Science, Service, Stewardship



#### Incorporating climate variability into the assessment of Gulf of Alaska Pacific cod

Teresa A'mar NOAA - Alaska Fisheries Science Center 27 April 2010 NOAA FISHERIES SERVICE

# **Objectives**

- Develop an operating model similar to the Gulf of Alaska (GOA) Pacific cod stock assessment model
- Link local- and basin-scale environmental indices to recruitment
- Compare recruitment, stock status, biological reference points

# **GOA** Pacific cod

- The stock
  - Movement between the EBS and AI
- Spawning
  - Late winter
- Fisheries
  - 3 fishing seasons, 4 gear types
- Management
  - ABC is apportioned by season
  - MSC-certified in January 2010

#### **GULF OF ALASKA REPORTING AREAS**



#### **Catch (metric tonnes)**



#### 2009 Central Gulf Inshore Pacific Cod Catch by Week and Gear



## The stock assessment model

- Statistical catch-at-age population dynamics model – Stock Synthesis
- No stock-recruitment relationship
- Fit to fisheries and survey data
- Estimates time-varying catchability, selectivity, growth parameters
- Estimates stock status and biological reference points

# The operating model

- Less complex than the stock assessment model
  - Fewer time-varying selectivity and catchability parameters
  - No change in growth over time
- Fits to the stock assessment data
- Additional data from an annual nearshore survey
  - Provides information on age-0 recruitment

## Comparison – age-0 recruitment



### Comparison – spawning biomass



Female spawning biomass (mt)

#### Comparison – biological reference points

|                       | 2009 stock<br>assessment | Operating<br>model |
|-----------------------|--------------------------|--------------------|
| Total biomass in 2010 | 738 300                  | 809 200            |
| SB in 2010            | 117 600                  | 182 300            |
| Unfished equil. SB    | 291 500                  | 465 600            |
| SB <sub>40%</sub>     | 116 600                  | 186 200            |
| Average recruitment   | 262 million              | 470 million        |



#### From Stabeno et al. 2004 Continental Shelf Research

## The impacts of climate

- Climate influences on GOA Pacific cod may be similar to those on walleye pollock
- Less data available for GOA Pacific cod – How to validate hypotheses
- Start with studies on GOA walleye pollock
- Include links hypothesized in Doyle et al. 2009 Prog. Ocean.
  - Larval abundance and winter/spring environmental indices for 1981 through 2003

#### Environmental effects on pollock recruitment

| Mechanism                                                                                                 | Index                                                                                                            | Season            | Source/Citation                                                          |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|--|
| Primary production                                                                                        | Precipitation                                                                                                    | Winter            | Bailey et al. 2005                                                       |  |
| Primary production                                                                                        | Wind mixing energy                                                                                               | Winter            | Bailey et al. 2005                                                       |  |
| Concentration of prey and larvae                                                                          | Eddy formation due to freshwater runoff and precipitation                                                        | Spring            | Kendall et al. 1996                                                      |  |
| Concentration of prey and larvae                                                                          | Upwelling and transport –<br>Wind mixing energy                                                                  | Spring            | Kendall et al. 1996                                                      |  |
| Stage duration                                                                                            | Water temperature                                                                                                | Spring            | Kendall et al. 1996                                                      |  |
| Water column turbulence,<br>eddies, transport, advection,<br>upwelling                                    | <i>Sr column turbulence,</i><br><i>Precipitation and</i><br><i>freshwater runoff</i><br><i>freshwater runoff</i> |                   | Ciannelli et al. 2004,<br>Bailey et al. 2005                             |  |
| Water column turbulence,<br>eddies, transport, advection,<br>upwelling                                    | Wind mixing energy                                                                                               | Spring,<br>Summer | Bailey and Macklin 1994,<br>Ciannelli et al. 2004,<br>Bailey et al. 2005 |  |
| Temperatures affect amount<br>of prey and amount of<br>pelagic habitat for juveniles<br>and age-0 animals | Water temperature (may interact with other environmental factors)                                                | Summer,<br>Autumn | Bailey 2000,<br>Bailey et al. 2005                                       |  |

#### Seasonal climate indices for 1971 - 2009

- Basin-scale indices
  - Pacific Decadal Oscillation (PDO)
  - North Pacific Index (NP)
  - Arctic Oscillation Index (AO)
  - East Pacific-North Pacific pattern (EP-NP)
  - Multivariate El Niño-Southern Oscillation Index (MEI)
- Local-scale indices
  - Precipitation
  - Wind mixing energy
  - Sea surface temperature
- Correlation between some indices

**Normalized climate indices - Autumn** 



Year

#### Linking climate and recruitment

$$R_{y} = \overline{R}_{0} \exp\left(\sum_{i=1}^{n} a_{i} I_{i,y}\right) \exp\left(\varepsilon_{y}\right)$$

- Account for some of the process error using the environmental indices
- The operating models incorporate climate forcing on age-0 recruitment
  - Model selection using AIC

# **Preliminary results**

- AIC: None of the environmental forcing models fit better than the model without environment
- Models which included Autumn SST had lower AIC
- Environmental model with lowest AIC
  - Autumn SST
    - -0.152 (0.044)
  - Autumn precipitation
    - -0.142 (0.050)

### Process error and environment



Age-0 recruits (in millions)

#### Comparison – biological reference points

|                       | 2009 stock<br>assessment | Operating<br>model (env) |
|-----------------------|--------------------------|--------------------------|
| Total biomass in 2010 | 738 300                  | 725 100                  |
| SB in 2010            | 117 600                  | 169 400                  |
| Unfished equil. SB    | 291 500                  | 453 300                  |
| SB <sub>40%</sub>     | 116 600                  | 181 300                  |
| Average recruitment   | 262 million              | 458 million              |

## Next steps

- Continue this work
  - Refine recruitment estimation for models with no environmental forcing
  - Explore additional environment-recruitment hypotheses
- Compare the results with Doyle (currently updating data through 2008)

## Acknowledgments

- Grant Thompson, NOAA AFSC
- André Punt, UW SAFS
- Sandra Lowe, NOAA AFSC
- Jeff Napp, NOAA AFSC
- Nicholas Sagalkin, ADF&G
- Carol Ladd, NOAA PMEL

## Comparison – NMFS survey



Normalized climate indices - Autumn



Year

### Index correlations

| Autumn | PDO    | NPI    | AOI    | EP-NP | MEI   | precip | wme    |
|--------|--------|--------|--------|-------|-------|--------|--------|
| NPI    | -0.540 | _      | -      | -     | -     | -      | -      |
| ΑΟΙ    | -0.384 | 0.647  | -      | -     | -     | -      | -      |
| EP-NP  | 0.685  | -0.373 | -0.201 | -     | -     | -      | -      |
| MEI    | 0.533  | -0.137 | -0.053 | 0.481 | -     | -      | -      |
| precip | 0.207  | -0.613 | -0.381 | 0.295 | 0.084 | -      | -      |
| wme    | 0.001  | -0.043 | -0.015 | 0.018 | 0.070 | -0.202 | _      |
| sst    | 0.301  | -0.242 | -0.106 | 0.187 | 0.046 | 0.032  | -0.258 |