The role of movement in determining the global distribution of marine biomass

James Watson (Princeton: jrwatson@princeton.edu) Charlie Stock, Jorge Sarmiento

Atmospheric and Oceanic Sciences Program Dept. Ecology and Evolutionary Biology Geophysical Fluid Dynamics Laboratory (NOAA)

- How much biomass does the ocean produce?

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

Phytoplankton

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

Phytoplankton Zooplankton

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

Province	Primary production [tons (organic carbon)]	Trophic levels	Efficiency (%)	Fish production [tons (fresh wt.)
Oceanic	$16.3 imes 10^{9}$	5	10	$16 imes 10^{5}$
Coastal	$3.6 imes10^{9}$	3	15	$12 imes10^{ au}$
Upwelling	$0.1 imes 10^{ m s}$	11/2	20	$12 imes10^{7}$
Total				$24 imes 10^{7}$

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

Table 3. Estimated fish production in the three ocean provinces defined in Table 2.					
Province	Primary production [tons (organic carbon)]	Trophic levels	Efficiency (%)	Fish production [tons (fresh wt	
Oceanic Coastal Upwelling Total	$egin{array}{c} 16.3 imes 10^9 \ 3.6 imes 10^9 \ 0.1 imes 10^9 \end{array}$	5 3 1 ¹ ⁄2	10 15 20	$egin{array}{c} 16 imes10^5\ 12 imes10^7\ 12 imes10^7\ 24 imes10^7\ 24 imes10^7\ \end{array}$	

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

- How much biomass does the ocean produce?

Photosynthesis and Fish Production in the Sea

The production of organic matter and its conversion to higher forms of life vary throughout the world ocean.

John H. Ryther

Science, 1969; Pauly & Christensen 1995, Chassot et al. 2010

Table 3. Estimated fish production in the three ocean provinces defined in Table 2.						
Province	Primary production [tons (organic carbon)]	Trophic levels	Efficiency (%)	Fish production [tons (fresh wt.)		
Oceanic Coastal Upwelling Total	$egin{array}{c} 16.3 imes 10^9 \ 3.6 imes 10^9 \ 0.1 imes 10^9 \end{array}$	5 3 1 ¹ /2	10 15 20	$egin{array}{c} 16 imes10^{5}\ 12 imes10^{7}\ 12 imes10^{7}\ 24 imes10^{7} \end{array}$		

Maximum fisheries production: 240 MT year-1

Global Ecosystem Modeling

- Can we do better than the trophic transfer efficiency (nonlinear relationships, spatial resolution)?

Charles A Stock, John P Dunne, and Jasmin G John. Progress In Oceanography, In press

Global Ecosystem Modeling

- Can we do better than the trophic transfer efficiency (nonlinear relationships, spatial resolution)?

Figs: Charles Stock: COBALT

Charles A Stock, John P Dunne, and Jasmin G John. Progress In Oceanography, In press

Global Ecosystem Modeling

- Can we do better than the trophic transfer efficiency (nonlinear relationships, spatial resolution)?

Charles A Stock, John P Dunne, and Jasmin G John. Progress In Oceanography, In press

The challenge...

Quantify upper-trophic, or fisheries, production at a global scale...

Like plankton, big things are highly diverse

Unlike plankton, big things move against currents

Size-based Models

A conserved feature of marine systems around the globe:

Jennings & Brander 2010, originally from Boudreau & Dickie 1992

Many things scale with size

- e.g. swimming speed, metabolic rates and predator-prey relationships
- Metabolic Theory of Ecology (Jim Brown @ U. New Mexico)

Barnes et al. 2009

Model the rate of change of biomass of a particular size-class:

i = medium fish

Images not to scale

Model the rate of change of biomass of a particular size-class:

$$rac{dB_i}{dt} = ext{Eat(j)}$$

j = small fish

i = medium fish

Images not to scale

Model the rate of change of biomass of a particular size-class:

$$\frac{dB_i}{dt} = \text{Eat(j)} - \text{Get eaten(k)}$$

j = small fish

i = medium fish

k = large fish

Images not to scale

Model the rate of change of biomass of a particular size-class:

$$\frac{dB_i}{dt} = \text{Eat(j)} - \text{Get eaten(k)} - \text{Metabolize(i)} + \text{move(i)}$$

j = small fish

i = medium fish

k = large fish

Model the rate of change of biomass of a particular size-class:

i = medium fish

Size-based model estimates biomass size spectra...

Size-based model estimates biomass size spectra...

Top predator

Forage fish

With net-growth following movement

Ecoregions with net-growth following movement

Lacks species specific details:

- Tuna in the Indian ocean
- No complex migration, no "extreme" parameters

Lacks species specific details:

- Tuna in the Indian ocean
- No complex migration, no "extreme" parameters

Lack species specific details

- It can't resolve sardine and anchovy (only "forage fish")

Highly sensitive to parameters

Global ocean biomass (tonnes): ~ $86.2x10^9$ (x30 Jennings et al. 2009) Biomass production (gm⁻²yr⁻¹): ~ $0.5x10^{10}$ (x0.5 Jennings et al. 2009)

Can completely change these results with a different consumption efficiency (0.7 to 0.5)

Highly sensitive to parameters

Global ocean biomass (tonnes): ~ $86.2x10^9$ (x30 Jennings et al. 2009) Biomass production (gm⁻²yr⁻¹): ~ $0.5x10^{10}$ (x0.5 Jennings et al. 2009)

Can completely change these results with a different consumption efficiency (0.7 to 0.5)

Highly sensitive to parameters

Global ocean biomass (tonnes): ~ $86.2x10^9$ (x30 Jennings et al. 2009) Biomass production (gm⁻²yr⁻¹): ~ $0.5x10^{10}$ (x0.5 Jennings et al. 2009)

Can completely change these results with a different consumption efficiency (0.7 to 0.5)

No ontogeny (not "size-structured"),

No ontogeny (not "size-structured"),

No ontogeny (not "size-structured"),

- poor estimates of recruitment

Size-based population model

No ontogeny (not "size-structured"),

- poor estimates of recruitment

Size-based population model

No ontogeny (not "size-structured"),

Summary

Size based models:

- ecological understanding: yes, movement is important
- prediction? useful given the conditions

Jorge Sarmiento (Princeton) Simon Levin (Princeton) Charlie Stock (NOAA / GFDL)

Emma Fuller (Princeton) Andrew Tilman (Princeton) Malin Pinsky (Rutgers)

... and many others

James Watson jrwatson@princeton.edu

Thank you

Jorge Sarmiento (Princeton) Simon Levin (Princeton) Charlie Stock (NOAA / GFDL)

Emma Fuller (Princeton) Andrew Tilman (Princeton) Malin Pinsky (Rutgers)

... and many others

James Watson jrwatson@princeton.edu

