

Distributions of pCO_2 and their decadal changes in the Bering Sea

Zhongyong GAO Heng Sun, Liqi Chen

Key Lab of Global Change and Marine-Atmospheric Chemistry (GCMAC), SOA Third Institute of Oceanography, State Oceanic Administration (SOA)

- Geographic and Methods
- Distinct pCO₂ zones in the Bering Sea and their control
- Decadal change of the Bering Sea carbon sink (from 1999 to 2012)

Circulations in the Bering Sea

Bering Sea Green Belt

Generalized pattern of primary productivity in the Bering Sea (redrawn from Springer et al., 1996)

Carbon content in surface sediments

Carbon content in surface sediments of the Bering Sea (redrawn from Springer et al., 1996)

Schematic diagram of major currents in the Bering Sea

11-4

Ivefil

C Fel

-53

Underway pCO₂ observation

٢

•<u>CO₂ system</u> <u>Measurements</u> <u>in situ</u>

CO2 parameters

CHINARE-1999

 $\frac{1^{st} \text{ CHINARE}}{1999.7 \sim 9}$ Black Line

2nd, 3rd, 4th & 5th CHINARE cruises 2003, 2008, 2010, 2012 Red line

Bering Sea Chl-a

Bering Sea Nutrients (NO_3^-)

Distinct ρCO_2 zones in the Bering Sea and their control

Sampling Locations

Latitudinal distribution of pCO_2 (µatm) along transect BR

Process	Proxy		Change	pCO ₂	Cause	
Warming	temperature	т	7	7	Decreasing the solubility of CO_2	
Bio production	Nutrients	NO3-	N	N.	Bio production consume DIC	
Organism decomposing	Nutrients	NO ₃ -	7	7	Release the inorganic carbon	
Carbonate deposit	Alkalinity	ТА	7	7	in proportion of 2 : 1 diluted TA and TCO_2	
Carbonate dissolve	Alkalinity	ТА	7	<u>v</u>	Reverse process	
Air-sea Exchnage (Air→sea)	time	Time	7	7		

T, S, TA, DIC

normalized DIC

nDIC (µmol/kg)

normalized TA

Biological Control on BSC

23

 $pCO_2 \sim SST$

 $pCO_2 \sim SSS$

$pCO_2 \sim DIC$

$pCO_2 \sim TA$

$pCO_2 \sim (nTA \& nDIC)$

mixing

Controlling Factors

pCO_2 and air-sea CO_2 fluxes in the Bering Sea

Regions	Averaged pCO ₂ sw (µatm)	Air pCO ₂ (µatm)	Wind speed (m s ⁻¹)	CO ₂ fluxes (mmol m ⁻² d ⁻¹)
Southern Basin (53-57°N)	348	379	6	-2.9
Northern Basin (57-59.5°N)	274	379	6	-9.8
Slope (59.5-61.5°N)	181.2	379	6	-18.7
Shelf (61.5-63°N)	220.7	379	6	-15.0

 pCO_2

*pCO*₂@6.4°C

nTA@S=35

nDIC@S=35

DIC -nDIC

TA - nTA

Bering Sea Summer carbon sink, 1999 - 2012

Fig. 2. Schematic circulation (0-220 m) and total kinetic energy based on Fig. 1. The locations of model cross-sections and names are included.

the BSC appears to be more a system of eddies rather than a continuous current, which emphasizes the need for a fully eddy-resolving, basin-wide model to represent its complex dynamics.

Twenty-three-year mean velocity averaged over the upper 50 m. Twenty-five percent of vectors are shown. Color shading represents the total kinetic energy (cm2 s[1]2) calculated as 0.5*(u2+v2).

Compared with the other Sea Areas

a) the Southern Ocean
b) the Western Arctic Ocean
c) Prydz Bay
d) Taiwan Strait

Taiwan & East China Sea 2000 VS. 2009

Distribution of pCO_2 in Taiwan Strait in April

50

Prydz Bay - P3 section (73° E)

Prydz Bay P3 Section (73° E)

Prydz Bay 73° E Section

Distribution of pCO_2 in Taiwan Strait in April

Distribution of pCO_2 in the Prydz Bay

pCO_2 along 169° W section in the Western Arctic Ocean

Compared with the modeling results

Modeling Carbon Cycle in the Pacific Ocean (1958 to 2010) Prof. Fei CHAI (柴庫) School of Marine Sciences University of Maine

- Physical and Biogeochemical Models
- Model Evaluation
- pCO2 (increasing) & pH (decreasing) Trends
- A Twin Experiments Anthropogenic CO2

Regional Ocean Model System (ROMS) 1/8 deg. (~12km) 1990-2010

or 1/2 deg. (~50km) 1958-2010

Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE)

(Chai et al., 2002, 2003, 2007, 2009; Fujii and Chai, 2007; Liu and Chai, 2009; Xiu and Chai, 2011, Palacz et al., 2011)

- 1. Sea water pCO_2 along transect BR changed dramatically. The main reason of higher pCO_2 in the Southern Bering Basin is well-mixed water masses with higher temperature, higher DIC and TA.
- 2. The water masses in the slope were significantly different from those of other regions in the Bering Sea, with obvious lower temperature, fresher, lower DIC and TA, leading to lower pCO_2 in the surface seawater.
- 3. The Bering Sea is a net sink for atmospheric CO_2 .

- Compared with other typical sea areas, Bering Sea's summer carbon sink remains unchanged at large
- 5. Observation results unexpected coordinate with the modeling result, but the regime still need to be discussed.

Acknowledgments

CHINARE Teams

R/V Xuelong Captain and all crew

