- NSF Graduate Research Fellowship Program
- Northern Gulf of Alaska Applied Research Award
- H. Richard Carlson Fellowship

Questions?