

Ecological impacts of species range-shifts: identifying the good, the bad and the uncertain

Martin Marzloff, Jessica Melbourne-Thomas, Sarah Jennings, Ingrid van Putten, Eriko Hoshino, Katell Hamon, and <u>Gretta Pecl</u>

Deputy Associate Dean of Research (IMAS) & ARC Future Fellow Editor In Chief, *Reviews in Fish Biology and Fisheries*

Gretta.Pecl@utas.edu.au

translating nature into knowledge

Biological changes well documented for south-east Australia.....

'New' octopus species, first recorded in 2006 and now 13% of commercial fishery (Ramos et al 2014a, b & submitted)

50% intertidal species monitored have moved poleward in Tasmania over last 50 years (*Pitt et al 2010*)

Over 45 coastal fish species exhibited major distributional changes in Tasmania *(Last et al 2011, Robinson et al 2015)*

85% of seaweeds found further poleward on east coast from 1940 (Wernberg et al 2011)

East Australian Current (EAC) pushing further south & persisting for longer

Westerly winds south of Australia are intensifying & 'spinning up' the anticlockwise circulation around the South Pacific.

One of the fastest warming regions globally and will likely remain so in the future.

From kelp forest to urchin barren

- Arrival and spread of the long spine sea urchin *Centrostephanus rodgersii*
- Destructive grazing and formation of 'barrens' habitat
 - loss of seaweeds / invertebrates
 - loss of production
 - crash in key fisheries (rock lobster and abalone)
 - difficult to reverse

Dynamics of formation, prevention and remediation of urchin barrens

In-pot lobster predation by octopus (Briceno in press)

Predation on urchins by large rock lobster (Ling et al 2009)

\$10m spent understanding 4 'key players'

Urchin is not the only range-shifter

Extending into Tasmania

Snapper (Pagrus auratus)

Eastern rock lobster (Sagmariasus verreauxi)

Gloomy octopus (Octopus tetricus)

Contractions/declines at the north of Tasmania?

Greenlip and blacklip abalone

Southern rock lobster (Jasus edwardsii)

Consequences of range shifts?

- Direct and indirect effects of species redistribution on ecosystem dynamics and coastal industries poorly characterised
- Ecological, economic and social consequences of range shifts can be large
- Current research focusses on individual species rather than collective impacts of multiple shifters

Consequences of multiple range shifts??

Predictive framework - modelling ecosystem feedback

Requires only qualitative knowledge about community structure and species redistribution Positive and negative feedback, stability & self-regulation

Model groups: OC: octopus RL: rock lobster RF: reef fishes SU: sea urchin AB: abalone SW: seaweed bed

Model iii

Mathematically, the analysis of network models is built on graph theory and matrix algebra; specifically, analysis of the community matrix

Marzloff et al. (in review)

Qualitative network model predictions

- Holistically capture general dynamics of reef communities in eastern Tasmania
- Generate qualitative predictions under alternative scenarios
 - Range shifts of individual species
 - Multiple range shifts occurring simultaneously
 - Management interventions prevent barrens formation by the urchin
- Discriminate between:
 - Range shifters with marginal effects on reef structure and function
 - Those that can induce large community-wide impacts
- Qualitative predictions derived:
 - Symbolically
 - Simulation-based approach where we report probabilities of model groups responding negatively (ie declining in abundance)

Symbolic predictions

Questions/caveats about model stability

Simulation-based approach, probabilities of model groups responding negatively

- Modelling negative and positive system feedback
- Generate 5000 sets of parameters for each interaction
- All matrices are checked for stability
- We know how urchin and lobster respond so outcomes checked against these
- Bayesian framework for interpreting uncertainty
- Response for each species is positive or negative, summed, probabilities generated

Ecological Monographs, November, Vol. 82, No. 4 : 505-519

<u>Comprehensive evaluation of model uncertainty in qualitative network analyses</u> J. Melbourne-Thomas, S. Wotherspoon, B. Raymond, and A. Constable (doi: 10.1890/12-0207.1)

Simulation-based approach, examine several scenarios

Single range shifts

- + range extension to Tas.
- -- range contraction in Tas.

Multiple range contractions

Multiple range extensions

All shifts (contractions and extensions)

- Net DECLINE in rock lobster biomass (southern rock lobster contracts and is NOT replaced by eastern)
- Net INCREASE in rock lobster biomass (i.e. eastern rock lobster replaces southern rock lobster)

Similar functional role – large lobsters eat urchins

NEGATIVE ECOSYSTEM OUTCOME

- LOW probability of NEGATIVE response in urchin (BLUE) abundance has 个 or stayed same
- HIGH probability of NEGATIVE response in other groups (RED) abundance has ψ
- \downarrow in southern rock lobster, \uparrow in urchin or \uparrow in octopus negative ecosystem impacts
- ↑ in eastern rock lobster positive ecosystem impacts
- \uparrow Reef fish or \downarrow abalone marginal impacts on ecosystem structure
- All shifts NEGATIVE ECOSYSTEM OUTCOME

Management interventions

- Solely focussed on preventing barrens formation
 - Rock lobster stock rebuilding via reduction in fishing pressure or translocation
 - Sea urchin control through culling/harvesting
 - Octopus control through culling/harvesting

interventions will be sufficient

Management interventions:

a: octopus harvestingb: lobster stock rebuildingc: sea urchin culling /harvesting

Scenarios:

'RL -': lobster biomass decline
'RL +': eastern rock lobster
replaces southern rock lobster

What we want:

HIGH probability of NEGATIVE response in urchin (RED)

LOW probability of NEGATIVE response in other groups (BLUE)

Marzloff *et al.* (in review)

Take home messages

- Multiple range shifts may amplify individual negative ecological impacts
 - Concentrating on the urchin but the octopus is a facilitator
- Combining management interventions for multiple species may be necessary to prevent undesirable consequences
- Modelling system feedback using qualitative information about ecosystem structure
 - Predict ecological consequences of multiple shifts
 - Identify shifters with marginal effects on structure and function vs large community-wide impacts
 - Guide for ecosystem-based adaptation to climate change
 - Prioritise future research and monitoring

Between 25-85% of animals monitored are shifting where they live

Gretta.Pecl@utas.edu.au

(Image by Elsa Gärtner)

Dr Gretta Pecl Gretta.Pecl@utas.edu.au

translating nature into knowledge