Seasonal variability in juvenile fish and invertebrate prey available to Columbia River salmon entering the ocean

Marisa N.C. Litz ${ }^{1}$, Robert L. Emmett ${ }^{2}$, Andrew M. Claiborne ${ }^{3}$, Jessica A. Miller ${ }^{1}$, and David J. Teel ${ }^{4}$

${ }^{1}$ Oregon State University

${ }^{2}$ NOAA-Fisheries, Northwest Fisheries Science Center, Point Adams Research Station ${ }^{3}$ Washington Department of Fish and Wildlife
${ }^{4}$ NOAA-Fisheries, Northwest Fisheries Science Center, Manchester Research Station October 15, 2013

David Cushing

Match-Mismatch Hypothesis

http://www.telegraph.co.uk

http://www.ioccg.org

Abundance

Plankton

Variation in production of larval food depends on the variation in the time of onset and duration of primary production

Time
Hjort (1914); Cushing (1969; 1990)

Introduction	Methods	Results	Conclusion	Summary

Early ocean residence - a critical period?

Mortality is variable and may exceed 90% in some years
http://www.nwd-wc.usace.army.mil/ Hartt and Dell (1986); Beamish and Mahnken (2001); Pearcy (1992); PFMC (2011)

Introduction	Methods	Results	Conclusion	Summary

Pelagic food chain including juvenile salmon micronekton prey

Salmon eat more fish as they enter the ocean

Peterson et al. (1982); Emmett et al. (1986); Brodeur et al. (1987 \& 1990); Brodeur (1989 \& 1991); Brodeur and Pearcy (1992); Keeley and Grant (2001); Schabetsberger et al. (2003); Daly et al. (2009)

Results

Conclusion
Summary

Estimating match/mismatch between juvenile salmon and prey resources

Evaluate seasonal variability in prey community (2011 \& 2012) in relation to environmental variables and timing of salmon ocean migration

Compare prey biomass to salmon abundance

Explore the relationship between prey availability and salmon condition

Predicted model of salmon and prey abundance

Match

Juvenile salmon

Mismatch

Sample collection and analysis

Prey - ID, abundance, size (length, mass) measured in lab and converted to biomass

Genetics - Fin clips from Chinook salmon ($\mathrm{n}=288$) analyzed to determine genetic stock of origin

Salmon Diet - Stomach contents from salmon evaluated

Seeb et al. (2007); Teel et al. (2009)

2011
2012

Introduction	Methods	Results	Conclusion	Summary

NMS plots show 3 distinct communities of prey

Some species are more closely associated with a particular season

May-Jun

July

Aug-Sep
Limacina (sea snail)
T. spinifera (krill)
C. magister (crab megalope)

Northern ronquil
C. productus/oregonensis (crab megalope)

Northern anchovy

Osmeridae (smelt)
Pacific sand lance
Arrowtooth flounder Pacific sand sole
Rock sole
Slender sole
Speckled sanddab \quad Flatfish YOY

Indicator Species Analysis
Dufrêne and Legendre (1997)

Chinook genetics caught alongside prey

Month	May	Jun	Jul	Aug	Sep
$\mathbf{2 0 1 1}$	5	6	55	54	45
$\mathbf{2 0 1 2}$	12	-	84	4	23

61\% (175 of 288) of Chinook salmon from Upper Columbia River Summer/Fall genetic stock group
$($ mean probability for assignment $=0.89)$
Coastal, OR/WA resident species

Seeb et al. (2007); Teel et al. (2009); Fisher et al. (2007)

Introduction	Methods	Results	Conclusion	Summary

Outmigration timing varies among salmon

Steelhead

Weitkamp et al. (2012); Weitkamp et al. (in review)

Summary (so far)

3 distinct time periods for prey community: May-June, July, August-September

Juvenile salmon migrate to sea at different times
2 Most juvenile salmon (61\%) caught were from a single genetic stock group (UCR Su/Fa), which will be the focus from here on....

Salmon diets resembled the prey field

Introduction	Methods	Results	Conclusion	Summary

2011

May Jun Jul Aug Sep

Match/Mismatch Hypothesis

2011
Match between peak prey biomass
(anchovy) and juvenile salmon CPUE
$\underline{2012}$
Mismatch between peak prey biomass (anchovy) and juvenile salmon CPUE

Prey biomass is also related to fish condition

Summary

We identified three distinct prey communities:

1. May-June = yearling migrants
2. July = subyearling migrants
3. August-September = critical period for subyearlings

61\% of the juvenile salmon were subyearlings from a single genetic stock group (UCR Su/Fa)

Diets of subyearling UCR Su/Fa salmon resembled the prey field (northern anchovy)

In 2011, there was a match between prey biomass and salmon CPUE; in 2012, there appeared to be a mismatch

Salmon condition index was more positive when anchovy biomass was highest

Acknowledgements

Laurie Weitkamp
David Kuligowski
Ric Brodeur
Elizabeth Daly
Toby Auth
Tristan Britt
Greg Hutchinson
Cheryl Morgan
Miller Lab
Hatfield Student Organization Travel Award
Mamie Markham Research Award
Bill Wick Marine Fisheries Award
Crew of the F/V Miss Sue

