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3.1.2. California coast-wide: Pt. Arena to the Channel Islands
The expanded survey effort in 2004 allowed us to map krill hot-

spots between Cape Mendocino and Point Conception using
5 years of data (Fig. 5). Between Cape Mendocino and Pont Arena
to the south are two closely spaced locations of elevated krill con-
centrations (1; Table 2, Fig. 5), but these are too small to be consid-
ered hotspots. South of this was a medium inshore hotspot (2) off
Bodega Bay, north of Point Reyes (Table 2, Fig. 5). This is centered
(38.3 N, !123.2 W) 20 km east of Bodega Head, and11 km, 26 km,
and 48 km, respectively, from the 200 m, 1000 m and 2000 m iso-
baths. Within the Gulf of Farallones and Monterey Bay the previ-
ously detected hotspots B, C and D are found in identical
locations (labeled 3–5; Figs. 4 and 5), but varied slightly in their

mean centers (Tables 1 and 2). These results indicate that the cen-
tral California krill hotspots based on nine survey years were also
identified using 5 years of data.

It is important to note that the bathymetry south of Monterey
Bay is quite different than that to the north, particularly with re-
spect to the 200 m isobath. South of Monterey Bay the 200 m iso-
bath runs southeast within a few kilometers of the coastline (Fig. 5)
whereas in the Gulf of the Farallones it is located 20–60 km off-
shore. South of Monterey Bay along the Big Sur coast, two portions
of the largest hotspot detected are located on the relatively wide
shelf extending between the 200 and 1000 m isobaths over the
Santa Lucia Bank (Table 2, Fig. 5, labeled 6). The northern edge of
this location is bounded by Sur and Lucia Canyons. The first portion

Table 1
Summary of krill hotspots (ID, Geographic name, Location) identified in the central California region, May–June, 2000–2009 (see Fig. 4). Dist. is distance to feature (isobath, coast)
in km; values in parentheses indicate (!) inshore and (+) offshore. Ref. land point is reference to nearest land on California coast or island.

ID Name Mean center Area, km2 Dist. 200 m Dist. 1000 m Dist. 2000 m Dist. Coastline Ref. land point

A Cordell Bank 38.0 N, !123.4 W 200 7(+) 12.5(+) 18(+) 50(!) Pt. Reyes Peninsula
B Gulf of Farallones 37.5 N, !122.9 W 890 0 12.5(+) 35(+) 53(!) Half Moon Bay
C San Mateo 37.0 N, !122.6 W 671 0 12.5(+) 32(+) 38(!) Año Nuevo Island
D Monterey Bay 36.7 N, !122.0 W 578 5(!) 0 9 23(!) Moss landing

Mean ± SD 584.7 ± 287 3 ± 3 9 ± 6 23 ± 12 41 ± 13

Fig. 5. Krill hotspots California coast-wide during May–June, 2004–2009. Percent utilization distributions were estimated and mapped using kernel density interpolation;
regions containing dense krill concentrations are labeled 1–10. Depth contours are the 200 m, 1000 m and 2000 m isobaths respectively. See Table 2 for additional
information on labeled krill hotspots.
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where the 1000 m isobath is along the California coast and
includes the shelf and shelf-break habitat. We used cross-correla-
tions to examine how the association between Ekman transport
and krill vary by increasing latitudinal distance (Legendre and
Legendre, 1998). To accomplish this we lagged (lag size is 0.2! bins
of latitude !25 km) krill against Ekman transport and plotted the
resulting correlogram from "15 lags to +15 lags (a total 350 km
in either direction). Data were de-trended prior to cross-correla-
tion analysis and significance per lag was determined at the 95%
confidence interval.

3. Results

3.1. Identification and location of krill hotspots

3.1.1. ‘Core’ area: Cordell Bank (38!N) to Monterey Bay (36.5!N)
Utilization distributions for the core area averaged over

9 years indicated four hotspots within the central California area
(labeled A–D in Fig. 4, Table 1). One hotspot is located approxi-
mately 50 km due west of Pt. Reyes peninsula, centered on Cor-
dell Bank (38!N, 123.4!W, labeled A in Fig. 4). The center of this
location (38!N, 123.4!W) is 7 km, 12.5 km and 18 km east of the
200 m, 1000 m and 2000 m isobaths, respectively. Inspection of
the 200 m isobath, indicates that the unique twist in bathymetry

may facilitate krill concentration here (Fig. 4). The southwestern
edge of Cordell Bank forms the beginning of the Farallon Escarp-
ment, an area of steep bathymetric change and krill hotspot B,
located on the shelf-break at the western edge of the Gulf of
the Farallones. The center (37.5!N, 122.9!W) of B is 53 km from
the coast, directly over the 200 m isobath and 11 km and
35 km, respectively, from the 1000 m and 2000 m isobaths. On
the southern edge of B, lies Pioneer submarine canyon, which bi-
sects hotspots B and C (Fig. 4). Both the Pioneer and the Ascen-
sion canyon systems have previously been described as hotspots
for shortbelly rockfish (Sebastes jordani), an important krill-
predator and key prey of salmon, seabirds and marine mammals
(Chess et al., 1988; Ralston et al., 2003). Hotspot C has a NW
orientation parallel to the coast, and is centered on the 200 m
isobath. Its center (37!N, 122.6 W) is 38 km from Año Nuevo
on the coast and 12.5 km and 32 km, respectively, from the
1000 m and 2000 m isobaths (Fig. 4). The southeastern edge of
this hotspot is associated with Ascension submarine canyon
and forms a boundary with Monterey submarine canyon, the
location of hotspot D (Fig. 4). Hotspot D is positioned over the
1000 m isobath with its center (36.7!N, 122.0 W) 23 km from
Moss Landing and 5 km and 9 km, respectively, from the
1000 m and 2000 m isobaths (Fig. 4). Monterey submarine can-
yon is a well-known location of large numbers of krill and their
predators (Marinovic et al., 2002; Croll et al., 2005).

Fig. 4. Krill hotspots off central California, during May–June, 2000–2009. Percent utilization distributions were estimated and mapped using kernel density interpolation;
regions containing dense krill concentrations are labeled A–D. See Table 1 for additional information on labeled krill hotspots.
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where the 1000 m isobath is along the California coast and
includes the shelf and shelf-break habitat. We used cross-correla-
tions to examine how the association between Ekman transport
and krill vary by increasing latitudinal distance (Legendre and
Legendre, 1998). To accomplish this we lagged (lag size is 0.2! bins
of latitude !25 km) krill against Ekman transport and plotted the
resulting correlogram from "15 lags to +15 lags (a total 350 km
in either direction). Data were de-trended prior to cross-correla-
tion analysis and significance per lag was determined at the 95%
confidence interval.

3. Results

3.1. Identification and location of krill hotspots

3.1.1. ‘Core’ area: Cordell Bank (38!N) to Monterey Bay (36.5!N)
Utilization distributions for the core area averaged over

9 years indicated four hotspots within the central California area
(labeled A–D in Fig. 4, Table 1). One hotspot is located approxi-
mately 50 km due west of Pt. Reyes peninsula, centered on Cor-
dell Bank (38!N, 123.4!W, labeled A in Fig. 4). The center of this
location (38!N, 123.4!W) is 7 km, 12.5 km and 18 km east of the
200 m, 1000 m and 2000 m isobaths, respectively. Inspection of
the 200 m isobath, indicates that the unique twist in bathymetry

may facilitate krill concentration here (Fig. 4). The southwestern
edge of Cordell Bank forms the beginning of the Farallon Escarp-
ment, an area of steep bathymetric change and krill hotspot B,
located on the shelf-break at the western edge of the Gulf of
the Farallones. The center (37.5!N, 122.9!W) of B is 53 km from
the coast, directly over the 200 m isobath and 11 km and
35 km, respectively, from the 1000 m and 2000 m isobaths. On
the southern edge of B, lies Pioneer submarine canyon, which bi-
sects hotspots B and C (Fig. 4). Both the Pioneer and the Ascen-
sion canyon systems have previously been described as hotspots
for shortbelly rockfish (Sebastes jordani), an important krill-
predator and key prey of salmon, seabirds and marine mammals
(Chess et al., 1988; Ralston et al., 2003). Hotspot C has a NW
orientation parallel to the coast, and is centered on the 200 m
isobath. Its center (37!N, 122.6 W) is 38 km from Año Nuevo
on the coast and 12.5 km and 32 km, respectively, from the
1000 m and 2000 m isobaths (Fig. 4). The southeastern edge of
this hotspot is associated with Ascension submarine canyon
and forms a boundary with Monterey submarine canyon, the
location of hotspot D (Fig. 4). Hotspot D is positioned over the
1000 m isobath with its center (36.7!N, 122.0 W) 23 km from
Moss Landing and 5 km and 9 km, respectively, from the
1000 m and 2000 m isobaths (Fig. 4). Monterey submarine can-
yon is a well-known location of large numbers of krill and their
predators (Marinovic et al., 2002; Croll et al., 2005).

Fig. 4. Krill hotspots off central California, during May–June, 2000–2009. Percent utilization distributions were estimated and mapped using kernel density interpolation;
regions containing dense krill concentrations are labeled A–D. See Table 1 for additional information on labeled krill hotspots.
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at small lags to the north and south (!2 to +2, "100 km; Fig. 7D),
but were strongly out of phase at larger lags (Fig. 7D).

4. Discussion

In the CCS, krill are of great interest because a large amount of
energy flows through them to upper trophic levels, particularly to
commercially important species (Batchelder et al., 2002; Field
et al., 2006). Therefore, describing description of the spatial organi-
zation of krill on relatively large spatio-temporal scales is war-
ranted for understanding and managing living marine resources
of the California Current ecosystem. This study builds on the classic
work of Brinton (1962, 1976), who developed a geographic atlas of
krill to establish broad scale patterns of krill abundance,

distribution and reproductive behavior in relation to oceanographic
and climatic conditions in the CCS and elsewhere in the North
Pacific. Specifically, this study focused on indentifying zones of
elevated krill abundance at a previously unattainable resolution,
quantifying the orientation of these spatial patterns along the coast
and quantifying the spatial relationships between the long-term
mean of krill distribution and upwelling intensity.

Using nearly a decade of acoustic surveys we tested the hypoth-
esis of mesoscale (10s–100s of km) structuring of krill populations
in the southern to central-northern California Current. We quanti-
fied a climatology of krill abundance and distribution to resolve
spatial structuring and to identify and describe characteristics of
krill hotspots. Our study shows where krill are concentrated along
the California coast during typically the strongest periods of
upwelling in this environment (May–June; Rykaczewski and
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at small lags to the north and south (!2 to +2, "100 km; Fig. 7D),
but were strongly out of phase at larger lags (Fig. 7D).

4. Discussion

In the CCS, krill are of great interest because a large amount of
energy flows through them to upper trophic levels, particularly to
commercially important species (Batchelder et al., 2002; Field
et al., 2006). Therefore, describing description of the spatial organi-
zation of krill on relatively large spatio-temporal scales is war-
ranted for understanding and managing living marine resources
of the California Current ecosystem. This study builds on the classic
work of Brinton (1962, 1976), who developed a geographic atlas of
krill to establish broad scale patterns of krill abundance,

distribution and reproductive behavior in relation to oceanographic
and climatic conditions in the CCS and elsewhere in the North
Pacific. Specifically, this study focused on indentifying zones of
elevated krill abundance at a previously unattainable resolution,
quantifying the orientation of these spatial patterns along the coast
and quantifying the spatial relationships between the long-term
mean of krill distribution and upwelling intensity.

Using nearly a decade of acoustic surveys we tested the hypoth-
esis of mesoscale (10s–100s of km) structuring of krill populations
in the southern to central-northern California Current. We quanti-
fied a climatology of krill abundance and distribution to resolve
spatial structuring and to identify and describe characteristics of
krill hotspots. Our study shows where krill are concentrated along
the California coast during typically the strongest periods of
upwelling in this environment (May–June; Rykaczewski and
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krill abundance showing positive and significant associations at !1 to +1 lags (red bars) and disassociations or out of phase at larger lags (<!3 and +5).
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Conclusions	
  and	
  Future	
  Direc>ons	
  
Conclusions	
  
1.  Ver>cal	
  migra>on	
  to	
  surface	
  waters	
  results	
  in	
  a	
  more	
  offshore	
  distribu>on	
  of	
  

par>cle	
  hotspots.	
  
2.  The	
  model	
  represents	
  the	
  two	
  major	
  hotspots	
  observed	
  in	
  acous>c	
  data	
  
3.  Intense	
  Ekman	
  transport	
  appears	
  to	
  inhibit	
  hotspot	
  forma>on	
  to	
  the	
  North	
  of	
  

Point	
  Reyes	
  but	
  not	
  in	
  the	
  region	
  between	
  San	
  Francisco	
  and	
  Monterey	
  Bay.	
  
4.  Size	
  of	
  model	
  hotspots	
  generally	
  agree	
  with	
  the	
  acous>c	
  representa>ons	
  
	
  
Future	
  Direc>ons	
  
1.  Analysis	
  of	
  Hotspots	
  in	
  a	
  Lagrangian	
  sense.	
  	
  
2.	
  	
  Comparison	
  of	
  Interannual	
  variability	
  in	
  model	
  and	
  acous>cs	
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subroutine end_of_talk 
! An attempt to introduce levity to a talk based entirely on modeled results and 
! lacking a cool ending image of zooplankton nets being deployed from a ship at 
! sunset. 

 if ((QUESTIONS .eq. .TRUE.) .AND. (TIME .eq. TRUE)) then 
  print *, ‘I would be happy to answer any questions.’ 

 
 else if ((QUESTIONS .eq. .TRUE.)  .AND. (TIME .eq. .FALSE.)) then 
  print *, ‘Please contact me at dorman@berkeley.edu.’ 

 
 else if (QUESTIONS .eq. .FALSE.) then 
  print *, ‘Thanks for your attention and time.’ 

 
 end if 

end subroutine end_of_talk 
  


