

PICES 2012 Annual Meeting

S3 POC Topic Session: Challenges in understanding Northern Hemisphere ocean climate variability and change

Dynamics of North Pacific oceanic heat content variability on decadal time-scale

Bunmei Taguchi Earth Simulator Center, JAMSTEC Niklas Schneider International Pacific Research Center, Univ. Hawaii

Hiroshima, Japan Oct 18, 2012 Hotspot in Climate System

OHC has better predictive skill than SST.

Contrasting propagation features of decadal-scale signals

Teng and Branstator (2010)

Are the eastward propagating OHC signals Rossby waves or spiciness?

Possible mechanisms for the propagation feature	
Westward propagating signals:	Eastward propagating signals:
First baroclinic mode RWs	I. Higher baroclinic mode RWs
(e.g., Pedlosky 1996; Liu 1999)	(Liu 1999, Nonaka & Xie 2000)
Independent of the mean flow.	Following the mean flow.
no density change	2. Density-compensated T & S (Spiciness: e.g., Schneider 1999)

Objective

- •To examine dynamics underlying propagation features of decadal-scale OHC signals, analyzing a long-term CGCM simulation.
- To distinguish OHC signals in terms of higher baroclinic modes RWs and spiciness anomalies, and examine their origins.
- To establish the link between the westward- and eastward propagating oceanic signals.

CGCM integration: interannual standard deviations

CFES: Coupled atmosphere-ocean GCM for Earth Simulator

Komori et al. (2008)

Medium resolution CFES

A: T119 (~100 km) L48: O: 0.5° L54: Integration : 150 years

Taguchi et al. (2012)

Simulated propagating signals of SSH & OHC

Splitting OHCa into density and spiciness compnents

Spiciness generation in the KOE region

Generation of spiciness & higher baroclinic modes

Summary

•We have investigated processes and the origin of the eastward-propagating Ocean Heat Content (OHC) signals simulated in a 150-year CFES simulation.

westward-propagating SSHa

eastward-propagating OHCa

5. T' associated w/ spiciness damped by airsea heat exchange → *P*/→ higher modes RWs

• The wind-forced westward propagating SSH signals are transformed into the eastward-propagating Ocean Heat Content signals through the latitudinal shift of the subarctic front and the associated anomalous spiciness generation.

Implications and future studies

 Possible pathway of decadal subsurface signals from west to east Observed spiciness propagation in the subtropical thermocline

