Low-frequency Eddy Modulation in the California Current

6

Andrew Davis and Emanuele Di Lorenzo Georgia Institute of Technology

What dynamics control interannual and decadal variability in mesoscale eddies in the California Current?

Eddy Kinetic Energy from surface drifters (cm²s²)

What dynamics control interannual and decadal variability in mesoscale eddies in the California Current?

Eddy Kinetic Energy from surface drifters (cm²s²)

ROMS passive tracer study of Eddy transport

March 2007

This passive tracer experiment (using our ROMS model data), shows the importance of eddy variance to offshore mixing.

Combes et al. Progr. Ocean., in press

Surface-core Cyclones (SC)

- vorticity maximum near surface
- formed at the CC/return flow interface
- arise from meridional current shear
- deflect poleward
- associated with lateral <u>and</u> vertical mixing

Deep-core Anticyclones (DA)

- vorticity maximum around 400m depth
- formed in the central CC
- arise from baroclinic instabilities
- between the CC and counter-current
- deflect equatorward
- associated with <u>lateral</u> mixing

Japanese Earth Simulator Global Eddy-Resolving Model (OFES) Monthly Mean of Surface Current Velocity [cm/sec] (FEB/50YR)

Japanese Earth Simulator Global Eddy-Resolving Model (OFES) Monthly Mean of Surface Current Velocity [cm/sec] (FEB/50YR)

Japanese Earth Simulator Global Eddy-Resolving Model (OFES) Monthly Mean of Surface Current Velocity [cm/sec] (FEB/50YR)

ROMS Mean SSH

- 3 hindcasts from 1950-2008
- 10km resolution
- forced by NCEP reanalysis
- 2 use OFES boundary condition to include effect of equatorial CTW variance

30

20

I Eddy-Resolving Model (OFES) It Velocity [cm/sec] (FEB/50YR)

80

90

100

70

In Currents cm/s

60

50

40

ROMS Mean SSH

We expect equatorial wave energy (ENSO) to dissipate at the SCB. (Davis & Di Lorenzo, in prep.)

This leads us to separate two forcing regions within the CCS.

Our eddy-counting method (one of many) uses the Okubo-Weiss parameter W:

$$W = 4\left(\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)\left(\frac{\partial u}{\partial y}\right)\right)$$

This is a measure of the dominance of rotation over deformation.

We also filter by size and shape.

This eddy has a very small "shape error." Its area conforms to a circle of the same radius.

We consider it well-formed and it is included in the count.

This eddy has a much larger "shape error" and is excluded from the count.

1000

10 5

mean: 6.7 6.7 8.9 std: 2.7 2.7 3.0

mean: 6.6 6.5 9.6 std: 3.1 3.0 3.5

How do modeled eddy counts compare with satellite SSHa observations?

mean: 6.7 6.7 8.9 std: 2.7 2.7 3.0

mean: 6.6 6.5 9.6 std: 3.1 3.0 3.5

How do modeled eddy counts compare with satellite SSHa observations?

How do modeled eddy counts compare with satellite SSHa observations?

Correlation Table

	OBC 2	no OBC	AVISO	A. C. A.
OBC I	0.336	0.241	0.382	
OBC 2		0.295	0.256	
no OBC			0.283	東京のため

What frequencies contain the most eddy variance?

What frequencies contain the most eddy variance?

What frequencies contain the most eddy variance?

What frequencies contain the most eddy variance?

Low Frequency: 18% 14% 19% Seasonal: 14% 16% 19%

Low Frequency: 29% 23% 26% Seasonal: 9% 15% 13%

Eddy Spectra

Seasonal Cycle

What dynamics control interannual changes in mesoscale eddies in the California Current?

How much of this variance is forced (deterministic) vs. internal (instrinsic)?

Eddy Spectra (North)

How much of this variance is forced (deterministic) vs. internal (instrinsic)?

Eddy Time Series (North)

(Periods > 40 months)

How much of this variance is forced (deterministic) vs. internal (instrinsic)?

Correlation Tables (lowpassed)

A.		OBC 2	no OBC
	OBC I	0.594	0.473
	OBC 2		0.587

Eddy Time Series (North)

How much of this variance is forced (deterministic) vs. internal (instrinsic)?

Correlation Tables (lowpassed)

		OBC 2	no OBC
	OBC I	0.594	0.473
	OBC 2		0.587

Eddy Time Series (North)

25-35% deterministic

Wind Stress Curl Forcing Pattern (AR-1)

Eddy Time Series (North)

0,4

-0.1

0.4

0.2

-0.1

0.3 0.4 0,5

0.2

-0.1

0.4 0,5

6. correlation maximum is at

NEP WSC EOF3 (7% of variance)

Patterns are very similar to the third EOF of Northeastern Pacific wind stress curl.

NEP WSC EOF3

 Both anticyclonic and cyclonic eddy counts show a strong correlation with PC3 at a lag of 5-8 months.

10 5

mean: 9.6 8.9 10.3 std: 2.7 2.7 2.7

mean: <mark>6.2 5.6</mark> 7.7 std: <mark>2.8 2.4</mark> 2.5

Correlation Table

	OBC 2	no OBC	AVISO	100
OBC I	0.172	0.110	0.120	
OBC 2		0.148	0.204	and Friday
no OBC			0.078	東のため

Eddy Spectra (South)

Low Frequency: 15% 14% 11% Seasonal: 5% 8% 10%

Low Frequency: 19% 20% 13% Seasonal: 5% 6% 6%

There is a weak ENSO signal in the OBC 1 eddy counts, but otherwise it resembles red noise.

<u>SUMMARY</u>

1. North of the Southern California Bight, eddies have a large amount of driven variance associated exclusively with low-frequency variance in wind stress curl.

ROMS Mean SSH

<u>SUMMARY</u>

1. North of the Southern California Bight, eddies have a large amount of driven variance associated exclusively with low-frequency variance in wind stress curl.

2. South of the Southern California Bight, excluding a weakly significant ENSO signal from tropical Coastal-Trapped Waves, eddy formation is a red-noise process.

ROMS Mean SSH

