PICES 2012 Annual Meeting, FIS/PAPER Session

Hiroshima, Japan, Oct. 18, 2012

A comparison of fish community and trophic structure from three marine ecosystems around Japan: Synchronies, differences and environmental forcing

Yongjun Tian, Kazuhisa Uchikawa and Yuji Ueda Japan Sea National Fisheries Research Institute, Fisheries Research Agency (FRA), Niigata, JAPAN

Outline

Background and Objectives:
 Features of the three marine ecosystems

- Variability in the fish community structure A comparison between the three ecosystems from PCA result and community index
- Impacts of climate variability
 GAM (Generalized Additive Model)
 determined environmental forcing

Oceanographic structure and fisheries region

The late 1980s regime shift was the most evident change in TWC, seemed different with the mid-1970s regime shift in the North Pacific. Even within an ecosystem such as TWC, response to climate regime shift is speciesspecific, and the forcing is different. **Our question:** What is the difference and the similarity between ecosystems?

cold <u>1980s</u>

regime shift

<u>warm 1990s</u>

Tian et al. (2008)

Objective

- To identify the variability in the three marine ecosystems (TWC, KC and OC) around Japan <u>using</u> <u>common approach</u>.
 - To make a comparison between the three ecosystems to determine the synchronies, differences and environmental forcing.

Selection of Indicator Species

25 commercially important species from small pelagic to large predatory fishes with different trophic level and habitat are selected to representing the ecosystem

Groups	Tsushima	Kuroshio	Oyashio
Large	Swordfishes and billfishes	Same	Same
Predatory	Bluefin tuna	Same	Same
Species	Albacore	Same	Same
(8 taxa)	Yellowfin tuna	Same	Same
	Frigate mackerel	Same	Same
	Sharks	Same	Same
	Yellowtail	Same	Same
	Japanese-Spanish mackerel	Same	Salmons & trouts
Small	Japanese sardine	Same	Same
Pelagic	Japanese anchovy	Same	Same
Species	Round herring	Same	Pacific saury
(6 taxa)	Horse mackerel	Same	Pacific herring
	Chub mackerel	Same	Same
	Common squid	Same	Same
Demersal	Walleye pollock	Deepsea smelt	Same
Species	Pacific cod	Flathead mullet	Same
(8 taxa)	Arabesque greenling	Lizardfish	Same
	Largehead hairtail	Same	Skates
	Croake	Sand lance	Sand lance
	Bastard halibut	Same	Same
	Flatfishes	Same	Same
	Tanner crab	Silver seabream	Same
Invertebrates	Shellfishes	Same	Same
(2 taxa)	Sea urchin	Same	Same
Seaweeds	Seaweeds	Same	Same

Total 25 species taxa

Data and Analysis

1. Data sets: 1955-2010 1) Japanese catch statistics: 25 taxa by fisheries region 2) SST: JMA data set \rightarrow area-averaged time series as index of the ecosystem 3) Four climate indices: AOI, PDO, SOI, and MOI 2. Same analysis done for the three ecosystems 1)Data transfer: log (catch +1) 2)PCA: applied fisheries data to determine the PCs 3)GAM: applied to PCs ~ environmental variables. (AIC was used as model selection.) 3)Community index: MTL, DI, FiB and PS/ZS ratio (Tian et al., 2006, 2008)

SST trends

Catch trend by fisheries region

These 25 species from the three regions accounted for about 83% of total Japanese catch, and the trends are generally same to total.

The 25 species are suitable as indicators of ecosystems.

Catch trends by trophic group

Community index: MTL and PS/ZS ratio

TWC and KC but differences between OC and other two ecosystems.

These results indicate that the most marked change across the three ecosystems occurred in the late 1980s, but OC responded strongly to the mid-1970s regime shift in comparison with other two ecosystems

Scores

GAM: TWC PC1

Tsushima (model 3): D.E. (Deviance explained)=51.8%

GAM: KC & OC PC1

27.0

27.5

SST_SUM

28.0

28.5

Kuroshio (Model 5) D.E. = 24.4 %

Summary of GAM for PC1-3

PCs	Tsushima	Kuroshio	Oyashio
PC1	SST_WIN, SST_SPR	SST_WIN, SST_SUM	SST_AUT, SST_SUM
rei	PDO, AO, SOI	SOI	
	(D.E =51.8%)	(D.E =24.4.8%)	(D.E =21.6%)
PC2	SST_WIN,	SST_WIN	SST_WIN, SST_SPR
rc ₂	AO	PDO, AO, SOI,MOI	PDO, AO
	(D.E =17.1%)	(D.E =44.6.8%)	(D.E =57.2%)
DC2	SST_WIN, SST_AUT	SST_WIN, SST_AUT	SST_AUT
rcs	PDO, AO	PDO	PDO
	(D.E =37.8%)	(D.E =54.1%)	(D.E =33.6%)

- SSTs, particularly winter SST have significant and strong effects on PCs across the three ecosystems.
- Climate effects are also significant for some regions

Summary

- A comparison study was done for three marine ecosystems around Japan.
- Community indices indicate similarity between TWC and KC, but difference with OC.
- Variation patterns from PCA indicate synchronies in the three ecosystems around the late 1980s, but OC also strongly respond to mid-1970s regime shift.
- GAMs indicate the importance of regional oceanographic conditions to the variability of fish communities.