

Effects of Climate Change on the World's Oceans International Symposium May 19-23, 2008 Gijón, Spain

A methodology to evaluate the impacts of climate change in a coastal system

<u>Fernando J. Mendez</u>, Inigo J. Losada, Raul Medina, Maitane Olabarrieta, Melisa Menendez, Paula Camus

Environmental Hydraulic Institute, IH Cantabria, Universidad de Cantabria mendezf@unican.es

Which is the shape of the equilibrium planform of this beach?

We need to define the local wave climate: long-term distribution

How many hours in a year the agitation inside the harbor is higher than 30 cm?

We need to define the local wave climate: long-term distribution

What should be the size of the blocks of this rubblemound breakwater?

We need to define the local wave climate: long-term extreme value distribution

How frequent does the breaching of this beach take place?

We need to define the local wave climate: long-term extreme value distribution

We are aware of recent trends of sea level...

Is Wave Climate being affected by Climate Change ?

Objective: Evaluation of Climate Change Impact on coastal areas

Analysis and evaluation of climate change impacts on beaches, estuaries, lagoons, deltas and dune morphodynamics; coastal erosion; flooding risk assessment and impacts on the functionality and stability of coastal infrastructures

To take into account

- Sea level rise
- Wave climate trends: long-term distribution and extreme value distribution: Hs, W, θ, SS

Historical analysis of long-term trends

Outline

- 1. Introduction
- 2. Methodology to obtain regional vulnerability indices
- 3. Methodology to assess detailed studies
- 4. Conclusions

2. Methodology to obtain regional vulnerability indices

"Effects of the climate change on the spanish coast" (2002-2004)

Funded by the Spanish Agency of Climate Change (Ministerio de Medio Ambiente, SPAIN)

Phase I: To evaluate wave climate and sea level changes along the littoral

Phase II: To evaluate changes in the coast: beaches, ports, estuaries,...

Phase III: To establish strategies

2. Methodology to obtain regional vulnerability indices

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

5°E

2. Methodology to obtain regional vulnerability indices

Long-term trend of Direction of mean energy flux 44°N $\Delta \theta_{FE}$ (°/year) 42°N 40°1 38°N 36°N 34°N 12°W 8°W 4°W 4°E 30-N 32°N 28°N

15°W

10°W

5°W

00

Average Direction of mean energy flux

2. Methodology to obtain regional vulnerability indices

2. Methodology to obtain regional vulnerability indices

IH cantabria

Regional vulnerability indices..... usually in deep water

Outline

- 1. Introduction
- 2. Methodology to obtain regional vulnerability indices
- 3. Methodology to assess detailed studies
- 4. Conclusions

Effects of Climate Change on the World's Oceans

3. Methodology to assess detailed studies

New Port of La Coruña

3. Methodology to assess detailed studies

Integrated Coastal Zone Management + Adaptation strategies

1950

Impacts of Climate Change in a Coastal System

3. Methodology to assess detailed studies

2008

Update of wave reanalysis data

All Hs 2005 01 20 00 25 -70 .60 -20 -10 Pe BI Vi Si

Forcing: NCEP/NCAR winds and ice coverage WaveWatch-III Version 2.22

3. Methodology to assess detailed studies

3. Methodology to assess detailed studies

3. Methodology to assess detailed studies

Calibration of wave reanalysis data bases (Tomas et al, 2008, CSR)

3. Methodology to assess detailed studies

3. Methodology to assess detailed studies

Classification: *Self Organizing Maps*

3. Methodology to assess detailed studies. Self Organizing Maps

Sea states classification = Statistical downscaling

•Frequency of occurrence of each sea state: •Total energy of each sea state: H_{sc} • H_{st} , T_{m} , θ of the sea and swell components

3. Methodology to assess detailed studies

Propagation Coefficients

3. Methodology to assess detailed studies

3. Methodology to assess detailed studies

Regression model (Menendez et al, this session; Mendez et al, 2006 JGR)

3. Methodology to assess detailed studies

Example of Adaptation

SECCION TIPD "C" ESCALA 1:500

Example: Sea level rise at 2050 $\delta\eta$ =15 cm + increase of storminess at 2050 (wave height δ H=80 cm)

3. Methodology to assess detailed studies

High Resolution Numerical Model

3. Methodology to assess detailed studies

<u>Objective</u>: reestablish operations, reliability and security current conditions <u>Action</u>: higher crown wall

4. Conclusions

- Impact assessment of climate change on coastal areas depends directly on changes on atmospheric and ocean forcings
- The effect of these forcings on coastal areas is highly dependent on local characteristics
- The main agent considered during the last decades has been sea level rise. Wave climate, storm surges, winds and currents have also to be considered
- High resolution information is required to address impact assessment and adaptation measures
- We propose a combination of dynamic, statistical downscaling and time-dependent statistical models

A methodology to evaluate the impacts of climate change in a coastal system

<u>Fernando J. Mendez</u>, Inigo J. Losada, Raul Medina, Maitane Olabarrieta, Melisa Menendez, Paula Camus

Environmental Hydraulic Institute, IH Cantabria, Universidad de Cantabria mendezf@unican.es

SOM

SOM

Unimodal characterization

5. Clasificación de estados de mar System

Redes neuronales autoorganizativas

Clasificación mediante K-medias

Unimodal characterization

Mean energy flux direction Error

$$\Delta \theta = \theta_{FE_{retroanálisis}} - \theta_{FE_{centroides}}$$

Longitudinal transport relative Error

$$E_Q(\%) = \frac{(Q_{retroanálisis} - Q_{centroides})}{Q_{retroanálisis}} \cdot 100$$

Quantification Error

$$E = \frac{\sum_{k=1,...,M} d(C_k)}{P} = \frac{\sum_{k=1,...,M} \sum_{x_i \in C_k} ||x_i - v_k||}{P}$$

Unimodal characterization

Reanalysis data: P~400000

$$\theta_{FE_{reanalysis}} = arctg \left[\frac{\sum_{i=1}^{P} H_{si}^{2} \cdot T_{mi} \cdot sen(\theta_{i})}{\sum_{i=1}^{q} H_{si}^{2} \cdot T_{mi} \cdot \cos(\theta_{i})} \right]$$
$$Q_{reanalysis} = \sum_{i=1}^{P} H_{si}^{2} \cdot T_{mi}^{1.5} \cdot \left(sen\theta_{i}\right)^{0.6}$$

Clusters SOM: M = 25,49, ..., 625

$$\theta_{FE_{centroids}} = \operatorname{arctg} \begin{bmatrix} \sum_{i=1}^{M} H_{si}^{2} \cdot T_{mi} \cdot \operatorname{sen}(\theta_{i}) & f_{i} \\ \sum_{i=1}^{M} H_{si}^{2} \cdot T_{mi} \cdot \cos(\theta_{i}) & f_{i} \end{bmatrix}$$
$$Q_{centroids} = \sum_{i=1}^{M} H_{si}^{2} \cdot T_{mi}^{1.5} \cdot \left(\operatorname{sen}_{i} \theta_{i}\right)^{0.6} \cdot f_{i}$$

4. Methodology to assess detailed studies

4. Methodology to assess detailed studies

Condiciones de oleaje para las 06:00 - 23/02/2008 Altura de ola significante (m)

4. Methodology to assess detailed studies Adaptation

UC

Shoreline retreat at 2050 = 8 m

Impact: Reduction of 30% occupational Area

Objective: reestablish current situation

<u>Action</u>: Beach nourishment

8 m x 2500 m x 10 m Sand 10€/m³ 2 M€

5. Projection of Coastal Dynamics to the XXI

Century Historical analysis of long-term trends

River discharge

6-hourly SLP data bases available

CCSM-NCAR (Community Climate System Model - National Center for Atmospheric Research, USA) CNRM-MeteoFrance (Centre National de Recherches Meteorologiques, Francia) CERA, World Data Center for Climate (Max-Planck-Institute for Meteorology, Alemania) CGCM 3.1 (Environment Canada)

To take into account:

Hurricane projections in the XXI century (statistical and dynamic downscaling)

For each scenario...

- Different models
- Different ensembles

Probabilistic approach... ensemble projections

Data bases: atmosphere, ocean and hydrology 1. METEO RO SATELLITE LOGICAL RANSMITTER SENSORS Instrumental (buoys, radar, tidal/rainfall gauges, flow measurements,...) DATA PROCESSOR ND STORAGE UN AIR PRESSURE SENSO R AVE HEIGHT AND Visual data (ships) SO LA R PANELS IRECTION SENSO Hindcast data (WWWIII / WAM models) TEMPERATURE CONDUCTIVITY TEMPERATURE CONDUCTIVITY PRO FILE STRING Satellite data (altimeters) CURRENT METER 10 12

1. Data bases: atmosphere, ocean and hydrology

Summing up..

Numerical model

Visual data

Good qualitatively Good directional information Sparse in space Long records Extreme values are not adequate

Satellite

Good quantitatively Sparse in time Well-spatially distributed Short records (10 years)

buoys

Good quantitatively Shallow water buoys affected by propagation Sparse in space and time, gaps Short records (in general)

0

1965

1970

1975

1980

Time (h)

1985

1990

1995

2000

Impacts of Climate Change in a Coastal System

3. Methodology to assess detailed studies

WAVE REANALYSIS DATA SIMAR - 44 DATA BASE

1. H_s, T_p, θ 2. $H_{s1}, T_{m1}, \theta_1, H_{s2}, T_{m2}, \theta_2$

MINISTERIO DE FOMENT Puertos del Estado