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Introduction 
 
A little over a decade ago, Waldichuk (1990) 
reviewed the state of industrial and domestic 
pollution of the North Pacific and concluded that 
interfaces (e.g., air-water, water-sediment, 
shorelines) and coastal areas, especially those 
surrounded by dense population and industry, 
were most at risk.  His list of critical contaminants 
– hydrocarbons and polynuclear aromatic 
hydrocarbons (PAHs), organochlorine compounds, 
metals, radionuclides, and persistent solids – 
remains valid today.  
 
Although toxic effects of contaminants have long 
been known, it was only during the past decade 
that we have learned the myriad ways trace 
quantities of chemicals can produce subtle 
disruption to endocrine systems every bit as 
threatening to aquatic animals as outright toxicity 
(Colborn et al. 1996).  For this reason, 
Waldichuk’s priority contaminant issues – 
halogenated hydrocarbons and sewage – were well 
chosen.  During the past decade, expanded 
industry and increasing coastal populations have 
escalated the pressure on productive marginal seas 
(Fig. 1) – the very regions that are being counted 
on to provide even more protein for future 
populations.  For example, in 1998 an estimated 
two-thirds of the world’s population (3.6 billion) 
lived within 60 km of the coast (UNESCO 1998), 
and total population is increasing at about 77 
million per year (U.S. Census Bureau 2002).  In 
U.S.A., over 50% of the population lives in the 
narrow coastal fringe and that population is 
increasing by about 1.3 million per year (Culliton 
1998). 
 
In addition to chemical contaminants, these coastal 
seas are under onslaught from enhanced nutrient 

and sediment loadings, climate change, over-
fishing, habitat disruption and the introduction of 
exotic species.  For the most intensively utilized 
enclosed seas of East Asia, e.g., the South China 
Sea, projections are indeed grim (Morton and 
Blackmore 2001). 
 
Here we discuss the major threats human activities 
present to North Pacific marine ecosystems with 
chemical contamination as a central theme.  We 
discuss briefly concurrent issues of climate 
change, disruption of CNP (carbon, nitrogen, 
phosphorus) cycles, and predation, because these 
factors confound chemical contamination, both in 
terms of its effects and in the way chemical 
contaminants pass through marine systems.  It is 
not our intention to present a comprehensive 
review of the literature.  Rather, we highlight the 
contaminant issues facing the North Pacific, 
drawing suitable examples for the most part from 
literature of the last decade.  Finally, we propose 
the sorts of observations and research required to 
mobilize society to reverse its present course, 
which if unchecked, will lead to the yet further 
widespread destruction of coastal ecosystems. 

 
Fig. 1 The North Pacific Ocean, showing the 
density of human population near coastal seas and 
the importance of coastal seas for primary 
production, which, by inference, also represents 
secondary production. 



Pressures on North Pacific marine ecosystems 
 
Climate change 
 
Climate change poses several kinds of risk, 
including temperature rise through greenhouse gas 
forcing (IPCC 1995), alteration of the hydrological 
cycle (Dynesius and Nilsson 1994; Vörösmarty et 
al. 2001), increased exposure from ultraviolet 
radiation (Weatherhead and Morseth, 1998) and 
sea-level rise (Ledley et al. 1999). These sorts of 
change, which imply significant effects on aquatic 
systems and humans, are often difficult to detect at 
their early stages due to natural variability at time 
scales from years to decades to centuries (see, for 
example, Francis et al. 1998;  Hare and Mantua 
2000).   
 
Air temperature in the northern hemisphere has 
been anomalously high during the past decade 
(IPCC 1995), as have been the heat content and 
surface temperature of the North Pacific Ocean 
(Levitus et al. 2000;  Ma et al. 1995).  However, 
on both sides of the North Pacific, temperature 
anomalies are associated with El Niño – for 
example, sea-surface temperatures in northeastern 
China are lower during summer in El Niño years 
(Li 1989), whereas those in the eastern North 
Pacific are higher (Whitney and Freeland 1999).  
Similarly, the intrusion of Oyashio waters usually 
causes abnormally cold summers in the northern 
areas of Honshu, Japan, which, together with the 
import of nutrients, influences coastal fisheries 
(Sawada and Hayakawa 1997;  Sekine 1996);  and 
atmospheric warming and cooling drive short-term 
variation in sea surface temperature in the 
Japan/East Sea (Chu et al. 1998).  Sub-decadal 
signals in ocean temperature like these complicate 
the determination of any temperature trend 
associated with greenhouse gas (GHG) warming.  
Ocean warming and ocean-atmosphere disturbance 
can cause the large-scale re-distribution of species 
(see, for example, Di Tullio and Laws 1991;  Karl 
et al. 1995;  Saar 2000;  Schell 2000).  
Anadromous fish may be exceptionally vulnerable 
to temperature change because threshold 
temperatures in rivers, once passed, may eliminate 
spawning.  Model projections warn that 
temperature may increase sufficiently in the Fraser 
River within a few decades to put at risk the 

world’s largest wild salmon runs (Morrison et al. 
2002).   

Sea level rise (SLR) threatens all coastlines, but 
especially those with low gradient, poorly-bonded 
soils, high human population and land subsidence 
– conditions that frequently converge in deltas.  
Records suggest that a SLR of perhaps 10-30 cm 
has occurred during the past century (Anonymous 
2000;  Wang 1998) and a further 10-25 cm SLR is 
projected to occur over the next century.  Due to 
overpumping of groundwater and overloading by 
construction on deltas, the rate of relative SLR is 
even higher in critical locations like Tianjin on the 
old Yellow River Delta (24.5-50.0 mm/yr), the 
modern river delta (4.5-5.5 mm/yr), and the 
Shanghai area of the Yangtze River mouth (6.5-
11.0 mm/yr) (Wang 1996).  Assuming a SLR of 
30-100 cm in the next century and accounting for 
land subsidence, Liu et al. (1999) estimate that the 
coastline of the Bohai Sea will retreat by 50-70 km 
over the next century, involving a marine 
transgression of 10,000-11,500 km2, and perhaps 
as much as 16,000 km2 if storm surges are taken 
into account (Zhang and Wang 1994). 
 
The “aliasing” inherent in natural variability at 
decadal or longer time scales presents what is 
probably the greatest challenge to detecting recent 
trends in the ocean produced by human activities.  
During the last decade, regime shifts have been 
recognized as a pervasive manifestation of 
relatively abrupt physical and biological 
alterations to the upper Pacific Ocean (Hare and 
Mantua 2000).  For example, a restructuring of the 
mixed-layer depth in the mid to late 1970s  
(Fig. 2a) (Freeland et al. 1997) must have been 
accompanied by altered nutrient cycling with 
‘bottom-up’ consequences for the ecosystem.  At 
about the same time, it appears that anadromous 
fish recruitment was affected, probably due to 
changes in marine survival (Fig. 2b) (Welch et al. 
2000).  It has recently been recognized that, 
starting with nutrient supply, a large-scale 
ecosystem restructuring has occurred in the Bering 
Sea.  The associated change in organic carbon 
cycling was recorded by Bowhead whale baleen 
(Fig. 3) (Schell 2000) and other wide-spread 
systematic changes in food-web dynamics (Hunt et 
al. 1999;  Niebauer 1998;  Rugh et al. 1999;  Saar 
 



 
Fig. 2 a) The shallowing of the surface mixed 
layer at Ocean Station P observed after the regime 
shift of the mid-1970s (Freeland et al. 1997).   
b) Changes in survival at sea of Oregon and 
Keogh steelhead between 1960 and 1995, 
attributed partly to ocean climate conditions 
(Welch et al. 2000). 
 

 
Fig. 3 The change in carbon cycling in the 
Bering Sea as recorded by δ13C in bowhead whale 
baleen (Schell 2000). 
 
2000;  Stabeno and Overland 2001;  Stockwell et 
al. 2000).  The wide variety of physical and 
biological pathways implicated in regime shifts 
(Hare and Mantua 2000), has significant 
consequences for the transport and processing of 
contaminants both regionally and locally – 

especially for contaminants that concentrate and 
biomagnify in food-webs (e.g., Hg and 
organochlorines). 
 
Predation by humans 
 
Over the past decade there has been growing 
concern that ocean trophic structure can be 
affected by commercial fisheries.  Selective 
extraction of fish – referred to by Pauly et al. 
(1998; 2001) as ‘fishing down the food web’ – 
may lead to a global-scale reduction in marine 
trophic levels (Fig. 4a), which exerts its influence 
from the top down (Parsons 1996) (Fig. 4b). 
 

 
 
Fig. 4 a) The change in mean trophic level for 
the Canadian west coast between 1873 and 1996 
(Pauly et. al. 2001).  b) A schemetic showing how 
trophic structure in aquatic systems can be altered 
from the bottom-up or from the top-down (Parsons 
1992). 



All highly-prized species are vulnerable to this 
impact, but with increasing fishing pressure and 
dwindling stocks, less desirable species or smaller 
individuals become targets of commercial and 
private fisheries, and often, governments prolong 
un-economical practises which eventually lead to 
the demise of the resource (Ludwig et al. 1993). 
Destructive fishing methods (blast and cyanide 
fishing) widely practiced in Asian shelf waters 
(Morton and Blackmore 2001) exacerbate the 
problem of over-fishing and undermine the 
potential for recovery.  Driftnet and other “ghost” 
fisheries have well-known, but perhaps poorly-
quantified, effects on non-target species (Dayton 
1998).  
 
It is clear that fishing and contamination both 
provide stresses to coastal ecosystems, but the 
alteration of trophic structure – either from the top 
down by fishing, or the bottom up by climate 
change and coastal eutrophication – has special 
significance to chemicals that biomagnify (e.g., 
Hg and organochlorines). 
 
Exotic species 
 
Intentional and unintentional release of non-native 
species plague coastal seas and freshwater 
systems.  The partial list of introduced species for 
the Northeast Pacific (Table 1) illustrates the 
extent of the impact and demonstrates that, as in 
the case of commercial harvesting, aquatic trophic 
structure can be altered at almost every level. 

 
Harmful algal blooms 
 
Harmful algal blooms (HABs) pre-date human 
encroachment on marine systems.  However, there 
is concern that the incidence and severity of HABs 
have increased due to human activities such as 
coastal eutrophication and contaminant loading, 
and global change such as warming (see for 
example Goldberg 1995;  Morton and Blackmore 
2001;  Waldichuk 1990).  HABs can present a risk 
to fish (e.g., Heterosigma Khan et al. 1997) or to 
humans (e.g., PSP, amnesic poisoning:  Horner 
and Postel 1993;  IOC 2000) and no corner of the 
North Pacific may be considered immune from 
them (Horner et al. 1997;  Konovalova 1993; 
Morton and Blackmore 2001).  Although HAB-

forming algae are widespread, they may in some 
circumstances be classified as “exotics” since 
ship’s ballast water can transport them 
(Hallegraeff 1998).  In the context of 
contaminants, HABs can be considered either as a 
point of leverage where anthropogenic nutrient 
and trace metal loadings promote a process that 
produces toxic compounds, or as exotic species 
with the potential to alter trophic structure either 
by direct insertion into the food web or by removal 
of a trophic component through selective toxicity. 

 
Sediment discharge into coastal water 
 
Some 1 billion tonnes of fine sediments are 
supplied annually to the eastern coastline of China, 
brought mainly by the Yellow River from the 
Loess Plateau as a result of soil erosion from 
human activities since historical times (Wang 
1996).  Asian rivers have especially been affected 
by human activities, modern sediment loads being 
perhaps five times those prior to the development 
of agriculture (GESAMP 1993).  The consequence 
of these higher loadings is that affected coastal 
areas may become overly productive and either 
hypoxic or anoxic (Goolsby 2000).  Enhanced 
sediment fluxes also provide the means to 
scavenge and bury particle-reactive contaminants 
in deltas and on the adjacent continental shelves. 
Recent damming of the Yellow River, however, 
appears to have reversed the historical trend (Yang 
et al. 1998), with sediment supply now dwindling.  
The withdrawal of sediment loading alters the 
balance between sediment supply, wave re-
suspension, and coastal transport, with the 
potential consequence of accelerating the loss of 
deltaic areas already threatened by sea-level rise.  
 
Chemical contamination 
 
Hydrocarbons and polynuclear aromatic 
hydrocarbons 
 
Combustion and petrogenesis are the two major 
sources of hydrocarbons in the environment, and 
both can occur either naturally or through human 
activities (Yunker et al. 2000).  There have not 
been any major oil spills in the North Pacific since 
the Exxon Valdez incident in 1989, but the effects 
of that spill were devastating.  Marine organisms



Table 1 Non-native aquatic species present in Washington and British Columbia (source Anonymous, 
2001). 

 
Fish Invertebrates Aquatic Plants 

American shad Alosa sapidissima Varnish clam Nuttallia obscurata Japanese weed Sargassum muticum 
Grass carp Ctenopharyngodon 
idella 

Manila clam Tapes philippinarum Japanese eel grass Zostera japonica 
Lomentaria hakodatensis 

Striped bass Morone saxatilis Asian clam Corbicula fluminea Purple Loosestrife Lythrum salicaria 
Common carp Cyprinus carpio Soft-shell clam Mya arenaria Brazilian Elodea Egeria densa 
Goldfish Carassuis auratus Japanese trapezium Trapeziium 

liratum 
Parrotfeather Milfoil Myriophyllum 
aquaticum 

Largemouth bass Micropterus 
salmoides 

Japanese little neck clam 
Venerupis philippinarum 

Fanwort Cabomba caroliniana 

Smallmouth bass Micropterus 
dolomieui 

Pacific oyster Crassostrea gigas Eurasian Watermilfoil Myriophyllum 
spicatum 

Bluegill, Green sunfish Lepomis 
spp. 

Eastern oyster Crassostrea 
virginica 

Hydrilla Hydrilla verticillata 

Black Crappie Pomoxis spp. Japanese or green mussel 
Musculista senhousia 

Spartina/Cordgrasses Spartina 
alterniflora, anglica, patens 

Walleye Stizostedion vitreum Slipper shell Crepidula fornicata Yellow Iris Iris pseudacorus 
Yellow Perch Perca flavescens Mud snail Nassariuis 

obsoletus/Ilyanassa obsoleta 
Agar weed Gelidium vagum 

Channel Catfish Ictalurus spp. Eastern oyster drill Urosalpinx 
cinerea 

 

Flathead Catfish Pylodictis 
olivaris 

Japanese oyster drill Ceratostoma 
inornatum 

 

Black Catfish Brown Bullhead 
Ictalurus spp. 

Red beard sponge Microciona 
prolifera 

 

Northern Pike Esox spp. Boring sponge Cliona spp.  
Atlantic salmon Salmo salar Bowerbank’s halichondria 

Halichondria bowerbanki 
 

Brown trout Salmo trutta Asian copepod Pseudodiaptomus 
inopinus 

 

 Bivalve intestinal copepod 
Mytilicola orientalis 

 

 Mud worm Polydora ligni  
 Wood-boring gribble Limnoria 

tripunctata 
 

 Shipworm Teredo navalis  
 Green crab Carcinus maenas  

from barnacles to seals were killed, including 
about 250,000 sea birds (Piatt and Anderson 
1996).  Long-term effects include depressed 
populations and the lowered reproductive success 
of most of the oiled species, although in many 
cases it is difficult to distinguish between effects 
of the oil spill and those of decadal-scale 
environmental change.  For example, the 
unusually low flow of the Alaskan Coastal Current 
in the years following the spill may have 

contributed partly to the low murre population 
during that time (Piatt and Anderson 1996), and 
the number of seals killed by the spill is disputed, 
due to limited observations over their natural 
range (Hoover-Miller et al. 2001).  A definite link 
has been made in one case:  Brown pelicans that 
had been oiled, cleaned and released were marked 
and compared over the course of several years 
with marked control birds (Anderson et al. 1996). 
The oiled birds disappeared much more quickly 



than control birds, and they failed to reproduce, 
whereas the controls continued to behave 
normally.  
 
Lowered reproductive success of animals that have 
been exposed to oil is not surprising, given that 
PAHs are known endocrine-disrupters (Carls et al. 
1999).  Oil from the Exxon Valdez spill remained 
under the stones and mussel beds of nearby 
beaches five years after the spill (Spies et al. 
1996), although the sediments of the intertidal 
zone had lost their toxicity to oysters and 
amphipods after two years (Wolfe et al. 1996).   
 
Increasing pressure to find oil on continental 
shelves will probably increase the risk of 
hydrocarbon pollution to the North Pacific: 
Canada (British Columbia), the U.S.A. 
(California), Republic of Korea and Japan have all 
indicated that they intend either to begin or to 
expand exploration on the continental shelves of 
the Pacific, and drilling already occurs off Alaska 
and California and in the East China Sea.  The 
environmental risks posed by offshore exploration 
and production are well known.  They include the 
loss of hydrocarbons to the environment, 
smothering of benthos, sediment anoxia, 
destruction of benthic habitat, and the use of 
explosives (Patin 1999).  Oil released from 
offshore operations may contain other harmful 
components like the endocrine-disrupting 
alkylphenols (Lye 2000).  The generally high 
seismic activity of the Pacific Rim may further 
enhance the risk of spills (for comments regarding 
the South China Sea, see Zhang 1994).   
 
Despite the high media and public interest in 
catastrophic oil releases, the predominant sources 
of hydrocarbons to coastal seas are either land 
based (via rivers) or derive from intense shipping 
activity as exemplified by studies in Peter the 
Great Bay (Nemirovskaya 1999), around 
Vladivostock on the Russian coast of the Sea of 
Japan (Tkalin 1992), and the Georgia Basin of the 
British Columbia coast (Yunker et al. 2000). 
 
Halogenated hydrocarbons 
 
Organochlorine compounds (OCs) have been 
released to the global environment in a number of 
ways, including industrial applications (e.g., PCB), 

incineration (e.g., dioxins, furans), chlorination in 
pulp mills (dioxins, furans, PCBs) and pesticide 
application (e.g., DDT, HCH, chlordane).  As a 
result, for any coastal sea in the North Pacific 
there will be a long-range, global source 
component for these compounds which is then 
augmented to a lesser or greater degree by local 
sources, either through the air or through runoff. 
Waldichuk (1990) noted that winds in the North 
Pacific would tend to transport volatile 
contaminants from Asia eastward to North 
America.  Recent work has clarified this general 
transport scheme and provided further evidence of 
its efficacy in spreading volatile and particulate 
contaminants from Asia across the ocean to North 
America (Fig. 5) (Bailey et al. 2000;  Jaffe et al. 
1997;  Li et al. 2002;  Macdonald et al. 2000a; 
Wilkening et al. 2000).  
 
Despite bans or restrictions during the 1970s and 
1980s in most of the countries surrounding the 
North Pacific, PCBs, DDT and other 
organochlorine pesticides remain in soils and in 
aquatic environments.  In the latter, they 
biomagnify to especially high concentrations in 
apex feeders such as marine mammals (Muir et al. 
1999;  Ross et al. 2000).  In the early years 
following bans, the concentrations of PCBs and 
DDT decreased rapidly in the Pacific Ocean 
(Waldichuk 1990), but that seems no longer to be 
universally true.  For example, between the late 
1970s and early 1990s, there has been no trend in 
PCB concentration in particulate and dissolved 
fractions of San Francisco estuary water (Jarman 
et al. 1996).  According to Iwata et al. (1994a), the 
concentrations of DDT, PCBs, HCH and HCB 
(hexachlorobenzene) have not been decreasing 
rapidly in the Bering Sea, because atmospheric 
deposition exceeds the sedimentation rate.  
However, decreased atmospheric concentrations of 
HCH following the elimination of technical HCH 
use in China and India during the 1980s and 1990s 
(Li et al. 2002), have reversed the net exchange of 
α-HCH, such that the Bering Sea has now become 
a source to the atmosphere (Jantunen and 
Bidleman 1995).  The long-range atmospheric 
and/or oceanic transport of HCHs together with 
large changes in emissions have made them (i.e.  
α-, γ-, β-HCH) useful tracers of transport 
processes in the Bering Sea and into the Arctic 
Ocean (Li et al. 2002;  Rice and Shigaev 1997). 



 
Fig. 5 Trans-Pacific atmospheric transport from Asia to North America as shown by a) dust from the 
Gobi Desert (Wilkening et al. 2000), and b) back trajectories from an air monitoring site in Canada’s 
Yukon Territory (Bailey 2000 # 179). 

The Bering Sea illustrates that long-range 
transport together with physical and biological 
processes (Chernyak et al. 1996;  Hoekstra et al. 
2002;  Sokolova et al. 1995) can produce 
significant concentrations of pesticides in apex 
feeders far from local sources.  Furthermore, the 
animals themselves may then become significant 
vectors of OC contaminant transport as 
exemplified by anadromous fish in Alaska (Ewald 
et al. 1998). 
 
Local sources of OCs support high sediment 
concentrations in some locations.  For example, 
DDT and HCH in the sediments of Peter the Great 
Bay probably reflect a continuing local source of 
those contaminants near Vladivostok (Tkalin et al. 
2000), and high concentrations of DDT, DDD and 
DDE in the sediments of Lianyungang Harbour in 
China suggests continuing use of these compounds 

in local agriculture (Zhu and Tkalin 1994).  There 
appear to be a number of local sources of DDT in 
some areas of the South China Sea (probably local 
industry or illegal dumping), as evidenced by 
variability in the ratio of DDE/ ΣDDT in the 
sediments (Morton and Blackmore 2001).  
 
Marine mammals are particularly vulnerable to 
OCs due to biomagnification.  Whales (Aono et al. 
1997;  Hayteas and Duffield 2000;  Jarman et al. 
1996;  Ross et al. 2000), dolphins (Jarman et al. 
1996;  Minh et al. 2000), porpoises (Jarman et al. 
1996;  Minh et al. 2000;  Zhou et al. 1993), seals 
(Nakata et al. 1998), sea lions (Lee et al. 1996) 
and humans (Morton and Blackmore 2001) are all 
contaminated.  The degree of contamination and 
specific pollutants in each case depend on 
geographic location and trophic level.   
 



Temporal trends in the concentration of 
organochlorines in marine mammals also vary 
among species and with organochlorine type.  In 
Minke whales, the concentration of DDT is 
decreasing, while PCB concentration is not, 
suggesting a continuing source of them to the 
North Pacific (Aono et al. 1997).  The 
concentration of PCBs and other organochlorines 
in Killer whales varies with age and gender (Ross 
et al. 2000) and, off the coast of British Columbia 
and California, is generally higher than in dolphins 
and porpoises (Jarman et al. 1996).  British 
Columbia Killer whales (and seals) exhibit high 
concentrations of dioxins and furans (Jarman et al. 
1996;  Ross et al. 2000), but for these compounds, 
local sources (pulp mills) have clearly made a 
substantial contribution (Bright et al. 1999; 
Macdonald et al. 1992).  Elimination of chlorine 
bleach and pentachlorophenol- (PCP) 
contaminated feed stock after 1987 has led to 
substantial declines in PCDD/F concentrations in 
sediments and crabs (Yunker and Cretney 1996) 
and in seals (Fig. 6).  Source controls, which have 
all but eliminated the pulp mill PCDD/Fs, 
however, have made no inroads on the PCBs 
which derive predominantly from other sources – 
local, regional and global (Addison and Ross 
2000).   

Juvenile Pacific salmon accumulate 
immunosuppressive OCs as they develop in 
estuaries (Arkoosh et al. 1998), which may make 
them especially susceptible to the pathogens  

common in these environments. Sea birds are 
similarly affected.  At Port Alberni, on the west 
coast of Vancouver Island, Canada, fish-eating 
grebe and seaduck were heavily contaminated with 
dioxins and furans from a nearby pulp mill (Elliott 
and Martin 1998).  Those compounds also present 
the main pollution threat to Marbled murrelets 
along the British Columbia, Washington and 
California coasts.  Eggshell thinning due to 
organochlorine pesticides is no longer considered 
a threat to seabirds off California (Pyle et al. 
1999), and in herons the threat is mainly restricted 
to those that live near agricultural areas (Speich et 
al. 1992).  Amphipods, sea urchins, 
bioluminescent microbes (Long 2000) and squid 
(Shibata, pers. comm.;  Sato et al. 2000) also 
accumulate OCs although toxic effects are as yet 
unclear.  Oysters off Taiwan are so contaminated 
with DDT that there is a high lifetime risk of 
cancer for people who consume them (Han et al. 
2000).  The concentrations of HCH and PCB  
(Cl5-9) in squid livers correlate well with those in 
nearby sea water, lagged by 1-2 years, suggesting 
a reasonably dynamic equilibrium rather than 
progressive accumulation with age (Sato et al. 
2000). 
 
Metals 

The waters off Hong Kong (Parsons 1998) and the 
sediments of the Japan/East Sea (Shulkin and 
Bogdanova 1998;  Vaschenko et al. 1999), the 
South China Sea (Morton and Blackmore 2001)  
 

 
 
Fig. 6 An example of trend data from the west coast of North America showing PCB production 
(solid blue line) and TCDF discharge from Fraser basin pulp mills (solid red line) compared with residues 
in Harbour seals (Addison and Ross 2000) and in Harbour seal pups (blue circles, Calambokidis et al. 
1991).



and the Yellow Sea (Shao et al. 1995;  Yu et al. 
1996;  Zhang et al. 1998) are highly contaminated 
with metals, especially near farmed shrimp ponds 
(Cui et al. 1997), and the problem is increasing.  
Long-range transport of some metals (Pb:  Lin et 
al. 2000;  Cd:  Patterson and Duce 1991) from 
Asia has been observed in the North Pacific, and 
some particulate trace metals cross the shelf from 
the East China Sea to enrich the intermediate layer 
of the Kuroshio Current (Hung and Chan 1998).  
But the main effect of metal pollution remains 
close to the source.  A pronounced increase in 
anthropogenic lead loading to the Yangtze River 
during the 1980s and 1990s has been inferred from 
sediment cores collected from the East China Sea 
continental shelf (Huh and Chen 1999).  These 
trends probably reflect the rapid economic growth 
and the lack of waste control in China.  
Contaminant metals in the marginal seas derive 
mainly from untreated sewage and industrial 
wastes (Parsons 1998;  Shao et al. 1995) that 
either washes off the shore or enters rivers.  
Resuspension (Fichet et al. 1998) and deposition 
of dissolved and particulate matter by rain (Gao et 
al. 1997;  Zhang et al. 1999;  Zhang et al. 1992) 
are also major sources of metal pollution in Asian 
marginal seas. 
 
As a consequence of the sediment and water 
pollution, much of the marine life in Asian 
marginal seas exhibits metal contamination.  In 
Zhifu Bay in the Yellow Sea, for example, 
increased benthic pollution between 1986 and 
1998 caused a change in dominant species from 
non-pollutant-resistant echinoderms to pollutant-
resistant polychaetes (Zhang et al. 1998).  Oysters 
(Cheung and Wong 1992;  Han et al. 2000), 
scallops (Vaschenko et al. 1999) and fish (Parsons 
1998) are also contaminated.  
 
The shelves of the northwest coast of North 
America appear to be almost pristine compared to 
Asia (Macdonald and Pedersen 1991;  Naidu et al. 
1997).  However, metal contamination can 
certainly be identified in enclosed embayments 
(Flegal and Sañudo-Wilhelmy 1993;  Macdonald 
and Crecelius 1994;  Paulson et al. 1993;  Sañudo-
Wilhelmy and Flegal 1992).  
 
Of the metals, mercury and tributyltin (TBT) cause 
particular concern due to their toxicity and 

endocrine-disrupting characteristics.  Furthermore, 
mercury biomagnifies by factors of 1000-3000 
from particulate organic matter to apex predators 
(Atwell et al. 1998), and its rate of cycling in the 
global environment appears to have increased by 
perhaps a factor of three since pre-industrial times 
(Mason et al. 1994).  Mercury, therefore, provides 
a problem not unlike that of the OCs, in that the 
upper ocean has globally-enhanced mercury 
concentrations (Mason et al. 1994), which are then 
augmented locally (usually from land).  
Furthermore, enhanced global cycling together 
with biomagnification can create biotransport 
vectors (Zhang et al. 2001) as was shown for OCs 
(Ewald et al. 1998).  
 
Symptoms of Minimata disease were detected 
during the 1980s in fishermen who relied heavily 
on fish from the Songhua River in China, a river 
that had been polluted by mercury in the 1970s 
(Gao et al. 1991).  The intake of methyl mercury 
was estimated to be between 0.17-0.34 mg/day 
and the average mercury contents of the hair and 
urine were 13-58 and 10-33 times higher than 
normal, respectively.  In the Japan/East Sea the 
concentration of mercury is increasing in water, 
sediments and the tissues of molluscs (Luchsheva 
1995).  In the most affected area in Alekseev Bight 
in Peter the Great Bay, the concentration of 
mercury in molluscs exceeds pollution guidelines. 
Indo-Pacific humpbacked dolphins off the coast of 
Hong Kong also contain dangerous levels of 
mercury (Parsons 1998).  On the eastern side of 
the Pacific, problems arose during the 1960s, but 
the sources of mercury have since been controlled 
(Waldichuk 1990).  This is reflected in the 
sedimentary records of the Strait of Georgia and 
Puget Sound, Washington (Macdonald and 
Crecelius 1994).  The common sources of mercury 
(e.g., dental and medical offices, light industry 
(Nriagu and Pacyna 1988)) imply that municipal 
outfalls are probably important local conduits for 
this metal to coastal environments.  
 
Tributyltin is prevalent in the sediments, water and 
biota in the North Pacific and the South China Sea 
(Iwata et al. 1994b;  Morton and Blackmore 2001) 
but it is the manifestation of imposex in shellfish 
at extraordinarily low TBT concentrations  
(< 0.5 ng l-1, Ronis and Mason 1996) that has 
engendered the greatest concern in the literature. 



In 1989, the use of TBT to prevent biofouling on 
hulls was restricted to ships > 25 m long;  TBT is 
now found mainly in heavily-used ports, 
especially those with dry-dock facilities (Evans et 
al. 1995;  Morton and Blackmore 2001).  In two 
such areas - the Strait of Malacca and Tokyo Bay - 
the concentration of TBT in seawater is high 
enough to cause imposex in gastropods and 
damage to other marine life (Hashimoto et al. 
1998).  In areas with less ship traffic, TBT 
restrictions have been successful at reducing 
imposex in gastropods and shell-thickening in 
oysters (Evans et al. 1995).   
 
In British Columbia’s coastal waters there is some 
evidence that the gastropod population in the Strait 
of Georgia is recovering since TBT restrictions 
have been implemented (Tester et al. 1996).  
However, imposex in female whelks continues 
near Victoria, and in Vancouver Harbour there are 
still no animals to study.  Although TBT is highly 
toxic, its use persists on large ships (and probably 
illegally on many smaller boats) because of its 
effectiveness and the tremendous saving in fuel 
that it allows (Morton and Blackmore 2001).  A 
related compound, triphenyltin (TPT), has been 
detected in water and mussels from Osaka Bay, 
but levels appear to have declined between 1989 
and 1996 (Harino et al. 1999). 
 
Other bioactive metals may threaten marine life 
(Bruland et al. 1991;  Waldichuk 1990). 
Manganese and copper have been reported in 
snow geese off British Columbia and California 
(Hui et al. 1998).  Manganese can cause 
neurological damage in seabirds and copper can 
cause anemia (Hui et al. 1998).  The birds that 
feed off agricultural land in California are more 
contaminated than those that feed on British 
Columbia’s pastures and marshes, probably 
because agricultural fungicides and fertilizers 
contain both metals (Hui et al. 1998).  Edible 
seaweed in British Columbia and Japan is 
contaminated with arsenic, but the human health 
risk is unknown, because its bioavailability in 
seaweed has not been determined (van Netten et 
al. 2000).  
 
The Bering Sea is less polluted with metals than 
are Asian marginal seas and the coast of North 
America.  In contrast to the Yangtze River that 

feeds the East China Sea, the Anadyr River, the 
second-largest to flow into the Bering Sea, is not 
measurably contaminated with either metals or 
radionuclides (Alexander and Windom 1999).  
The concentrations of zinc, copper, cadmium and 
lead in Bering Sea fish (pollock, hake, whiting and 
mackerel) are low (Polak-Juszczak and Domagala 
1993) as are the concentrations of such metals in 
sediments (Naidu et al. 1997).  
 
Placer mining, tailings disposal and the collection 
of polymetallic nodules from the deep sea are 
likely to be sources of contaminant metals into the 
future.  Placer gold mining in Norton Sound in the 
northeastern Bering Sea from 1986 to 1990 
appears not to have affected the concentration of 
metals in King crabs because they were only in the 
area in the winter, which was the off-season for 
mining (Jewett 1999;  Jewett et al. 1999;  Jewett 
and Naidu 2000).   
 
The Rudnayu River discharges mining wastes into 
the Japan/East Sea from Russia contaminating 
coastal sediments with lead, cadmium, copper and 
zinc in a 25 km long plume southward of the 
river’s estuary (Shulkin and Bogdanova 1998).  
Disposal of metal-rich mine tailings in coastal 
fiords of British Columbia creates a combined 
impact from smothering and metal contamination, 
which may persist for decades due to instability of 
sub-sea tailings deposits (Burd et al. 2000). 
 
The technology for mining polymetallic nodules 
and crusts in the Pacific Ocean has advanced 
sufficiently to allow serious prospecting for large-
scale mining by Japan (Nakao 1995) and China 
(Xu et al. 1994).  Deep-sea mining of nodules 
would bring with it the risks of physical disruption 
to benthic habitats, spills of toxic leaching fluids 
and smothering by sediment plumes and 
degradable organic matter (Ahnert and Borowski 
2000).  
 
Radionuclides 
 
Waldichuk’s (1990) conclusion, that artificial 
radionuclides from atmospheric weapons testing 
posed little risk to marine environments in 1990, 
can be repeated with the comment that radio-decay 
will have further reduced inventories of the 
predominant radioactive contributors (137Cs, 90Sr – 



t½ ~30 years) by 20% over the past decade.  
However, in the early 1990s, it was revealed that 
the former Soviet Union had disposed of liquid 
and solid radioactive wastes at a number of sites 
including the Northwest Pacific (Yablokov 2001). 
Extensive studies during the 1990s concluded that, 
despite the size of the releases both in the Arctic 
and North Pacific, there was actually little 
radiological risk (Layton et al. 1997).  For 
example, Hong et al. (1999b) reported that the 
concentration of 239, 240Pu in zooplankton in the 
Bering Sea was similar to that of zooplankton 
found in the rest of the Pacific Ocean and 
represented long-range transport of radionuclides.  
In the Sea of Okhotsk, as of 1995, most of the 90Sr, 
137Cs and 138,139,140Pu was still in the water column 
(Pettersson et al. 2000).  The concentration of 
these elements was consistent with previous 
measurements, but the total inventory in water and 
sediments represented more radionuclides than 
expected from global fallout (Pettersson et al. 
2000).  Measurements of 239, 240Pu and 137Cs in 
fish, shellfish, cephalopods, crustaceans and algae 
in the Japan/East Sea and off the Pacific coast of 
Japan showed no evidence of pollution from 
dumping by Russia or the former U.S.S.R. 
(Yamada et al. 1999), even immediately after 
14GBq of liquid radioactive waste was dumped 
into the Japan/East Sea in October 1993 (Hong et 
al. 1999a).  The ratio of 239Pu/240Pu in the 
sediments was consistent with global fallout 
(Yamada et al. 1999).  
 
Persistent solids 
 
Waldichuk (1990) reported that entanglement by 
plastic driftnets, other fishing gear and other 
plastic objects, such as grocery bags, was 
estimated to be responsible for killing two million 
sea birds and 100,000 marine mammals each year. 
Entanglement was considered to be a particularly 
significant problem for endangered species.  There 
have not been many studies on the prevalence and 
effect of plastics in the North Pacific in the last ten 
years, but the research that is available supports 
the seriousness of the problem and demonstrates 
that plastics affect different species to different 
degrees.  Sea birds (Blight and Burger 1997;  
Robards et al. 1995) are particularly strongly 
affected, since they tend either to ingest the plastic 
or become entangled by it.  Benthic communities 

can be smothered by the plastics, which are slow 
to break down (Uneputty and Evans 1997).  
California sea lions, however, although many of 
them do become entangled in plastic, are seven 
times more likely to be shot than entangled, 
according to data from a rehabilitation centre in 
California (Goldstein et al. 1999). 
 
Domestic pollution 
 
Domestic pollution consists of sewage and some 
industrial wastes that end up in the municipal 
treatment system (from hospitals, dentists, 
photographic processors and other industries).  
Many of the industrial wastes are toxic, and some 
bioaccumulate or biomagnify.  Nutrients from 
sewage can cause eutrophication, bacterial 
pollution and harmful algal blooms, whereas other 
components are known to disrupt endocrine 
processes (Goldberg 1995;  Kramer and Giesy 
1995;  Shang et al. 1999).  Waldichuk (1990) 
described sewage-related problems in coastal 
British Columbia and commented that the situation 
was worse in Asia, where there was a much larger 
human population.  The impact of sewage 
discharge is site-specific, depending on, among 
other things, cumulative loadings, rate of coastal 
flushing and mechanism of discharge (e.g., deep, 
shallow, diffuse).  In western North America, 
untreated and secondarily-treated sewage is still 
discharged to coastal waters by some cities (e.g., 
Victoria and Vancouver) (Thomson et al. 1995), 
but upgrades are proceeding in many areas, and it 
seems likely that the impact of municipal outfalls 
on shallow coastal waters has been declining 
despite population increases.  Widely-distributed 
poorly-maintained septic systems continue to 
contaminate shorelines in many places, however. 
 
In the Asian marginal seas, domestic pollution is 
especially severe:  less than 10% of China’s 
domestic and industrial waste is treated before it 
flows into rivers or the ocean (Morton and 
Blackmore 2001).  The degree of nutrient 
pollution and eutrophication varies geographically 
(Ma et al. 1997).  In the Japan/East Sea, between 
1982 and 1995, domestic pollution of water and 
sediment increased, changing the availability of a 
substrate for barnacle larvae to settle on and 
causing an increased mortality of young barnacles 
and decreased growth rate where the temperature 



had risen above 18°C and dissolved oxygen 
concentrations were critically low (Silina and 
Ovsyannikova 2000).   
 
In Tokyo Bay, organic pollution is so severe that 
benthic organisms decline in summer when a 
thermocline is formed in the water column 
(Hisano and Hayase 1991).  Over a period of 15 
and 18 years respectively, Hirota (1979) and 
others (Anakubo and Murano 1991;  Nishida, 
1985;  Nomura and Murano 1992;  Uye 1994) 
recorded that for the Seto Inland Sea and Tokyo 
Bay, Japan, as eutrophication problems grew, 
there were zooplankton community structure shifts 
from a calanoid copepod to a cyclopoid-dominated 
one.  In Tokyo Bay, the copepod community 
became dominated by Oithona davisae.  These 
authors also recorded a shift in phytoplankton 
community structure towards small dinoflagellates 
and diatoms.  Pollution thus seems to favour 
dinoflagellate feeders, such as O. davisae. 
Furthermore, the anoxic bottom-water formed in 
Tokyo Bay from organic enrichment and 
stratification acts selectively to advantage or 
disadvantage plankton life cycles.  Copepod eggs 
that are spawned freely into the water column may 
sink onto the seabed where they are adversely 
affected by oxygen-deficient water, resulting in 
heavy recruitment loss.  Inseminated O. davisae, 
however, which carries its eggs in egg sacs, can 
complete its life cycle by avoiding anoxic habitats. 
Recruitment of egg-carrying copepods would thus 
be favoured and O. davisae comes to dominate the 
resident community.  Formation of oxygen 
deficient bottom water might also be detrimental 
to copepods with no flexible vertical distribution. 
For example, male Parvocalanus crassiroustris 
and species of Acartia remain in deeper waters, 
especially late in the day (Ueda 1987). 
 
In the Yellow Sea the concentration of inorganic 
phosphorus is increasing (Ma et al. 1997), and 
eutrophication is thought to be responsible for 
more frequent HABs (Jiao and Guo 1996;  You et 
al. 1994).  In the East China Sea, human deaths 
have resulted from ingestion of toxic bivalves and 
gastropods; the HABs responsible for the toxicity 
of the shellfish are thought to have been caused by 
eutrophication in combination with physical 
processes, including coastal upwelling and climate 
events (Chen and Gu 1993). 

Twenty to fifty percent of the “new” nitrogen in 
the Yellow Sea comes from atmospheric 
deposition and groundwater (Paerl 1997).  Urban 
and agricultural discharges to groundwater are 
increasing (Paerl 1997), and rain over the Yellow 
Sea has a high concentration of nutrients from air 
pollution (Zhang et al. 1999).  Groundwater and 
rain bypass the estuarine filters and can cause 
eutrophication and HABs at a considerable 
distance from the source.  Atmospheric deposition 
of nitrate varies seasonally, with higher 
concentrations in the winter, when there is less 
precipitation (Zhang and Liu 1994); the 
episodicity of the high atmospheric delivery of 
nutrients corresponds with HABs in the nearby 
Pacific Ocean (Zhang 1994;  Zhang and Liu 
1994). 
 
Due to increasing population and a relatively small 
land base, Korean bays have become sinks for a 
variety of domestic and industrial wastes.  In 
Chinhae Bay, oxygen deficient conditions due to 
organic pollution perturbated the resident marine 
benthic communities in 1989 (Lim and Hong 
1994; Yang 1991).  In the early 1990s, Shihwa 
Lake was formed by impounding a marine bay on 
the west coast of Korea with a 12.7 km long 
barrier.  The bay, which became stratified by salt 
and temperature, then went eutrophic and the sea 
bed became anoxic.  Sea bed levels of nutrients 
and industrial wastes increased and macrobenthic 
diversity collapsed with blooms of Polydora ligni 
and Capitella capitata in winter (Lee and Cha 
1997).  
 
Aquaculture, a source of organic carbon, nutrients, 
and industrial chemicals (antifoulants, 
pharmaceuticals, contaminants in feedstock), is an 
expanding industry.  Although total amounts of 
materials from any one operation may be small, 
there is the potential for impacts close to the 
operation and, with sufficient density in poorly-
flushed coastal waters, there could be regional 
impacts.  For example, fish culture in meshed 
cages in a bay in southern Japan resulted in an 
azoic sea bed with summer defaunation followed 
by recolonization the following spring (Tsutsumi 
1995).  Molluscs were progressively replaced by 
polychaetes as the dominant macrobenthos below 
the cages.   



Components of a warning system 
 
The multiple stresses briefly reviewed here 
provide an enormous and increasing challenge to 
North Pacific coasts and shelves.  These stresses 
do not operate independently but, rather, interact 
with one another in a manner that varies among 
locations (Fig. 7).  If we survey the Pacific Rim, 
we see that the Asian coasts are most immediately 
threatened on a large scale by over-fishing, 
destructive fishing practices, nutrient loadings and 
inputs of contaminants from large populations 
undergoing industrial transition (Morton and 
Blackmore 2001).  To the far north, local sources 
dwindle in importance and climate change and 
long-range transport of contaminants become 
leading causes for concern (Alexander and 
Windom 1999;  Rice and Shigaev 1997;  
Shaporenko 1997;  Vaschenko 2000).  Finally, for 
the temperate west coast of North America, 
climate change, over-fishing and long-range 
contaminant transport remain important issues, 
with contaminant loadings to enclosed seas (Strait 
of Georgia, Puget Sound, San Francisco Bay) 
assuming high local profiles (see for example, 
Macdonald and Crecelius 1994;  Parsons 1996; 
Ross et al. 2000;  Sañudo-Wilhelmy and Flegal 
1992). 
 
The challenge that ocean scientists must meet if 
we are to avert the demise of coastal ecosystems 
is:  (1) to produce observations that forewarn us 
(trends);  (2) to understand ocean processes 
sufficiently to associate ecosystem response with 
cause (human or natural) and;  (3) to assign the 
order of importance of stresses put upon coastal 
seas by human activities.  Clearly, for this 
scientific effort to be of benefit it must be 
translated into action, for example, either to reduce 
or to eliminate contaminants at local, regional and 
international scales.  One strategy widely 
promoted to conserve biological resources is the 
development of a network of Marine Protected 
Areas (MPAs).  If carefully chosen, MPAs provide 
undisputed benefits for conservation (Roberts et 
al. 2001).  However, they allow us little room for 
complacency as they provide no protection against 
coastal eutrophication, chemical contamination, 
introduction of exotic species, over-harvesting of 
free-ranging biota, or climate change – the  
 

 
 
Fig. 7 A schematic diagram illustrating how 
human activities may affect marine ecosystems at 
multiple points. Points at which the marine 
systems are monitored for contaminants (dots) 
may be influenced by other confounding factors. 
 
 
majority of the stresses that threaten our oceans 
(Fig. 7).  To recognize and prioritize threats to 
coasts from these disparate stressors will require 
coherent observations and research, which we 
suggest should include at least the following 
elements. 
 
Box models, other models and case studies 
 
Box models are especially useful in enclosed seas 
where inputs and outputs can in principle be 
tightly constrained, but they may also be applied 
to open shelves (Chen et al, 2002;  Johannessen et 
al. 2002;  Liu et al. 2000).  Beginning with water, 
salt, and nutrients (Gordon et al. 1996), budgets 
can be scaled up to include sediments, organic 
carbon and contaminants.  These budgets then 
allow a preliminary assessment of human loadings 
compared with fluxes and budgets in the 
undisturbed system.  From such an assessment, an  
 



estimation can be made of the likely scale (local, 
regional) of impact, and human loadings can be 
ranked to allow for a logical approach to 
mitigation.  An example from the Seto Sea (Fig. 8) 
illustrates that human loadings dominate the zinc 
and copper budgets and that most of the 
contaminant load of these metals ends up in its 
sediments.   Box models provide a schematic 
understanding, which can help to validate the 
output of more sophisticated ones.   
 

 
 
Fig. 8 An example of the application of a box 
model to an enclosed sea.  Mass balances are 
given for copper and zinc in the Seto Island Sea 
(tons/yr).  L1 identifies load into the sea, L2 
identifies load into sediment, and zinc loadings are 
given in parentheses (Hoshika et al. 1988). 

 
Box models provide a solid foundation upon 
which to build case studies (Macdonald et al. 
2000b).  Case studies can be applied to a relatively 
constrained environmental impact such as the 
disposal of mine tailings to a coastal fjord (Ellis et 
al. 1995), to a specific chemical like PCB, HCH or 
toxaphene (Macdonald et al. 2000b) and may 
provide the basis to initiate appropriate 
environmental action (Lindstrom and Renescu 
1994). 
 
Time-series observations 
 
The observation of change is one of the most 
powerful means to initiate action.  The difficulty, 
however, is to recognize it early enough to avert 
irreversible change, and to be able to draw clear 
inference from observations to causes so that 
appropriate action can be taken.  As shown in 
Figure 7 (dots), time series can be assembled at 

many points of the ocean system.  However, the 
meaning of such time series varies from point to 
point and, in many cases, multiple components of 
change act simultaneously, so that a simple 
observation (declining PCB levels with time) can 
be produced by more than one factor (e.g., reduced 
global emission, reduced local emission, change of 
atmospheric or ocean pathway through regime 
shift, changes to the food web structure (top-down 
or bottom-up)).  Generally, time series have been 
collected ad hoc without worrying about 
confounding factors or comparability with other 
time series.  It is time for the scientific community 
to develop coherent, intercomparable time series 
of sufficient sophistication to guide administrators 
toward appropriate action. 
 
Sediment cores 
 
Sediments provide well-recognized archives of the 
history of particle reactive contaminants and, as 
such, will remain a key resource to understanding 
current loadings of contaminants in the context of 
pre-industrial loadings (see, for example, Huh and 
Chen 1999;  Macdonald and Crecelius 1994). 
Finney et al. (2000) have demonstrated elegantly 
that in certain circumstances, sediment can record 
both the forcing (anadromous fish return) and 
effects (lake eutrophication), allowing a more 
secure inference of how climate change and 
human predation work together to affect fish 
escapement.  Such insights are not available in the 
instrumental observation record.  This study 
certainly points the way to more powerful 
application of sediment cores to sort out combined 
stresses;  for example, the findings of Finney et al. 
(2000) could be further expanded to consider the 
effects of fish on lake contaminants and, 
potentially, the effects of contaminants on fish 
(see, for example, Ewald et al. 1998;  Zhang et al. 
2001). 
 
Monitoring components of the food web 
 
A food web provides an enormous scope for 
monitoring, from filter feeders (Beliaeff et al. 
1997) to apex predators (Addison and Smith 1998; 
Ross et al. 2000) to HABs (Yanagi 1988).  
Presently, time series data for any component of 
the food web in the North Pacific are extremely 
rare, and where there is such information, it often 



comprises few time series points, several or more 
years apart, and well after contaminants began to 
be released into the environment (for example see 
Fig. 6).  It is now recognized that contaminant 
burdens recorded by aquatic animals depend on 
their life histories and cycles they may exhibit 
(age, sex, size, season, prey).  With research, many 
of these factors can be taken into account through, 
for example, sampling strategy.  However, the 
food web itself is a dynamic system (Fig. 7) 
subject to alteration in a number of ways, as 
discussed earlier.   
 
The problem with monitoring individual 
components in the food web, therefore, is that a 
change in contaminant burden with time may have 
non-unique causes.  For example, a shift in a 
single trophic level produced by over fishing or 
eutrophication can produce a change in mercury 
concentration by a factor of 10 (Fig. 9).  The same 
problem exists for the organochlorines, which also 
biomagnify.  In the latter context, a particularly apt 
example was provided in the Great Lakes where 
the invasion of an exotic species, the zebra mussel 
(Dreissena polymporpha), led to a fundamental 
change in lake trophic structure and, presumably, 
to contaminant pathways (Morrison et al. 1998;  
Whittle et al. 2000).  Given the varied pressures 
on the aquatic food webs of the North Pacific 
reviewed here, it seems clear that we need to 
institute a monitoring programme that incorporates 
all trophic levels.  Furthermore, support data 
(stable isotope composition) must be assembled to 
help interpret changes in trophic level together 
with changes in contaminant burdens. 
 
Sample archives 
 
Tissue archives provide a safety net for ongoing 
monitoring.  We cannot hope to anticipate all 
future chemicals, nor can we predict accurately the 
sorts of changes that might occur in our 
ecosystems.  We can be sure, however, that new 
and better techniques will be developed with time 
to apply to problems of chemical contamination 
and ecosystem change.  For example, the change 
in trophic structure due to zebra mussel invasion 
of the Great Lakes would not have been identified 
without such archives (Kiriluk et al. 1999), nor 
would the relationship between this change and  
 

 
 
Fig. 9 A schematic diagram showing trophic 
organization of a marine food web based on δ15N 
measurements (top panel, Hobson and Welch 
1992), and how biomagnification increases 
mercury concentration as trophic level is increased 
(bottom left, Atwell et al. 1998).  Alteration of the 
food web resulting in, for example, a change in the 
trophic level of fish can accordingly alter 
contaminant burdens observed in time series (after 
Whittle et al. 2000). 
 

contaminant burdens.  It is astonishing to note that 
the tissue archive applied to understanding what 
had occurred in this system was maintained 
unofficially with soft funding.  Recognizing the 
importance of tissue archives, we should 
institutionalize immediately the collection, 
cataloguing and storage of appropriate samples. 
 
Ecological indicators 
 
Monitoring environmental quality using chemical 
measurements tends to be prejudiced either toward 
chemical analyses for which we have developed 
skill, or toward chemicals known to cause 
environmental problems (the usual suspects).  As a 
consequence, one detects only those chemicals 
that have been sought, and unexpected chemicals  
 



are likely to go unrecognized.  Biological 
measurements are required, therefore, to alert us to 
the presence of unidentified chemicals that require 
the development of new analytical methods (the 
research to isolate and identify domoic acid, 
following shellfish poisoning of humans on 
Canada’s East Coast provides an excellent 
example (Addison and Stewart 1989)).  Although 
marine pollution is often presented as a chemical 
problem, our ultimate interest is not in the 
chemicals themselves, nor of their burdens in 
environmental media.  Rather, we would like to be 
able to relate chemical loadings to harmful effects 
on the structure and functioning of ecosystems 
(Addison 1996).  To do this requires the 
development of ecological indicators, the science 
of which is in its infancy.  The difficulty we face is 
that many of the relatively simple and affordable 
measurements (e.g., PCB burden in seal blubber) 
cannot be related confidently to animal health, and 
even less so to population health (Fig. 10), even 
though we suspect that certain clinical toxic 
thresholds may have been exceeded.  On the other 
hand, monitoring community structure and relating 
changes to chemical and other stresses is not only 
beyond our present understanding but also beyond 
our financial means.  A crucial task remains 
therefore, to develop indicators that exhibit 
reliability, robustness and specificity but which 
also are affordable. 

 

 
 
Fig. 10 A schematic diagram relating the cost 
of ecosystem monitoring with the complexity and 
relevance of the measurements (modified from 
Addison 1996). 

Conclusions 
 
Like Waldichuk (1990), we conclude that 
continental shelves and near shore areas of the 
North Pacific are under the greatest stress from 
chemical contaminants.  Increasing population and 
industrialization will increase that stress.  With 
either their restriction or elimination (PCBs, OC 
pesticides), global cycling of some of these 
contaminants have decreased;  however, it is likely 
that they will continue to cause concern for some 
time (Ross et al. 2000).  And we will discover new 
chemical problems to replace old ones (e.g., see 
Betts 2001;  Kramer and Giesy 1995;  Paasivirta 
1998). 
 
The problem we face is not just chemical 
contamination, but assault on coastal systems from 
multiple stressors.  Presently, we lack coherent 
observational networks, reliable inventories for 
contaminants, and an understanding of processes 
that would unequivocally distinguish real threats 
from perceived threats.  Given the degree of 
concern that pervades much of the literature cited 
here, it is surprising that the scientific and political 
communities of the North Pacific have not 
collaborated to conduct a regional assessment.  
The Arctic Monitoring and Assessment 
Programme (AMAP 1998) provides an apt 
example where international hurdles were 
overcome to produce a well-founded, science-
based review that led to action.  We therefore 
suggest that the highest priority for PICES should 
be to produce, within the next five years, an 
International North Pacific Assessment 
Programme. 
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