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high pollock abundance 
in first summer

but poor prey quality;

low survival to age 1

warm years = 

(Hunt et al. 2011)



why?
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Calanus glacialis

?



Question 1

Do spring/summer phytoplankton dynamics (temperature, 
bloom timing, total production) explain why large 
crustacean zooplankton do better in cold years?
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Question 1

Do spring/summer phytoplankton dynamics (temperature, 
bloom timing, total production) explain why large 
crustacean zooplankton do better in cold years?

No! Both phytoplankton and zooplankton production are 
higher overall in warm years.

Question 2

So what does?
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large copepods do better in 
cold years in spite of, not 

because of, variability in total 
primary production

(cf. Hunt et al. 2011)



dC/dt = assimilation  –  metabolism  –  mortality  –  egg prod.  +  molting

dR/dt = f  · assimilation  –  1.0 · metabolism  –  R/C · mortality …

assimilation = a q I      P / (K+P) C

s

for each life stage,

max

life-history parameters:
lipid storage fraction
activity (diapause vs. winter grazing & reproduction)

Q10 temperature dependence

lipid
reserves

R

total biomass C

age-within-stage A
(Hu et al. 2008)

adults

eggs

nauplii
copepodites



0

30

0

12

Phytoplankton P (mg chl m–3)

Temperature (°C)
surface

bottom

Sensitivity experiments based on semi-idealized seasonal cycles from
EcoFOCI mooring M8 (62°N, 70 m depth) (Sigler et al., submitted)



Population growth
rate over 4 y (yr–1)

−1 0 2 3 4 5

1

0

1

2

Maximum (summer) surface temperature
9 10 11 12 13 14 15

Varying both together

0

1

0

1

0

Activity of
stage C5 in
winter

diapause

no diapause

Overwintering
less costly

Fast growth and
development

1978–2012
mean conditions

1
Minimum (winter) surface temperature



cold
years

warm
years

overwintering
success

late winter
prey availability
(ice algae)

spring-summer
prey availability

spring-summer
growth &
development rates

net effect

te
m

pe
ra

tu
re

ic
e 

co
ve

r

+ –

– +
+ –

– +

+ –

Climate impacts on Calanus spp.



cold
years

warm
years

overwintering
success

late winter
prey availability
(ice algae)

spring-summer
prey availability

spring-summer
growth &
development rates

net effect

te
m

pe
ra

tu
re

ic
e 

co
ve

r

+ –

– +
+ –

– +

+ –

Climate impacts on Calanus spp.

Maybe timing is 
everything.

In other high-latitude 
systems, early reproduction 
in time to match juveniles 
with the spring bloom is 

crucial for copepods
(Varpe et al. 2007)

HYPOTHESIZED



winter phytoplankton
concentration
(mg chl m   )

Calanus population
growth over 4 y

(yr   ) 

start of egg production
(yearday)

egg production
per unit biomass

(yr   )

0.01 0.4104 1.0

0.2 0.897 0.8

0.5 1.689 0.5

1.0 2.986 0.3

–3 –1 –1



Question 2

So if spring/summer phytoplankton dynamics don’t explain why 
large crustacean zooplankton do better in cold years, what does?

Prey availability before the spring bloom (and its effect on 
reproductive timing) is the most plausible hypothesis—
moreso than direct temperature effects.



Question 3

What does all this mean for a warmer future?
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Question 3

What does all this mean for the future?

Broadly speaking, these models suggest that plankton and pollock recruitment 
in an average year in the 2040s will resemble the warm years of the 2000s 
(which were very bad for pollock recruitment)…

…but the news is not nearly as bad as a direct extrapolation from present-day 
correlations with temperature would suggest.
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