Evidence of local upwellings in the north-western Bering Sea in 2012

Kirill <u>Kivva^{1,2}</u>, Denis Chulchekov³

¹ Lomonosov Moscow State University, Moscow, Russia.

² Russian Federal Research Institute of Fisheries and Oceanography (VNIRO), Moscow, Russia.

³ Pacific Research Institute of Fisheries and Oceanography (TINRO-Center), Vladivostok, Russia.

Introduction

Introduction

Scheme of the Bering Sea circulation (Curchister 2010)

Introduction

1979–2004 mean 0–220m circulation and total kinetic energy (Kinney et al. 2009)

Geostrophic flows in July-August 2012 Bold lines represent flows > 5 m sec⁻¹ (Basuk et al. 2012)

The Area

Ocean Data View

<u>Methods</u>

- Survey aboard Fisheries R/V "Professor Kaganovsky" (TINRO-Center)
 - ► 218 CTD stations: SBE 9 plus Sealogger
 - ► 80 sampling stations: O₂, SiO₃²⁻, PO₄³⁻, NO₂⁻, NO₃⁻, NH₄⁺
 - ► additional samplings : Surface NPP, TON, TOP

<u>Results</u>

- Low temperatures and high salinity along Koryak coast, west Gulf of Anadyr, and Chirikov Basin
- Temperature fronts of with $\Im^T \approx 3^\circ C$

<u>Results</u>

SILICATE [mkM] @ DEPTH [M]=10

 Features of nutrient fields, and O₂ match physical features
 > 100 % oxygen

saturation on the Koryak
shelf => intensive PP

Results: Koryak upwelling

Results: West Anadyr upwelling

Results: Chirikov Basin upwelling

Sea surface distribution of nitrate (reference summer situation).

Upwelling/upsloping along the siberian coast. Grid points with vertical velocity of >4 m day⁻¹ are indicated.

(Nihoul et al. 1993)

The (top) 4-km AVHRRmeasured SST climatology and (bottom) 10-km SeaWiFS measured chlorophyll-a climatology in June, July, and August averaged from 1996 to 2006.

(Wang et al. 2009).

Climatologies of primary production in the Bering Sea for 1998–2007 showing annual area-normalized NPP (g C m⁻² yr⁻¹) (left panel), and the date of the spring phytoplankton bloom, taken as the date of maximum daily NPP in spring (right panel).

(Brown et al. 2011).

TEMPERATURE [°C] @ DEPTH [M]=first

Sea surface temperature [°C] overlaid by surface **net primary production** [mkg C m⁻³ day⁻¹] **July** 2012

Large (> 168 μ m) phytoplankton biomass in 0-200 m or 0-bottom layer, [mg m⁻³] (courtesy of Loseva O.E.)

Estimation of NPP associated with local upwellings in the north-western Bering Sea

P-PO₄³⁻ W [mol m⁻³] [m day⁻¹]

Koryak Shelf	1.5	2
Gulf of Anadyr	2.0	2
Chirikov Basin	2.0	4

<u>Conclusions</u>

 Two upwellings are clearly indicated from CTD and nutrient data from July-August of 2012: <u>Koryak coastal upwelling, and Chirikov Basin</u> <u>upwelling</u>

Upwelling-like coastal feature was also observed in the <u>western Gulf of Anadyr</u>

Thank you for attention!

Month of recorded maximum chlorophyll values (SeaWIFS data from 1998-2002). (lida and Saitoh 2007).

<u>Methods</u>

<u>Methods</u>

Ζ

Nutrient consumption by phytoplankton \approx net community production ? Compensation depth $(O_2 = 100 \%)$ Production \approx destruction

no nutrient consumption

Nutrient consumption by phytoplankton ≈ net community production

Nutrient diffusion

Advection

Remineralisation

Net community production (Si, N, P-based estimations) Area 1, July-August 2012 [mg C m⁻² d⁻¹]

Net community production (Si, N, P-based estimations) Area 2, September 2012 [mg C m⁻² d⁻¹]

Area 1, July-August 2012

Comparisons of Si, N, P-based estimations of net community production [mg C m⁻² d⁻¹]

Future directions

- Determination of vegetation period:
 - Sea ice retreat data
 - Net heat flux data
- Vertical nutrient flux estimations
- Advection estimations
- Calculations of NCP for 2004, 2008-2010

<u>Conclusions</u>

- Primary production features well represented in estimated NCP field
- Nitrogen remineralisation takes place within the euphotic layer
- Si- and P-based estimations of NCP are preferable

Thank you for attention!

<u>Спасибо за внимание!</u>

Basuk E.O., Kivva K.K., Chulchekov D.N. (2012) Extremely cold thermal condition of waters in the Bering Sea in 2012 Voprosy promyslovoy okeanologii. Vol 9. № 1. (In Russian).

Thank you for attention!

Спасибо за внимание!