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Challenges 

Ocean Carbon Sink and Protocols 

       The ocean is the largest carbon pool on the planet, playing a critical role in global 

carbon cycling and climate change as a buffer of atmospheric CO2.  The contemporary 

ocean has taken up 48% of the anthropogenic CO2 since industrialization. However 

marine carbon sink was ignored in the Kyoto Protocols two decades ago, partially due 

to lack of measurable indices. The recently published “Blue Carbon” report by the 

United Nations and IPCC 2013 report, have both emphasized the role of the ocean in 

climate change. Thus the needs for marine carbon sink protocols are emerging. Here 

we propose a framework of core measurements of carbon sink in a variety of marine 

ecosystems (estuary, wetland, saltmarsh, continental shelf, open sea and oceanic gyre) 

with diverse biota (phytoplankton, bacteria, viruses, zooplankton, seagrass, 

mangroves and fisheries) for peers to work on, toward the development of a standard 

protocol of multiple disciplines with comparable parameters of inorganic carbon (e.g., 

CO2, HCO3
-,CO3

2-), organic carbon (e.g., POC, DOC, Semi-LDOC, RDOC, CDOM), 

ecological processes (primary production, export production, respiration etc) and 

even physical oceanographic parameters (e.g., salinity, alkalinity, current, water mass, 

material flux) and models (box model, numerical model). Particularly, techniques for 

measuring new parameters such as those involved in the microbial carbon pump (e.g., 

bacterial growth efficiency, RDOC bioassay, gene-chips-assay) should be dedicatedly 

worked out with special attention. The marine carbon sink protocol are not only 

necessary for scientific research but also for carbon trade and ecological 

compensation policy.  

 Can we calculate the ocean carbon sink and the contribution of 
MCP? 

 If can we form the protocols (TCCCA: Transparency, Consistency, 
Comparability, Completeness, Accuracy) for determination of 
ocean carbon sink? 
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At Steady State: 

(238U - 234Th)  *Z =   234Th Export (dpm m-2 d-1) 

 

Measure C/234Th on sinking particles  

 → Carbon Export 

POC/234Th 

•Empirical approach 
 
 
 
 
 
 
 
•Must use site and 
depth appropriate 
ratio 
 From Buesseler (2004) 

 

 In the past decade, a MnO2
- impregnated cartridge technique has been widely to extract 

234Th from seawater. 

 One of the inherent assumptions associated with this technique is that all Th species in the 

dissolved phase are subject to extraction by the MnO2. 

 An inter-calibration between the cartridge technique and a small-volume co-precipitation 

technique was carried out to test this assumption. It was demonstrated that the collection 

efficiency for 234Th could be substantially overestimated by the MnO2 cartridge technique.  

 This may be the result of organic complexation of a significant portion of 234Th in seawater, 

causing this fraction of Th to pass through the MnO2 cartridges. The overestimate in collection 

efficiency may explain the deep-water 234Th deficit observed in some oceanographic settings  

(e.g. the Gulf of Mexico, the Middle Atlantic Bight and the Gulf of Maine).   

 Sensitivity tests show that using the cartridge technique can yield 234Th-based particulate 

organic carbon export rates that are overestimated  by factors of up to 10. Furthermore, the 

frequent observed disagreements between Th fluxes recorded by shallow sediment traps and 

estimated using the cartridge method  may be ascribed, at least partially, to this methodological 

issue.   
 A newly developed small MnO2 coprecipitation technique was carried out [Buesseler et al., 

2001; Pike et al., 2005; Cai et al., 2006]. 

For the depth profile based on the MnO2 ppt 

technique, 234Th activities are lower than  

equilibrium in the upper 100 m, indicating that 

significant particulate export is occurring.  

Below, a secular equilibrium is reached 

between 234Th and 238U except at 200 m. In 

contrast, the depth profile based on the MnO2 

cartridge technique shows 234Th deficit 

relative to 238U throughout  the 0-500 m water 

column. Similar structure has been observed 

in the Gulf of Mexico and in the Middle Atlantic 

Bight [e.g., Baskaran et al., 1996; Hung et al., 

2004; Santschi et al., 1999], and was ascribed 

to benthic nepheloid layer exchange 

processes over the continental slope. 

Figure 2. Sensitivity of the collection efficiency 

(for MnO2 cartridges) in the calculation of 234Th 

flux at 100 m. Calculations refer to theoretical 
234Th activities of 0.6, 0.8, 1.0, and 1.1 dpm L-1 

(Cai et al., 2006)  

Sensitivity tests show that using the 

cartridge technique can yield 234Th-based 

particulate organic carbon export rates that 

are overestimated by factors of up to 10. This 

may explain well the discrepancy between 
234Th fluxes expected from the 234Th deficit in 

the water column and from the sediment trap 

deployed in the Middle Atlantic Bight, where 

the water column deficit below 200 m amount 

to 8300-13,000 dpm m-2d-1, while in the 

sediment trap at 800 m, on average, only 

1000-3000 dpm m-2d-1 were collected 

[Santschi et al., 1999]. Similarly, it is possible 

that the under-collection of 234Th by shallow 

sediment traps as observed in some studies 

[e.g., Gustafsson et al., 2004; Hung et al., 

2004] can be ascribed, at least partially, to 

this collection efficiency issue  
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 e.g. 1: 234Th-based POC export rates technique  
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Figure 1. Depth profiles of total 234Th activities 

based on the MnO2 cartridge technique and on 

the MnO2 co-precipitation technique. The solid 

line represents depth distribution of 238U. (Cai et 

al., 2006) 


