

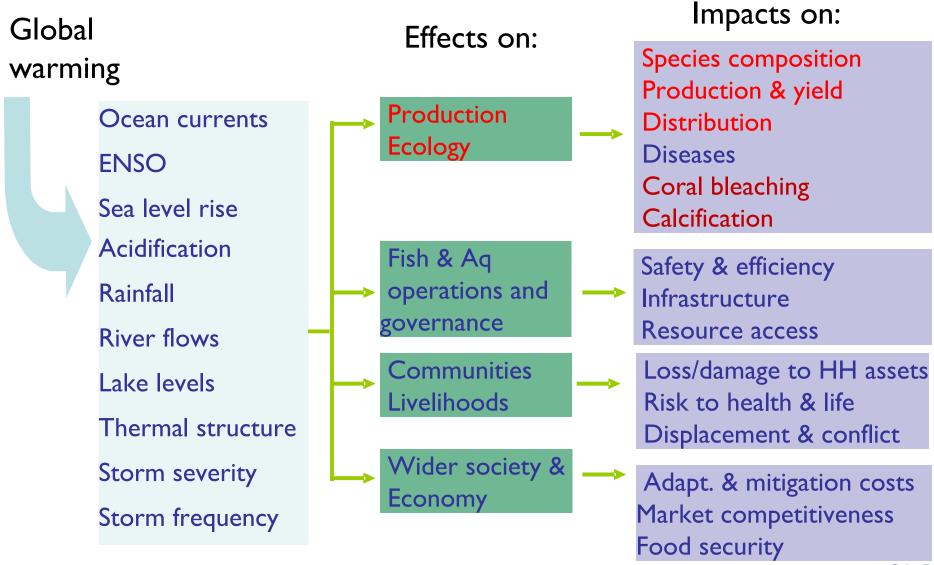
Climate change in perspective: global drivers of change in fisheries

Edward H. Allison The WorldFish Center Penang, Malaysia

PICES/ICES/FAO International Symposium: Climate Change Effects on Fish and Fisheries, Sendai, Japan, April 2010

partnership • excellence • growth

Outline


How will climate change impact fishery systems?

What else drives change in fisheries?

How can science guide policy and management at different scales?

CC impact-pathways on fisheries and aquaculture

Adapted from Badjeck et al 2010 Marine Policy

How will climate change impact fishery systems?

What else drives change in fisheries?

How can science guide policy and management at different scales?

Rising Demand 27% more fish needed in Africa by 2020

Climate change

Competing uses for water & coast

Poverty of fishers (25 million people) Fisheries Crisis?

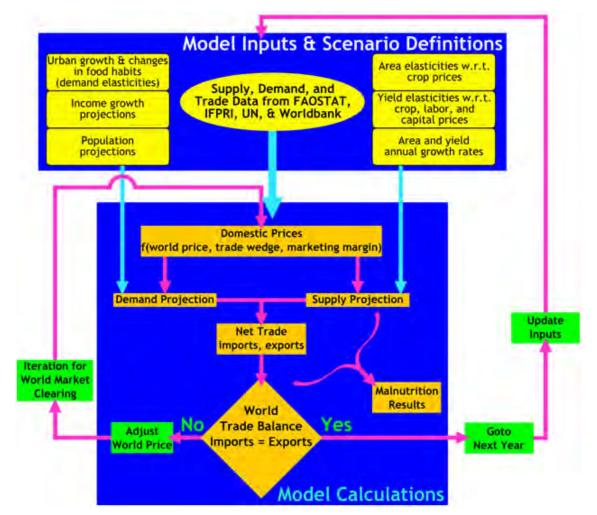
Weak governance

Neglect in development policy

Some important drivers in fisheries

demographic and cultural change economic globalization growth of aquaculture environmental concern

water scarcity

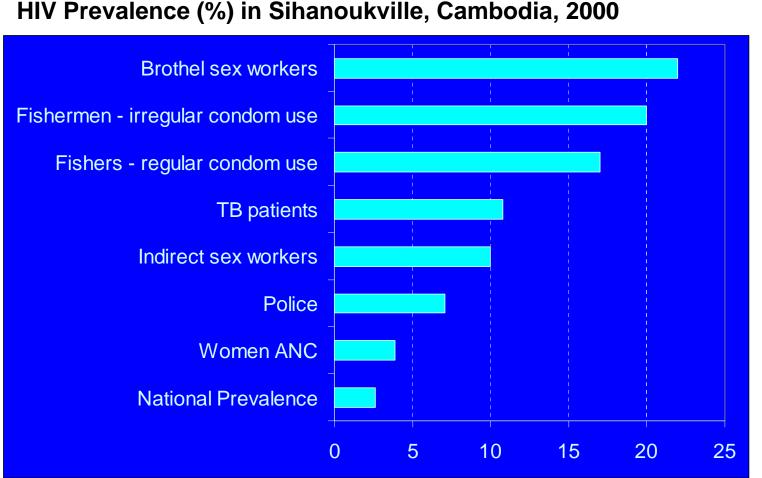

Complexities...

Proximate and ultimate drivers

International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT):

Delgado, C.L., Wada, N., Rosegrant, M.W., Meijer, S. and Ahmed, M. 2004. Fish to 2020 supply and demand in changing global markets. International Food Policy Research Institute, Washington, D. C.

		Total consumption (kg/capita/year)				Annual Growth rate (percent)	
			Actual		Projected	Actual	Projected
Fastest growth	Region	1973	1985	1997	2020	1985-97	1997–2020
	China	5.5	8.1	26.5	35.9	10.4	1.3
	Southeast Asia	17.6	19.8	23.0	25.8	1.3	0.5
	India	3.1	3.6	4.7	5.8	2.3	0.9
	Other South Asia	6.2	5.4	6.0	6.1	0.9	0.1
	Latin America	7.0	9.0	7.8	8.6	-1.2	0.4
	West Asia and North						
	Africa	3.4	6.2	6.2	6.4	0.0	0.2
	Sub-Saharan Africa	9.0	9.2	6.7	6.6	-2.6	0.0
Highest	United States	13.5	18.5	19.7	19.7	0.5	0.0
	Japan	70.2	61.5	62.6	60.2	0.2	-0.2
	European Union 15	18.2	20.3	23.6	23.7	1.3	0.0
	Eastern Europe and						
	former Soviet Union	20.3	22.7	10.6	11.6	-6.1	0.4
	Other developed						
Most dependent	countries	11.2	13.4	14.7	14.0	0.8	-0.2
	Developing world	7.3	9.0	14.0	16.2	3.8	0.6
Most dependent	Developing world						
	excluding China	8.1	9.4	9.2	9.9	-0.1	0.3
	Developed world	22.6	24.3	21.7	21.5	-1.0	0.0
	World	11.6	12.8	15.7	17.1	1.7	0.4
	<u> </u>						


Table 4.6 Total per capita consumption of food fish, 1973–97 and 2020

Sources: Actual data were calculated by authors from FAO 2002c; projections for 2020 are from the baseline scenario of IFPRI's IMPACT model (July 2002).

Notes: Actual data are three-year averages centered on 1973, 1985, and 1997, respectively.

Complexities...global drivers, local variability

R

Data sources: Kim et al., 2000; Semang et al., 2000; UCSF AIDS Research Group, USA & UNAIDS epidemiology fact sheets

- partnership • excellence • growth

Complexities...

Drivers interact - and can be positive

partnership • excellence • growth

How will climate change impact fishery systems?

What else drives change in fisheries?

How can science guide policy and management at different scales?

indicator-based approaches modeling scenarios

Vulnerability to climate change: Global assessment (Allison et al, 2009)

Vulnerability

'the degree to which a system is susceptible to climate change, and is unable to cope with the negative effects of climate change' (IPCC, 2007)

Which countries are most vulnerable to the potential impacts of climate change on fisheries?

Vulnerability analysis framework

(derived from IPCC 2001)

EXPOSURE

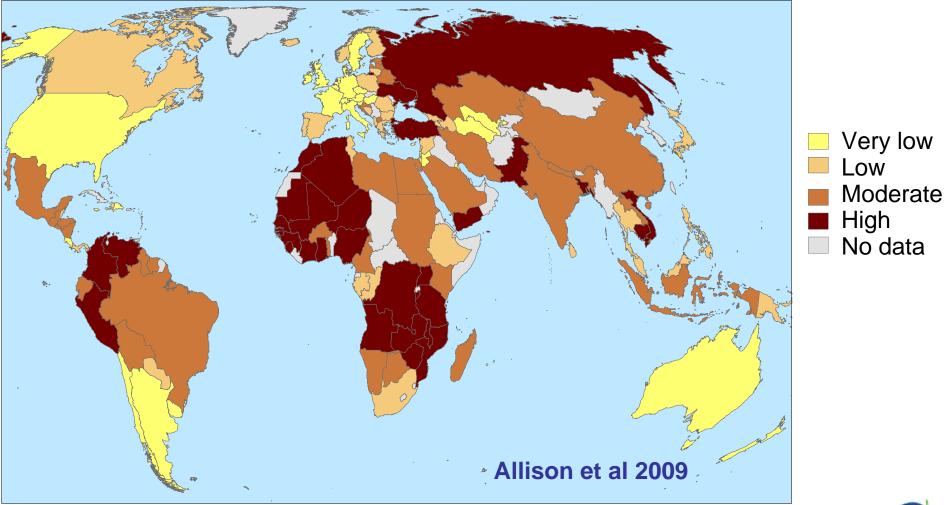
Nature and degree to which countries are *exposed* to predicted climate change

SENSITIVITY

Degree to which economies & people are likely to be affected by fisheryrelated changes

POTENTIAL IMPACTS

All impacts that may occur without taking into account planned adaptation


ADAPTIVE CAPACITY

Abilities and resources to cope with climate-related changes

VULNERABILITY

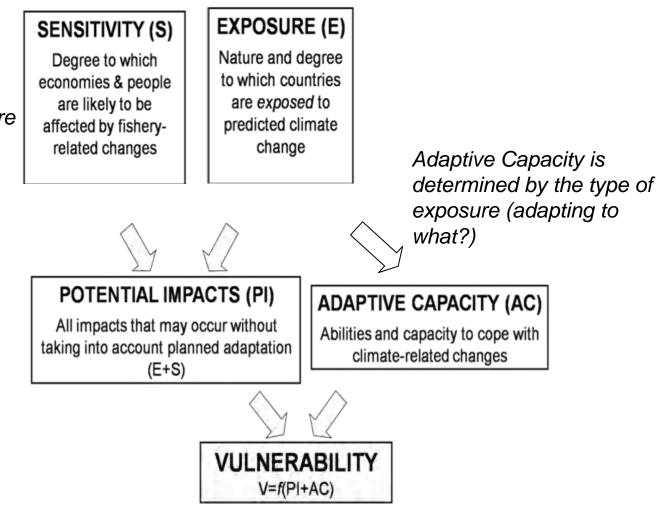
Relative vulnerability of national econonomies to potential impact of CC on their fisheries

2/3 of most vulnerable are Least Developed Countries

partnership • excellence • growth

Diagnosing Vulnerability: country level

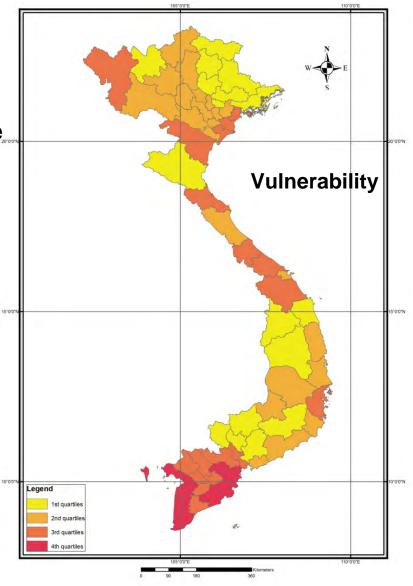
- Vietnam case study (World Bank, QUEST_fish)
- At the national scale the unit of analysis is the province:
 - Which provinces are more vulnerable to the potential impacts of climate change on their aquaculture sector?
 - What do we mean by vulnerability in this context?



Conceptual framework adapted to Vietnam aquaculture context

Sensitivity conceptualized as dependency of a province on the aquaculture sector

Adapted from Allison et al. 2009, QUEST_Fish project conceptual framework

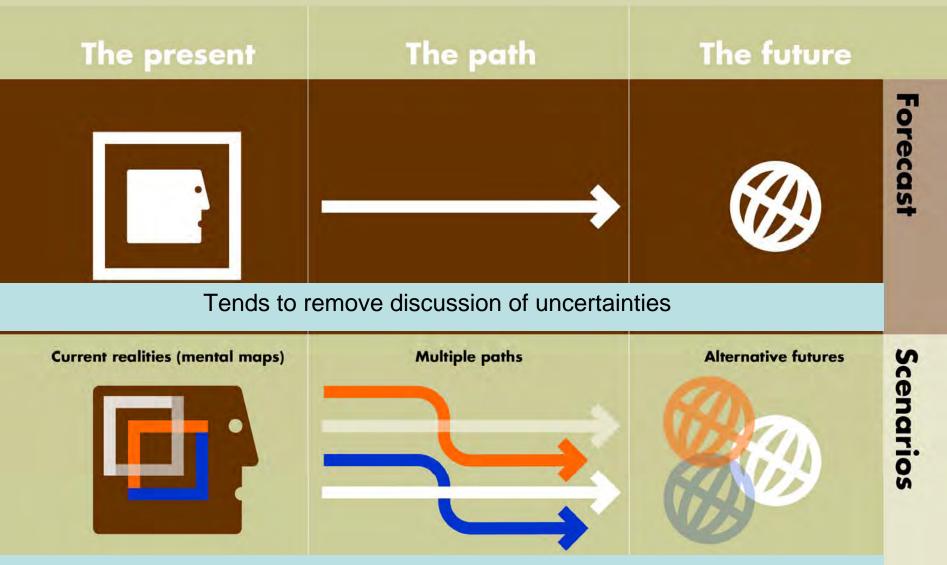


Vulnerability of aquaculture in Vietnam

Dominated by coastal shrimp ponds And catfish (Pangassius) in Mekong Delta

-Storms, sea level rise, temperature increase...

Province Name	Region	Vulnerability Index
Sóc Trăng	Mekong River Delta	100.0
Cà Mau	Mekong River Delta	91.7
Kiên Giang	Mekong River Delta	87.3
Bến Tre	Mekong River Delta	77.9
Trà Vinh	Mekong River Delta	77.7
Tiền Giang	Mekong River Delta	76.7
Thái Bình	Red River Delta	69.7
	North Central area &	
Hà Tĩnh	Central coastal area	61.6
Cần Thơ	Mekong River Delta	61.2
Bạc Liêu	Mekong River Delta	60.2


Potential Impacts in the Mekong River Delta

Areas subjected to increments of maximum flooding depths during the rainy season (for 50-cm SLR scenario), superimposed with catfish pond areas in An Giang, Dong Thap & Can Tho provinces

<i>~</i>							
	Increment of max flood		Affected catfish pond area, ha (%)				
	depth (m)	An Giang		Dong Thap		Can Tho	
	<0.5						
	0.5-1						
	1-1.5			178	13%	273	26%
	1.5-2	163	8%	89	6%	509	48%
	2-2.5	1,236	62%	211	15%	286	27%
And	2.5-3	394	20%	497	36%		
	> 3	210	10%	402	29%		
Cattish ponds, An Giang	Total	2,003	100%	1,376	100%	1,068	100
Catfish ponds, Dong Thap							%
Catfish ponds, Can Tho							
✓ Increment of max flood depth (m) <0.5 0.5-1 1.1.5 2.2.5 2.5-3 3.9.29	[Dr. Kam S	Suan F	Pheng		Ċ	

Scenarios to explore alternative futures (Quest_Fish, U.K. NERC)

Critical Uncertainties addressed

Adapted from Shell 2050 vision

Scenarios West Africa

- Senegal, Ghana and Mauritania (ZMT/GTZ/IDRC)
- •In total 27 experts surveyed to identify major drivers of change
- Scenario building workshop 13th to 16th of April 2010
- •Debates about possible futures of fisheries and discussed critical issues and uncertainties faced by the sector
- •Identification of strategies that could address uncertainties related to drivers including climate change

Scenarios West Africa

Sub-region Food Security Focus Poverty reduction objective Meeting nutritional requirements Regional integration			Markets	 "Fast" Development triggered by sub regional markets High sub-regional demand Sub-regional competitiveness Harmonization of fishing policies 		
Extensive Small Holders	Aquac	ulture		poneies	Medium and Large	
"Local" Develog global markets	oment triggered by			"Fast" Development trig global markets	gged by	
entrepreneurs Valuing local reproducts for exp	sources, value-added	Globaliz Certifica Import/	tion	Modernization, technolo Fast increase in product Foreign investments International cooperatio Renewable energy biofu	ion	

Scenarios West Africa: youth and arts

• Youth from Kayar (Senegal) fishing community involved in identifying drivers of change through visual arts (with NGO Mundis Maris)

•Important to involve marginal group such as youth in discussions about vulnerability to climate change and future of the sector

Synthesis

- Climate change is not a distraction from strengthening fisheries governance
- Most adaptive responses to climate change have 'no regrets' for both environment and development
- The ICES/PICES/FAO group has a large and impressive toolkit with which to advise decision-makers on responses to climate change

Thank you Marie Caroline-Badjeck Kam Suan Pheng Quest_Fish team Partners in West Africa and Vietnam UK NERC, World Bank, GTZ FAO/PacFA

