Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to the 18.6-year nodal tidal cycle

Satoshi Osafune & Ichiro Yasuda (Ocean Research Institute, University of Tokyo, Japan)

Introduction

 Bidecadal oscillation of AOU (apparent oxygen utilization) in the intermediate layer in Oyashio area
 (Ono et al.,2001)

Correlated with NPI
 ...Atmospheric forcing?
 ...not outcrop

The 18.6-year period nodal tide

- The 18.6-year period nodal tidal cycle
 - ... diurnal tide amplitude is modulated 20 %

(Ono et al., 2001)

Investigate the relation between the intermediate water variation and the nodal tide

The intermediate water formation

and tidal mixing

- East Kamchatska Current
- Dense Shelf Water
- Okhotsk Sea Mode Water

Vertical mixing induced by the diurnal tide around the Kuril Islands is important --- direct effect

Wakamura et al., 2004)

The nodal tide may influence the intermediate waters around this area

Data and Method

- World Ocean
 Database 2001
- Standard level data
- Linearly interpolated to the density surfaces
- Average in 5 years (between 2 years before and after)

Oyashio

black curves:
<18.6-y curve + trend>
... fitted by weighted
least square

When the diurnal tide is strong, in the intermediate layer ...

- AOU is low (water is young)
- Potential temperature is low
- Thickness is large

Okhotsk Sea Mode Water

When the diurnal tide is strong, in the intermediate layer ...

- AOU is low (water is young)
- Potential temperature is high
- Thickness is large

Midterm Summary

When the diurnal tide is strong, in the intermediate waters...

	Oyashio	Upstream Oyashio	OSMW
AOU	low	(not clear)	low
Т	cool	cool	warm
Thickness	thick	thick	thick

- AOU and thickness variations indicate that the intermediate water formation rate is increased.
- Why temperature variations are opposite between Pacific side and the Okhotsk Sea?

Sea Surface Salinity Anomaly

average of anomalies from long term monthly mean

When the diurnal tide is strong, SSS is high. This possibly change the DSW formation.

- High S = High T, on an isopycnal surface
- Need less cooling to sink > volume ↑

Mixing Ratio of OSMW in the Upstream Oyashio water

Assumption:

U-OY water is produced by the isopycnal mixing between EKC and OSMW

Mixing Ratio

$$R = rac{ heta_{EKC} - heta_{U-OY}}{ heta_{EKC} - heta_{OSMW}}$$

When the diurnal tide is strong, the Mixing Ratio is high.

Large outflow of OSMW cool the Pacific water.

<== OSMW is colder than the Pacific water even in strong tide / warm OSMW period

Summary & Possible Mechanism

- We found bidecadal water variations in the northwestern subarctic Pacific and the Okhotsk Sea.
- These temporal variations are synchronized with the 18.6year period nodal tidal cycle.
- This could be explained by the nodal modification of the vertical mixing around the Kuril Straits.

All Areas : low AOU thick intermediate layer

END