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Introduction

* Increasing use of spatially-explicit models

 End-to-end are one type

* Wide range of temporal and spatial scales



Why Now?
Traditional methods perceived as unsuccessful
Many management issues involve space
Climate change
Data collection is spatially-detailed
Computing power continues to increase

Advances in hydrodynamics and upper trophic level
modeling



Movement

* A major challenge is modeling movement

— Eggs and larvae maybe reasonably simulated with
particle-tracking

— Juveniles and adults require behavioral
approaches

 Wide range of temporal and spatial scales
— Often scales determined by other submodels
— Compatibility issues



Movement

 Many approaches have been
proposed

— X(t+1) = X(t) + Vx(t)
— Y(t+1) = Y(t) + Vy(t)
— Z(t+1) = Z(t) + Vz(t)
— Determine the cell

* Quite confusing because of non-
standard descriptions and
terminology for V,, V,, and V,

— Random walk
— Levy flight

— Event-based
— Fitness-based
— Kinesis

— ANN
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Issues

Fixed parameters preventing adaptive and
phenotypic variation in behavior

Edge effects on finite grids
Stranding and oscillatory movements
Weakly convergent parameter values

Non-unique pattern matching



Issues
Renegade individuals

Bifurcated movement patterns
Short-cut solutions that use geography
Compromise behaviors from multiple cues

Calibration and validation



Major Issue

* |f we are to use spatially-explicit models, then
the methods must capture the response to
cue(s)

 Little investigation of performance of any of
these approaches under novel conditions

 We will explore this issue in more detail



Calibration and Validation

Challenge: Calibration data are rarely available at the
necessary scale

Genetic algorithms calibrate without data by evolving a
population with parameters that produce fit
movement

GAs assume fish inherit movement instincts that
maximized fitness in previous generations

Examples: ANNs (Huse and Giske 1998; Huse and
Ellingsen 2008; Mueller et al. 2010), neighborhood
search (Giske et al. 2003), rule-based (Huse 2001)



Calibration and Validation

e Calibrate 3 movement models (neighborhood
search, kinesis, and event-based) with a GA in
four hypothetical 2-D environments

* Evaluate the performance of each calibrated
sub-model in novel conditions (i.e., the other
three grids)

From dissertation research of Kate Shepard



Model Structure

Simplified
Hypothetical
Species

Scale
Grid: 540 x 540 cells
Cells: 5 m2
Time step: 5 minute
Generation: 30 days
Initial size =73.3 mm
Initial worth = 100 fish
3000 super-individuals

Loop over generations

Loop over time steps

Loop over fish

Movement
Growth
Mortalit

Genetic Algorithm

Test on novel grid




Environmental Gradients
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Model Processes

Growth (mm 5-min-?) Mortality (5-min)?
G= Gmax*Gr,c M = Mmax*MnC*ML
L(t+1) = L(t) + G S(t+1) = S(t)*e™

. i 1733
W(t+1) = a*L(t+1) M —" e
Movement

Reproduction
E=55-5(30)-(421.84-W(30)+304.79)

X(t+1) = X(t) + V. (t)
Y(t+1) = Y(t) + V,(t)
cell location (r,c)

Yorr

0,0
X andc



GA Calibration

3000 strategy vectors of parameter values
— Start with random values for everyone

Every 30-day generation, select 3000 individuals:
— P(selection) = E;/XZE
— Mutate each vector: 6% of parameters, £0.25

Use these 3000 vectors for the next generation
Continue until egg production levels off

Parameter values should have converged



Neighborhood Search

* Rank cells in Dhood by habitat quality
Q.,=(1-0)*(G,, +n)=6*(M_ *M_ +n)

* nis noise that increases with distance

e Compute O as angle from

cell to center of best cell x




Neighborhood Search

* Use O and swim speed to determine V, and V,

* GA evolves:
— Dhood: size of neighborhood
— 6: mix of growth versus mortality in quality
— RO: randomness on angle
— Rdist: randomness on swim speed



Kinesis
Velocities are the sum of inertial (f) and
random (g)

Compute random swim speed

Compute habitat quality:

Qc,r — (1_5)*Gc,r —0*M c,r*M L



Kinesis

« Compute f and g weighted by how close habitat

quality (Q, ) is to the optimal habitat (Q,,)
_ 2

_O-S(Qc,r Qopt)

fy =Velgy(t—1)-Hy-e °Q
_ 2
_ | ( - | _O.S(Qc,ra Qﬂpt) )
8x Ex 1 HZ € <

* V,andV, are the sum of their f and g

* GAevolves: Q,,, 0,H;, H,, 6



Event-Based

* Fish respond to either growth (j=1) or mortality (j=2)
with tactical (k=0) or strategic (k=1) behaviors

-Tactical Strategic Tactical Strategic

Change in swimming

angle (radians) m 0 0 0 0
Magnitude of

randomness O0.11r 0.251T T O0.51T PAL
(radians)

Swimming speed 1 05 025  0.33 0.5

(BL/sec)




Event-Based

* Compute growth and mortality cues based on
cell growth and mortality values

 Determine detection of growth or mortality

* Calculate each of the four utility functions,
which are running sums that use detection (0
or 1)



Event-Based

* Implement behavior with highest utility from
table, which determines V, and V,

* GA evolves:
— ul, u2: intrinsic utilities of growth and mortality
—r1, r2: thresholds of detection for growth and
mortality
— mO,m1: tactical and strategic memory coefficients
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Training — Fitness Convergence
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Parameter Vectors
Neighborhood Search

Grid 1 Grid 2
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Kinesis Results
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Event-Based Results
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Mean Total Egg Production
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Conclusions

Behavioral movement is a major uncertainty in
spatially-explicit models

Presently, a variety of approaches that are confounded
with scale

End-to-end models are particularly challenging
because scales of physics through fish

| showed some ongoing analyses to address:
— Calibration - GA
— Robustness - testing under novel conditions



Conclusions

e Results were encouraging

 Three methods successfully trained with the
GA and produced realistic movement

* Total egg production fairly constant across
methods and grids



Not All Successes
 ANN with singe cue of mortality




Next in the Analysis
Add Levy flight

Dynamic growth and mortality fields
Individual prey and predators
Changing resolution of grid and time step

Kate finishes her dissertation



Conclusions

* Critical we get the movement responses to
changing and novel conditions realistic

e “If people were smarter or fish were dumber”

 Time is now for
— Synthesis of approaches
— Testing
— Standardization
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