Aggregation Hotspots

George L. Hunt, Jr.

School of Aquatic and Fishery Sciences

University of Washington

Photo: Mike Brittain

What is a Hotspot?

- Original focus- Regions of exceptional terrestrial biodiversity
- Later- Regions of high marine biodiversity
 - Focus on Coral Reefs
 - Equatorial Regions with many species of large predators
- High Latitude Seas- Low biodiversity, but high biomass or abundance
 - Possibly major portions of a species' population in a small area, Aggregation Hotspots

Aggregation Hotspots

- Predictable in Time and Space
- Places with high rates of trophic transferforaging areas
 - should we include resting or mating areas? YES
- "Significant proportion" of local or world population
 - What is "Significant"?
 - If destroyed, what would be considered a significant impact at the population level?
- Places of major conservation Importance

Hotspots for Trophic Transfer

- Two major classes of mechanisms
 - Heightened Productivity
 - Prey behavior working against physical gradients
- Many different spatial scales
 - Whole sub-arctic compared to sub-tropical Pacific Ocean- not very informative
 - Mesoscale Regions of heightened productivity
 - Oceanic frontal systems
 - Tidal fronts and rips
 - Appropriate spatial scale depends on organism

Productivity-driven Hotspots

- North Water Polynya
 - Sensible heat polynya
 - Opens early, early bloom, large zoops
 - Supports several million dovekies

• St. Lawrence Island Polynya, Bering Sea

- Latent heat polynya
- Strong pelagic-benthic coupling
- Important area for sea ducks and walrus

Slide courtesy of Martin Fortier

Distribution of Dovekies on the water NOW, May 1988

Slide courtesy of N. Karnovsky 95,960 – 191,920 mt C in phytoplankton to support little auks in May!

Seawifs image by Simon Belanger and Pierre LaRouche Karnovsky, et al., 2006

Biophysically-Forced Hotspots

- Require source from which prey advected to be long-lasting
- Prey behavior works against physical gradient
- Many sources of gradients
 - Light
 - Density
 - Depth preferences
 - Convergence- with need to stay high
 - Divergence- with need to stay low
 - Eddies

Examples of Physically-forced Hotspots

- Least Auklets at King Island- Convergence
- Least Auklets at St. Lawrence Is.- Density
- Auklets at Delarof Is. Convergence and Divergence

Shearwaters at Unimak Pass- Convergence, upwelling and Depth-light

Location of Delarof Islands

Distribution of Auklets on a single crossing of Delarof Pass

Examples of Physically-forced Hotspots

- Least Auklets at King Island- Convergence
- Least Auklets at St. Lawrence Is.- Density
- Auklets at Delarof Is. Convergence and Divergence
- Murres at St. George Is. Depth/Light
- Shearwaters at Unimak Pass-Convergence, upwelling and Depth-light

Predator Aggregations

With 2-4 birds m⁻², this flock contained 4 - 9 million shearwaters ~ 13 – 30 % of the world population

Prey Concentrations

ATT A

Surface view of euphausiid aggregation

Courtesy of D. Hyrenbach & J. Jahncke

Advection & Retention of Euphausiids Day-time: Shearwater Foraging

Animation courtesy of D. Hyrenbach

What is the Source of the Euphausiids?

Modified from Ladd et al., 2005 Fish.Oceanogr.

Aggregation Hotspots

- Predictable in Time and Space
- Places with high rates of trophic transferforaging areas
 - should we include resting or mating areas? YES
- "Significant proportion" of local or world population
 - What is "Significant"?
 - If destroyed, what would be considered a significant impact at the population level?
- Places of major conservation importance

Vulnerability to Climate Change

- Vulnerability of physical mechanisms-
 - Advective processes often dependent on wind patterns
- Vulnerability of prey organisms-
 - Life history traits sensitive to changes in phenology
 - Physiology sensitive to changes in temperature
 - Prey food availability sensitive to increased stratification

Impact of Thresholds

- Timing often critical- almost no auklets nesting south of the Aleutians
- Temperature critical- timing of ice retreat affects availability of large crustacean zooplankton
- Anoxia- critical oxygen thresholds determine occupancy of a region
- pH- critical levels for araganite, also for cellular processes

Predator Aggregations

Shearwaters feeding with ~ 100 humpback whales.