## PICES Scientific Report No. 16 2001

## **Environmental Assessment of Vancouver Harbour Data Report for the PICES Practical Workshop**

**Edited by** Carla M. Stehr and Toshihiro Horiguchi

August 2001 Secretariat / Publisher North Pacific Marine Science Organization (PICES) c/o Institute of Ocean Sciences, P.O. Box 6000, Sidney, B.C., Canada. V8L 4B2 E-mail: secretariat@pices.int Home Page: http://www.pices.in

## **Table of Contents**

## Section I - Practical Workshop Description

| Introduction                                           | 1  |
|--------------------------------------------------------|----|
| Workshop overview                                      | 1  |
| History of Working Group 8                             | 1  |
| Work Plan for the Vancouver Harbour Practical Workshop | 2  |
| Workshop products                                      | 11 |
| Summary                                                | 12 |
| Acknowledgements                                       | 13 |
| References                                             | 13 |

## Section II - Site Description and Oceanography

| Vancouver Harbour                | 15 |
|----------------------------------|----|
| Thornbrough Channel (Howe Sound) |    |
| Victoria and Mission Point       |    |
| Sources of contamination         |    |
| Fisheries closures               |    |
| References                       | 19 |
|                                  |    |

## **Section III - Extended Abstracts**

### **Contaminant Concentrations in Sediment and Biota**

| Environmental assessment of Vancouver Harbour: The results of an international                      |    |
|-----------------------------------------------------------------------------------------------------|----|
| workshop – trace metals                                                                             |    |
| Tkalin, A.V., Lishavskaya, R.S., Kovekovdova, L.T., Simakon, M.V., Shulkin V.M.,                    |    |
| Bogdanova, N.N., Primak, T.L. and E.A. Slin'ko                                                      | 23 |
| Assessment of chemical contaminant exposure and effects in English sole                             |    |
| Stehr, C.M., Myers, M., Lomax, D., Boyer, R., Spencer, S. and J. Stein                              | 26 |
| Organochlorine and polyaromatic hydrocarbon residues in English sole, <i>Pleuronectes vetulus</i> , |    |
| at Vancouver Harbour                                                                                |    |
| Uno, S., Koyama, J. and H. Yamada                                                                   | 30 |
| Organochlorine and polyaromatic hydrocarbon residues in bivalves at Vancouver Harbour               |    |
| Uno, S., Koyama, J. and H. Yamada                                                                   | 35 |

## **Biochemical and Physiological Studies**

| Lipid class and fatty acid composition of mussel, Mytilus trossulus, in Vancouver Harbor |    |  |
|------------------------------------------------------------------------------------------|----|--|
| Uno, S., Yun, J.H., Kaneniwa, M., Koyama, J., Yamada, H. and K. Ikeda                    | 43 |  |
| CYP1A and related measurements in English sole (P. vetulus) from Vancouver Harbour       |    |  |
| Miller, K.A., Addison, R.F. and S.M. Bandiera                                            | 47 |  |
| Contamination of organotin compounds and imposex in molluscs from Vancouver, Canada      |    |  |
| Horiguchi, R., Uno, S., Shimizu, M., Shiraishi H. and M. Morita                          | 53 |  |

## **Community Studies**

| Changes in benthic communities along a presumed pollution gradient in Vancouver Harbour.        |    |
|-------------------------------------------------------------------------------------------------|----|
| Je, J.G., Belan, T., Levings, C.D. and B.J. Koo                                                 | 57 |
| Fish communities and life history attributes of English sole ( <i>Pleuronectes vetulus</i> ) in |    |
| Vancouver Harbour                                                                               |    |
| Levings, C.D. and S. Ong                                                                        | 61 |
| Marine environmental quality assessment using polychaete taxocene characteristics               |    |
| in Vancouver Harbour                                                                            |    |
| Belan, T.A.                                                                                     | 64 |

## Harmful Algae Studies

| Harmful algae survey in Vancouver Harbour              |    |
|--------------------------------------------------------|----|
| Yan, T., Zhou, M., Li, J., Yu, R., Tan, Z. and F. Wang | 69 |

## Section IV - Comprehensive Data Tables

## Site Locations

| Table 1 | Trawl and sediment collection locations for the PICES Vancouver Harbour |      |
|---------|-------------------------------------------------------------------------|------|
|         | Practical Workshop                                                      |      |
|         | Investigators: Dan Lomax, Carla Stehr, Colin Levings                    | . 75 |
| Table 2 | Intertidal site locations for Vancouver Harbour Practical Workshop      |      |
|         | Investigator: Toshihiro Horiguchi                                       | . 76 |

## Sediment Chemistry

| Table 3 | Sediment grain size                                                             |    |
|---------|---------------------------------------------------------------------------------|----|
|         | Investigators: Jong Jeel Je, Colin Levings                                      | 77 |
| Table 4 | Total organic carbon in sediment                                                |    |
|         | Investigator: Carla Stehr (analyses done by Columbia Analytical Services, Inc.) | 78 |
| Table 5 | Polycyclic aromatic hydrocarbons in sediment from Vancouver Harbour             |    |
|         | (ng/g, dry weight)                                                              |    |
|         | Investigators: Jennie Bolton, Carla Stehr                                       | 79 |
| Table 6 | Quality assurance data for polycyclic aromatic hydrocarbons in sediment         |    |
|         | (ng/g dry weight)                                                               |    |
|         | Investigators: Jennie Bolton, Carla Stehr                                       |    |
| Table 7 | PCB (chlorobiphenyl) congeners in sediment from Vancouver Harbour               |    |
|         | (ng/g dry weight)                                                               |    |
|         | Investigators: Jennie Bolton, Carla Stehr                                       |    |
| Table 8 | Chlorinated pesticides in sediment from Vancouver Harbour                       |    |
|         | (ng/g, dry weight)                                                              |    |
|         | Investigators: Jennie Bolton, Carla Stehr                                       |    |
| Table 9 | Quality assurance data for chlorinated hydrocarbon analyses of sediment         |    |
|         | (ng/g dry weight)                                                               |    |
|         | Investigators: Jennie Bolton, Carla Stehr                                       |    |

| Table 10 | Metals in sediment (dry weight)                                        |  |
|----------|------------------------------------------------------------------------|--|
|          | Investigators: Alexander Tkalin, Tatiana Lishavskaya                   |  |
|          |                                                                        |  |
| Tissue ( | Chemistry – Fish                                                       |  |
|          |                                                                        |  |
| Table 11 | PCB (chlorobiphenyl) congeners (IUPAC) in liver of English sole from   |  |
|          | Vancouver Harbour (ng/g, wet weight)                                   |  |
|          | Investigators: Ms. Jennie Bolton and Ms. Carla Stehr                   |  |
| Table 12 | Chlorinated nesticides in liver of English sole from Vancouver Harbour |  |

| 14010 12               | Chlorinated pesticides in liver of English sole from valeouver frantour        |     |
|------------------------|--------------------------------------------------------------------------------|-----|
|                        | (ng/g, wet weight)                                                             |     |
|                        | Investigators: Jennie Bolton, Carla Stehr                                      | 90  |
| Table 13               | Quality assurance data for chlorinated hydrocarbon analyses of liver in        |     |
|                        | English sole (ng/g wet weight)                                                 |     |
|                        | Investigators: Jennie Bolton, Carla Stehr                                      | 91  |
| Table 14               | Polycyclic aromatic hydrocarbons in liver of English sole (ng/kg wet weight)   |     |
|                        | Investigator: Seiichi Uno                                                      | 93  |
| Table 15               | Polycyclic aromatic hydrocarbons in muscle of English sole (ng/kg wet weight)  |     |
|                        | Investigator: Seiichi Uno                                                      | 94  |
| Table 16               | Polycyclic aromatic hydrocarbons in ovaries of English sole (ng/kg wet weight) |     |
|                        | Investigator: Seiichi Uno                                                      | 95  |
| Table 17               | Polycyclic aromatic hydrocarbons in testis of English sole (ng/kg wet weight)  |     |
|                        | Investigator: Seiichi Uno                                                      |     |
| Table 18               | PCB congeners (IUPAC) (ng/kg wet weight) in liver of English sole              |     |
|                        | Investigator: Seiichi Uno                                                      | 97  |
| Table 19               | PCB congeners (IUPAC) (ng/kg wet weight) in English sole muscle                |     |
|                        | Investigator: Seiichi Uno                                                      |     |
| Table 20               | PCB congeners (IUPAC) (ng/kg wet weight) in English sole ovaries               |     |
| <b>T</b> 11 <b>A</b> 1 | Investigator: Seitchi Uno                                                      | 102 |
| Table 21               | PCB congeners (IUPAC) in English sole testis (ng/kg wet weight)                | 105 |
| T 11 00                | Investigator: Seitchi Uno                                                      | 105 |
| Table 22               | Organochlorine pesticides in liver of English sole (ng/kg wet weight)          | 100 |
| T 11 00                | Investigator: Selichi Uno                                                      | 108 |
| Table 23               | Urganochlorine pesticides in muscle of English sole (ng/kg wet weight)         | 100 |
| T-1-1- 04              | Investigator: Selichi Uno                                                      | 109 |
| Table 24               | Urganochiorine pesticides in ovary of English sole (ng/kg wet weight)          | 110 |
| Table 25               | Investigator. Selicit Uno                                                      | 110 |
| rable 25               | DD1 and its derivatives in testis of English sole (ng/kg wet weight)           | 111 |
| Table 26               | Investigator. Seriem Uno                                                       | 111 |
| rable 26               | Investigators: Alexander Tkalin, Totiona Lishavakaya                           | 117 |
|                        | investigators. Alexander I Kanni, Tatiana Lisnavskaya                          | 112 |

## <u> Tissue Chemistry – Bivalves</u>

| Table 27 | Polycyclic aromatic hydrocarbons in bivalves (ng/kg wet weight)                 |     |
|----------|---------------------------------------------------------------------------------|-----|
|          | Investigator: Seiichi Uno                                                       |     |
| Table 28 | Polycyclic aromatic hydrocarbons in <i>Mytilus trossulus</i> (ng/kg wet weight) |     |
|          | Investigator: Seiichi Uno                                                       | 114 |
| Table 29 | PCB congeners (IUPAC) in bivalves (ng/kg wet weight) at site I4                 |     |
|          | Investigator: Seiichi Uno                                                       |     |

| Table 30 | PCB congeners (IUAPC) in Mytilus trossulus (ng/kg wet weight)                           |     |
|----------|-----------------------------------------------------------------------------------------|-----|
|          | Investigator: Seiichi Uno                                                               | 117 |
| Table 31 | PCB congeners (IUPAC) in Pacific Oyster from site I6 (ng/kg wet weight)                 |     |
|          | Investigator: Seiichi Uno                                                               | 119 |
| Table 32 | Organochlorine pesticides in bivalves from site I-4 (ng/kg wet weight)                  |     |
|          | Investigator: Seiichi Uno                                                               | 121 |
| Table 33 | Organochlorine pesticides in Mytilus trossulus (ng/kg wet weight)                       |     |
|          | Investigator: Seiichi Uno                                                               | 122 |
| Table 34 | Metals in the mussel <i>Mytilus trossulus</i> (ppm dry weight)                          |     |
|          | Investigators: Alexander Tkalin, Tatiana Lishavskaya                                    | 123 |
| Table 35 | Tributyltin (ng/g wet weight) in mussels ( <i>M. trossulus</i> ) from Vancouver Harbour |     |
|          | Investigator: Toshihiro Horiguchi                                                       | 124 |
| Table 36 | Tributyltin (ng/g wet eight) in all molluscs sampled from Vancouver Harbour             |     |
|          | and Victoria                                                                            |     |
|          | Investigator: Toshihiro Horiguchi                                                       | 125 |
|          |                                                                                         |     |

## Lipid and Fatty Acids in *Mytilus trossulus*

| Table 37 | Lipid Composition in <i>Mytilus trossulus</i> (%) |     |
|----------|---------------------------------------------------|-----|
|          | Investigator: Seiichi Uno                         | 126 |
| Table 38 | Fatty Acids in <i>Mytilus trossulus</i> (%)       |     |
|          | Investigator: Seiichi Uno                         | 127 |

## **Biochemical, Physiological and Histopathological Parameters**

| Table 39 | Fluorescent aromatic compounds in bile of English sole as an indicator of         |     |
|----------|-----------------------------------------------------------------------------------|-----|
|          | aromatic hydrocarbon metabolites                                                  |     |
|          | Investigators: Sylvester Spencer, Carla Stehr                                     | 131 |
| Table 40 | Quality assurance data for fluorescent aromatic compounds in bile of English sole |     |
|          | Investigators: Sylvester Spencer, Carla Stehr                                     | 132 |
| Table 41 | Cytochrome P4501A activity and protein levels in liver microsomes of English sole |     |
|          | Investigator: Stelvio Bandiera                                                    | 133 |
| Table 42 | Cytochrome P4501A activity and protein levels in treated English sole             |     |
|          | Investigator: Stelvio Bandiera                                                    | 136 |
| Table 43 | Vitellogenin in blood plasma from English sole (ng/ml plasma)                     |     |
|          | Investigators: Dan Lomax, Munetaka Shimizu                                        | 137 |
| Table 44 | Imposex measurements in gastropods from Victoria and Mission Point                |     |
|          | Investigator: Zhengyan Li.                                                        | 138 |
| Table 45 | Imposex measurements in gastropods from Victoria and Mission Point                |     |
|          | Investigator: Toshihiro Horiguchi                                                 | 143 |
| Table 46 | Imposex indicies and tributyltin (ng/g wet weight) in gastropods from             |     |
|          | Victoria and Mission Point                                                        |     |
|          | Investigators: Toshihiro Horiguchi                                                | 147 |
| Table 47 | Histopathology of liver, kidney, gonad and spleen in English sole from            |     |
|          | Vancouver Harbour                                                                 |     |
|          | Investigators: Mark Myers, Carla Stehr                                            | 148 |

## **Biological Community Data – Fish and Mussels**

| Table 48 | Number of individual fish and invertebrates caught in each trawl from |  |  |
|----------|-----------------------------------------------------------------------|--|--|
|          | Vancouver Harbour                                                     |  |  |
|          | Investigator: Colin Levings                                           |  |  |
| Table 49 | Average biomass of fish for 100 square meters trawled                 |  |  |
|          | Investigator: Colin Levings                                           |  |  |
| Table 50 | Age of English sole, as determined from otoliths                      |  |  |
|          | Investigator: Colin Levings                                           |  |  |
| Table 51 | Stomach contents of English sole from Vancouver Harbour               |  |  |
|          | Investigator: Colin Levings                                           |  |  |
| Table 52 | Length (cm) and wet weight (g) of Mytilus trossulus                   |  |  |
|          | Investigator: Jihyun Yun                                              |  |  |

## **Biological Community Data – Macrobenthos**

| Table 53 | Species abundance (individuals/sample) in macrobenthos samples from |     |  |
|----------|---------------------------------------------------------------------|-----|--|
|          | Vancouver Harbour                                                   |     |  |
|          | Investigators: Jong Jeel Je, Tatyana Belan                          | 181 |  |
| Table 54 | Biomass (g/sample) of macrobenthos collected in Vancouver Harbour   |     |  |
|          | Investigators: Jong Jeel Je, Tatyana Belan                          | 186 |  |

## Harmful Algae

| Table 55 | Harmful Algal Bloom Study: Wet weight, dry weight, and average lethal time of mice |       |  |
|----------|------------------------------------------------------------------------------------|-------|--|
|          | injected with an extraction of shellfish samples                                   |       |  |
|          | Investigator: Tian Yan                                                             | . 204 |  |
| Table 56 | Harmful Algal Bloom Study: Concentrations of paralytic shellfish poison measured   |       |  |
|          | Investigator: Tian Yan                                                             | . 205 |  |
| Table 57 | Harmful Algal Bloom Study: Artemia assay results                                   |       |  |
|          | Investigator: Tian Yan                                                             | . 205 |  |

## Section I Practical Workshop Description

#### Colin D. Levings<sup>1</sup>, Carla M. Stehr<sup>2</sup> and John E. Stein<sup>2</sup>

- <sup>1</sup> Fisheries and Oceans Canada, Science Branch, West Vancouver Laboratory, 4160 Marine Drive, West Vancouver, B.C., Canada. V7V 1N6
- <sup>2</sup> Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Environmental Conservation Division, 2725 Montlake Blvd. E., Seattle, WA 98112, U.S.A.

This report is a compilation of the data resulting from a collaborative research project conducted in Vancouver Harbour, Canada. This scientific study was part of a Practical Workshop sponsored by the Marine Environmental Quality Committee of the North Pacific Marine Science Organization The goal of the workshop was to (PICES). promote the exchange of information about approaches used by PICES member countries to assess the biological impact of marine pollution. Section I of this report provides an overview and history of the workshop, the work plan and methods used to conduct the workshop, and a summary that includes recommendations for future practical workshops of this nature. Section II provides a description of the physical and oceanographic characteristics of the sampling area, as well as information on contaminant Results from the workshop, and sources. preliminary data interpretations were presented at the PICES Ninth Annual Meeting (PICES IX) in 2000. Extended abstracts of these presentations are included in Section III. Tables containing the data from the workshop are included in Section IV.

#### Workshop overview

Working Group 8 of the Marine Environmental Quality Committee of PICES held a Practical Workshop on May 23-June 7, 1999, in Vancouver Harbour, Canada. Twenty-four scientists from all PICES member countries participated (see Figure 1.1 for a group photo). Workshop Co-Chairman Dr. Colin Levings and his staff hosted the workshop at the West Vancouver Laboratory, of Fisheries and Oceans Canada.

A wide variety of data were collected, including community structure of benthic invertebrates and fish, evaluation of fish health using biological markers and exposure data, evaluation of contaminant exposure in intertidal invertebrates, imposex in gastropods, and information about natural toxins produced by algae. The cooperative sample collections allowed participants to experience various methods for environmental assessment of marine pollution and its effects. Additional opportunities for exchange of information occurred through laboratory demonstrations of bioanalytical techniques and cooperative sample processing that took place at the laboratory. These activities provided an opportunity for PICES participants to gain an improved appreciation of the approaches and techniques used by other member countries to assess the effects of marine pollution.

The data resulting from the workshop will be used for interpretation of organismal, population, and community responses to marine pollution. The biological responses are evaluated in the context of exposure to different classes of chemical contaminants such as polycyclic aromatic hydrocarbon (PAHs), pesticides, chlorinated hydrocarbons, selected metals and organotins (e.g., TBT). The generic results of this Practical Workshop should be applicable to other coastal areas in the PICES region.

#### **History of Working Group 8**

Working group 8 (WG 8) was established by the Marine Environmental Quality (MEQ) Committee in 1994 to promote the collection and exchange of information about approaches PICES member countries use to assess the biological impact of marine pollution. To address this issue, WG 8 organized а Practical Workshop. where participants could work together to evaluate methods used to assess ecological effects of The format of the Workshop was pollution. developed along the lines of the successful



**Fig. 1.1** Group photo taken in front of the West Vancouver Laboratory. Back row: Dan Lomax, Colin Levings, Alexander Tkalin, Richard Addison, Terry Sutherland. 2<sup>nd</sup> row: Zhengyan Li, Jihyun Yun, Tatyana Belan, Beradita Anulacion, Beth Piercey, Seiichi Uno, Toshihiro Horiguchi, Stelvio Bandiera. Front row: Carla Stehr, John Stein, Jong Jeel Je, Gina Ylitalo, Tatyana Lishavskaya, Tian Yan, Brian Bill.

Intergovernmental Oceanographic Commission/ Group of Experts on the Effects of Pollutants (IOC/GEEP) workshops whose results have been published elsewhere (Bayne *et al.* 1988, Addison and Clarke 1990, Stebbing and Dethlefsen 1992).

Plans were originally made to hold the practical workshop in Jiaozhou Bay, China. However, it became impractical for the workshop to be held at this location, so the workshop was relocated to Vancouver Harbour, Canada, and work plans were revised. After considerable preparation (obtaining supplies, laboratory space, research vessel support, sampling equipment, affordable room and board, travel arrangements, sample permits etc.) the workshop was held from May 24 to June 7, Early results of the workshop were 1999. presented at PICES VIII in Vladivostok, Russia, in October, 1999. Workshop results were formally presented at PICES IX in Hakodate, Japan, in October 2000. Plans for publication of the results were finalized, and include publication of this data report, and individual papers in a special issue of Marine Environmental Research.

## Work Plan for the Vancouver Harbour Practical Workshop

#### Site locations

Seven sites were sampled within Vancouver Harbour for sediment, benthos and intertidal invertebrates (Figs. 1.2 and 1.3). Fish were collected by trawl at five of these sites (Fig. 1.4). After field collections were initiated, it was found that gastropod species for imposex evaluations were not present at these sites, so an additional 3 sites near Victoria and one near Mission Point (near the town of Sechelt, not shown on map) (Fig. 1.5) were added to the sampling plan for imposex investigations.

#### **Research** vessels

The research vessel used for conducting sediment/benthos grabs and trawling for bottom fish was the R/V *Harold W. Streeter* (14 m, or 46 feet) (Fig. 1.6) of the Northwest Fisheries Science Center (NWFSC), National Marine

Fisheries Service, National Oceanic and Atmospheric Administration, U.S.A. The vessel was operated by US scientists participating in the workshop. A second research vessel, an outboard powered launch operated by staff of the Habitat Enhancement Branch, Fisheries and Oceans Canada, was used to transport scientists to the intertidal collection sites.

#### Study plan and methods

Several biological responses were evaluated. A list of studies and investigators is shown in Table 1.1. The Workshop activity schedule is shown in Table 1.2 and Table 1.3 contains a detailed list of the samples collected.



Fig. 1.2 Sediment and benthos collection sites.



Fig. 1.3 Intertidal collection sites.

#### Benthic fish

Bottom fish were captured with an Otter trawl at the five sites where there was sufficient space to conduct trawling operations. Species composition, number of individuals, and biomass was determined for the demersal fish catch in each trawl (Fig. 1.7). A target indicator species was retained to examine the relationship between fish health and contaminant exposure. English sole (*Pleuronichthys vetulus*) was selected as the indicator species because this species is common in Vancouver Harbour, and it feeds on benthic organisms living in the sediment (Fig. 1.8). This species is also known to be sensitive to contaminant exposure, and much is known about the relationship between health of English sole and contaminants based on previous studies from other areas similar to Vancouver Harbour (Myers *et al.* 1987, 1994, 1998).



Fig. 1.4 Fish (trawling) collection sites.



Fig. 1.5 Gastropod collection sites.



**Fig. 1.6** The research vessel *Harold W. Streeter*, at anchor while workshop participants collect bottom sediment samples. Yellow material in the background is elemental sulfur.



**Fig. 1.7** Sorting the catch captured with the bottom trawl (Colin Levings, Bernadita Anulacion, Dan Lomax, Mark Myers, Sean Sol).

Two or more trawls were conducted at each site until 30 adult English sole were collected. The English sole were maintained alive in seawater filled containers until tissue samples could be collected. Immediately after trawling operations were complete, the shipboard laboratory was used to collect and preserve fish samples (Fig. 1.9). Otoliths were removed to determine age. Blood was collected from a subset of fish from two sites for vitellogenin assays. Bile was collected for analyses of fluorescent hydrocarbon metabolites,



Fig. 1.8 English sole was the target species collected for several of the fish studies.



**Fig. 1.9** Tissue samples from English sole were prepared in the shipboard laboratory (Mark Myers).

as an indicator of aromatic hydrocarbon (AH) exposure. Liver tissue was collected for cytochrome P450, metals, chlorinated hydrocarbon (CH) and histopathological analyses. Muscle was collected for AH, CH and metal analyses, and gonads were collected for AH and CH analyses. The stomach was removed from each fish and preserved in 10% formalin. Table 1.4 shows more detailed information about the samples collected from English sole.

| Study                                                                                                      | Lead Investigators                                                                      | Country         |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|
| Benthic community structure                                                                                | Dr. Tatyana Belan<br>Dr. Jong Geel Je                                                   | Russia<br>Korea |
| Organic and metal analyses of fish and bivalve tissues                                                     | Dr. John Stein (organics in fish)<br>Dr. Seichii Uno (organics in fish and<br>bivalves) | USA<br>Japan    |
|                                                                                                            | Dr. Alex Tkalin (metals in fish and mussels)                                            | Russia          |
| Organic and metal analyses of sediment                                                                     | Dr. John Stein (organics)<br>Dr. Alex Tkalin (metals)                                   | USA<br>Russia   |
| Demersal fish health (using English sole as an indicator species);Indicators of biochemical                | Dr. John Stein (histopathology, bile metabolites, vitellogenin)                         | USA             |
| changes (e.g., induction of cytochrome P-<br>4501A (CYP1A), bile metabolites, vitellogenin                 | Dr. Stelvio Bandiera (CYP1A)<br>Dr. Munetaka Shimizu (vitellogenin)                     | Canada<br>Japan |
| Fish community structure (species distributions,<br>biota age and size relationships, stomach<br>contents) | Dr. Colin Levings                                                                       | Canada          |
| Community structure of mussels                                                                             | Ms. Hyun Yun                                                                            | Korea           |
| Gastropod imposex                                                                                          | Dr. Toshihiro Horiguchi<br>Dr. Zhengyan Li                                              | Japan<br>China  |
| Presence of natural toxins from harmful algae                                                              | Dr. Tian Yan (PSP, ARTOX)<br>Dr. Terry Sutherland (cysts)                               | China<br>Canada |
| Sediment analyses                                                                                          | Dr. John Stein (organics)<br>Dr. Alex Tkalin (metals)                                   | USA<br>Russia   |

**Table 1.1**List of studies and investigators.

**Table 1.2**Vancouver Practical Workshop schedule.

| May 24 | Half-day meeting for introductions, laboratory safety training, tour of the lab, and to discuss     |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------|--|--|--|
|        | oceanographic features of Burrard Inlet.                                                            |  |  |  |
| May 24 | Half-day meeting for introductions, laboratory safety training, tour of the lab, and to discuss     |  |  |  |
|        | oceanographic features of Burrard Inlet.                                                            |  |  |  |
| May 24 | Information about environmental monitoring approaches was presented by a representative             |  |  |  |
|        | from each country. Sampling plan was discussed. R/V Harold W. Streeter arrived.                     |  |  |  |
| May 26 | Supplies and equipment were prepared for sampling. Participants received safety training for        |  |  |  |
|        | the Research Vessel.                                                                                |  |  |  |
| May 27 | The first site was sampled (trawl site T-49, benthic site B-49, intertidal site I-1). This site was |  |  |  |
|        | located next to the West Vancouver Laboratory.                                                      |  |  |  |

#### Table 1.2 continued

| May 28   | Sampled Inner Harbour at Lonsdale Quay (Trawl site T-11B, Benthic site B-11B, Intertidal           |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | site I-3 via launch).                                                                              |  |  |  |  |  |
| May 29   | Sampled Port Moody (Trawl site T-38, Benthic site B-38, Intertidal site I-6 via launch). Also      |  |  |  |  |  |
|          | sampled benthic site B-41B, (but there was insufficient space for trawling at this site).          |  |  |  |  |  |
| May 30   | Sampled Indian Arm (Trawl site T-48, Benthic site B-48, Intertidal site I-4 via launch).           |  |  |  |  |  |
| May 31   | Free day, except for scientists Dr. Horiguchi and Dr. Li, who travelled to Victoria to look for    |  |  |  |  |  |
|          | snails for imposex research since none were observed at any of the established sites. Snails       |  |  |  |  |  |
|          | were successfully located at three sites near Victoria.                                            |  |  |  |  |  |
| June 1   | Sampled sulfur dock site (Benthic site 3A, intertidal site I-2 via launch). Not enough room to     |  |  |  |  |  |
|          | trawl for fish at this site. Returned to Lonsdale Quay (site T-11B) for additional trawls for fish |  |  |  |  |  |
|          | community data.                                                                                    |  |  |  |  |  |
| June 2   | Sampled south through Thornbrough Channel to Howe Sound. One group travelled aboard                |  |  |  |  |  |
|          | the R/V Harold W. Streeter, another traveled to Gibsons via car and ferry (Trawl site T-50.        |  |  |  |  |  |
|          | Benthic site B-50. Intertidal site I-7). This is a reference site. Also collected snails for       |  |  |  |  |  |
|          | imposex studies from Mission Point near Sechelt.                                                   |  |  |  |  |  |
| June 3   | Returned to West Vancouver Lab (site T-49) to get additional samples for fish community            |  |  |  |  |  |
|          | data. Demonstrated trawling and sediment collection techniques to scientists who may               |  |  |  |  |  |
|          | have had an opportunity to observe these operations. Research vessel departed.                     |  |  |  |  |  |
| June 4-6 | Processed samples in the laboratory, prepared samples for shipping.                                |  |  |  |  |  |
| June 7   | Final meeting and barbecue at Workshop Co-Chairman Colin Levings' house.                           |  |  |  |  |  |

**Table 1.3**Sample collection synopsis.

#### Sites sampled

- 5 sites were sampled for fish.
- 7 sites were sampled for sediment and benthic invertebrates.
- 7 sites were sampled for intertidal invertebrates and algae.
- 4 sites were added for gastropod imposex studies. 3 sites were located on Vancouver Island, near Victoria and 1 site was near Sechelt (north of Howe Sound).

#### Number of samples collected

#### <u>Fish</u>

- 162 Otoliths (Canada)
- 152 Histology (liver, kidney, gonads) (US)
- 35 Plasma for vitellogenin (US and Japan)
- 143 Bile for fluorescent aromatic compound analyses (US)
- 150 Liver for organic chemical analyses (US)
- 93 Liver for organic chemical analyses (Japan)
- 25 Muscle for trace metals analyses (Russia)
- 49 Muscle for trace metals analyses (Russia)
- 150 Gonads for organic chemical analyses (Japan)
- 60 Liver for Cytochrome P450 1-A (CYP1A) (Canada)
- 60 Liver for DNA adducts (US)
- 95 Stomachs for taxonomy of contents (Canada)
- 500 Length/weight of English sole (Canada)
- 25 (trawls) for species composition and biomass data (Canada)

#### Table 1.3 continued

#### Sediment

**Benthos** 

- 35 grabs  $(0.1 \text{ m}^2)$  (5 grabs at each of 7 sites) for benthic community studies (Russia and Korea) Sediment Chemistry
- 21 sediment (3 grabs at each of 7 sites) for trace metals (Russia)
- 21 sediment samples (3 grabs at each of 7 sites) for organic chemicals (US)
- 21 sediment samples (3 grabs at each of 7 sites) for total organic carbon (US) Meiofauna and grain size

245 sediment samples (one grab at each site, 5 samples/grab, 7 slices from each sample with 4 for meiofauna, 3 for grain size) (Canada and Korea)

Microalgae

9 sediment samples (3 sites, 3 reps/site) to culture microalgae from surficial sediments (China and Canada) Intertidal

Mussels – 7 sites

30/site for trace metals (Russia)

500 g/site whole mussel for algal toxin (China)

50 animals/site (9 sites including Clover Point, Victoria, and Mission Point, Sechelt) for organotin (Japan) (composites will be analyzed)

50 animals/site for OCs and PAHs and lipids (8 sites) (Japan)

4 sites sampled for mussel community data using quadrats (Korea)

100 random mussels collected from 7 sites for condition factor (Korea) and lipid analyses (Japan) Molluscs for organotin analyses (Japan)

| Site          | Bivalves collected                                        |                                                    |  |  |
|---------------|-----------------------------------------------------------|----------------------------------------------------|--|--|
| I-1           | mussel, oysters                                           |                                                    |  |  |
| I-2           | mussel, native littleneck, butter clams, po               | vinted macoma                                      |  |  |
| I-3a          | mussel                                                    |                                                    |  |  |
| I-3b          | mussel                                                    |                                                    |  |  |
| I-3c          | mussel                                                    |                                                    |  |  |
| I-4a          | mussel, native littleneck, butter clam, poi               | nted macoma, cockle                                |  |  |
| I-4b          | native littleneck, butter clam, pointed ma                | coma, cockle, horse clam                           |  |  |
| I-5           | mussel                                                    |                                                    |  |  |
| I-6           | mussel, softshell, native littleneck, butter clam, oyster |                                                    |  |  |
| I-7           | mussel, softshell, dark mahogany clam, oyster             |                                                    |  |  |
| Ogden Pt.     | Nucella spp.                                              |                                                    |  |  |
| Clover Pt.    | Nucella spp., mussel                                      |                                                    |  |  |
| Ten Mile Pt.  | <i>Nucella_</i> spp.                                      |                                                    |  |  |
| Mission Pt.   | <i>Nucella</i> spp.                                       |                                                    |  |  |
| (mussel = )   | Mytilus trossulus)                                        | (horse clam = <i>Tresus capax</i> )                |  |  |
| (oysters = 0) | Crassostrea gigas)                                        | (softshell clam = Mya arenaria)                    |  |  |
| (native littl | eneck clam = <i>Prototheca staminea</i> )                 | (pointed macoma = Macoma inquinata)                |  |  |
| (butter clar  | n = Saxidomus giganteus)                                  | (dark mahogany clam = <i>Nuttallia obscurata</i> ) |  |  |

Snails for Imposex analyses (Japan and China)

(cockle = *Clinocardium nuttali*)

300-400 snails were collected at 3 sites in Victoria including: Ogden Pt., Clover Pt., and Ten Mile Pt., and one site at Mission Pt., Sechelt. Of those collected, approximately 80 were Nucella emarginata, 80 were *Nucella lamellosa*, and 100 were *Nucella canaliculata*. The *Nucella canaliculata* could also be *Nucella lima*; Dr. Je will do chromosome tests for species ID.

**Table 1.4** Fish tissue collection plan for the Vancouver Harbour Practical Workshop.

#### Vancouver PICES Practical Workshop Fish Tissue Collection

5/5/99

| Randomly select up to <b>30</b> a | ult English sole/site, | Weigh (g) and measure total length |
|-----------------------------------|------------------------|------------------------------------|
| (mm).                             |                        |                                    |

| Samples to be collected                                                                                                                                                                                                                                | Number/                                                    |                                 |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|----------------------------------------|
| Collect <b>Blood</b> (USA and Japan) (1to 3 ml/fish) from<br>male fish with heparinized syringe, centrifuge to<br>separate plasma; aliquot. For vitellogenin samples, add<br>0.1 M PMSF - 10 ul / ml plasma. Collect at T-48 and T-<br>11B sites only. | species/ se<br>10 or more<br>individuals in<br>glass tubes | x <u>Container</u><br>cryovials | <u>Storage</u><br>ice bath<br>to -20°C |
| Ot olit hs (Canada)                                                                                                                                                                                                                                    | ) <b>30</b> per<br>sit e                                   | provided by<br>W.Van Lab        | in glyœrin                             |
| (Bile (USA)                                                                                                                                                                                                                                            | ) <b>30</b><br>sit e                                       | amber vial                      | ice bath<br>to -20°C                   |
| Hist ology (USA)<br>- liver - longitudinal section<br>- kidney - longitudinal section<br>- gonad - cross section<br>- spleen - half of spleen                                                                                                          | <b>3 0</b><br>sit e                                        | w hite<br>cassette              | NBF                                    |
| (cut sections no thicker than 3mm)<br>If <b>nodules</b> are present collect separate section for<br>LM. Also collect heart, spleen and intestine for (LM).<br>Record on card.                                                                          | as needed                                                  | white<br>cassette               | NBF                                    |
|                                                                                                                                                                                                                                                        |                                                            |                                 |                                        |
| Crganics - USA (half of liver, after histo sample collected)                                                                                                                                                                                           | <b>3 0</b><br>sit e                                        | 7 ml r insed<br>scint vial      | ice bath<br>to<br>-20°C                |
| CYP1A - Canada (half of liver, first 10-15 livers)                                                                                                                                                                                                     | <b>10-15</b><br>site                                       | minced in scint . vial          | ice bath<br>to<br>-20°C                |
| Organics - Japan (half of liver, rest of fish after CYP1A is collected)                                                                                                                                                                                | <b>15-20</b><br>site                                       | 7 ml rinsed<br>scint vial       | ice bath<br>to<br>-20°C                |
| DNA adducts -USA (use 5% if whole liver available)<br>for two sites - T-48 and T-49                                                                                                                                                                    | <b>3 0</b><br>sit e                                        | green<br>cap<br>cryovial        | liquid N2<br>to -80°C                  |
| Stomach contents - Canada<br>- taxonomy                                                                                                                                                                                                                | <b>3 0</b><br>sit e                                        | p lastic<br>containers          | NBF                                    |
| Gonad organics - Japan<br>Place remaining tissue from histology in 20 ml vial                                                                                                                                                                          | <b>30</b><br>sit e                                         | 20ml r insed scint . v ial      | ice bath<br>to -20℃                    |
| Muscle<br>Organics - Japan                                                                                                                                                                                                                             | <b>10</b><br>site                                          | r insed<br>glass jar            | ice bath<br>to -20℃                    |

5

site

Met als - Russia

ice bath

to -20°C

Acid rinsed poly bottle

#### Sediment and benthos

A Van Veen grab was used to collect sediment for biological and chemical analyses (Figs. 1.10 and 1.11). Three grabs of sediment were collected and the surface layer (2 cm in depth) was removed and preserved for analyses of organic chemicals and metals. An additional 5 grabs were collected for benthic community studies. The sediment was immediately passed through a 0.5 mm sieve. Benthic organisms were removed from the sieve using forceps and preserved for further study (Fig. 1.12). Another grab was obtained for meiofauna samples. Five replicates cores (one cm diameter) to 10 cm depth were obtained, sectioned at one cm intervals, and preserved in 5% formalin for examination in the laboratory. These samples were archived for future analyses. The sections of one core from each station were used for grain size analyses. After evaporation of preservation fluid at air temperature, the sediment was analyzed for grain size at KORDI using standard sieving and settling tube techniques.

At sites where trawls were also obtained, the sediment/benthos site location was established in the center of the fish collection area. This ensured that the sediment chemistry, benthos and fish data could be correlated.



Fig. 1.10 Collecting sediment with the Van Veen grab (Jong Jeel Je).



Fig. 1.11 Sediment grab being lowered over the side of the research vessel.



**Fig. 1.12** Sediment samples were sieved and sorted for benthic organisms (Mark Myers, Alexander Tkalin, Tatyana Belan).

#### Intertidal organisms

Intertidal clams, mussels, and algae were collected from the beach at each site (Fig 1.13). Site locations corresponded with those for the fish and sediment collections as much as possible, however, beach obstructions, or lack of suitable organisms, sometimes required the intertidal sampling station to be relocated to the next closest area. Clams were collected for hydrocarbon and tributyltin (TBT) analyses. Mussels were collected (Fig. 1.14) for analysis of hydrocarbons, metals including TBT, condition factor and toxins associated with harmful algae. Clams and mussels were cleaned, and removed from their shell. Tissues were frozen or freeze dried, and shipped to the workshop participants home laboratories for further processing and analyses.

Gastropods in the genus *Nucella* were also collected for TBT analyses and imposex evaluations. However, no *Nucella* could be found at any of the established sites. Therefore, four new imposex study sites were established, three were near Victoria, and the fourth was near Mission Point (Sechelt) (Fig. 1.5). Anatomical measurements of gastropods relating to imposex studies were made at the West Vancouver Laboratory shortly after collection. Snails were then frozen and shipped to the workshop participant's home laboratories for further analyses.

#### Natural toxins - Harmful algae

Sediment samples from the benthic sites were collected to determine if encysted harmful algae were present. Mussels and other bivalves were also collected from intertidal sites for natural toxin analyses. Macroalgae was also collected from intertidal sites, and microalgae was scraped from the surface of the macroalgae for ARTOX analyses. Occasional bivalves occurring as bycatch in the bottom trawl samples were retained for toxin analyses.

#### Workshop products

1. Data are being archived and are available to PICES country scientists in this report. The database can also be accessed electronically through the PICES Home Page at "www.pices.int". A limited number of CDs



**Fig. 1.13** Collection of intertidal clams and algae (Seiichi Uno, Tian Yan, Toshihiro Horiguchi).



**Fig. 1.14** Collection of mussels (Alexander Tkalin).

will also be made of the data base, and can be requested from the PICES Secretariat.

- Plans are in progress for publication of interpreted results in a peer-reviewed journal. Papers are being prepared, and will be considered for publication in a special issue of Marine Environmental Research. It is anticipated that the papers will be published in 2002.
- 3. PICES participants gained an improved appreciation of the approaches and techniques used by other member countries to assess the effects of marine pollution, and improved mutual understanding and technology transfer among scientists from PICES countries.

#### Summary

The Practical Workshop conducted by the Marine Environmental Quality Committee of the North Pacific Marine Sciences Organization (PICES) was the first step by member countries in harmonizing methods used to investigate the status of contamination in coastal marine systems and the associated effects on vertebrate and invertebrate species. Success in harmonizing methods should significantly improve our ability compare data collected by multiple to investigators working in diverse ecosystems in the North Pacific. Greater inter-comparability of data also improves our capacity to assess the status and trends in chemical contaminant levels and biological effects among PICES countries. Continued efforts by PICES to harmonize assessments of status and trends in contaminant levels and effects, should increase the level of scientific information available to individual member countries to evaluate the relative risks from chemical contaminants on the health of their coastal ecosystems.

This data report presents the results from the collaborative effort to share expertise and experience in sampling and analyzing both sediment and biota. The data presented here also demonstrates that, during the workshop, we used a wide variety of techniques to measure levels of contaminant exposure and effects across a broad range of biological organization — from

biochemical endpoints to benthic and fish community structure. A substantive measure of the scientific success of the project was the commitment by the workshop participants to publish the findings from the workshop in the peer-reviewed scientific literature. Publication of the findings will make the data available to the broader scientific community, demonstrate the success of the workshop, and contribute an increased understanding of the effects of contaminants on biota of Vancouver Harbour.

The following is a list of lessons we learned in conducting this workshop:

- The time committed by the MEQ working group to developing workshop objectives, goals, and work plan was critical to the overall success of the workshop.
- Selection of Vancouver Harbour as the site for the workshop was important, because of the proximity to dry- and wet-lab facilities, availability of housing for workshop participants, and relatively short distances between sampling sites that exhibited a range in chemical contamination. Availability of an "operations room" for daily briefings and discussions of sampling plans by the group was also important as adjustments to logistics had to be made as the work progressed.
- Unrestricted use of a well-equipped research vessel and a small launch provided us with the flexibility to adjust daily plans as needed, and carry out a wide range of different sampling activities.
- The logistical support provided by our Canadian colleagues during the workshop was instrumental in the overall success of the sampling, sample processing and shipment of samples.
- Although we were successful in collecting a wide range of biotic samples, we were not able to conduct many of the chemical and biological analyses on a real time basis during the workshop. Because of the wide range of complex analyses needed, we could not assemble the specialized instruments needed

to carry out many of these analyses at the site of the workshop. Therefore, participants could not demonstrate their analytical techniques or share as much data during the workshop as originally anticipated. However the present data report should facilitate the exchange of data by the workshop participants.

- The rather intense work schedule for the workshop made it difficult for participants to take time from their personal research to participate in projects being conducted by their colleagues. There were opportunities, however, for discussion among participants after daily sampling and sample processing activities were completed. This opportunity was important in initiating exchange of technical information on the analytical techniques being used.

In conclusion, the Vancouver Harbour Practical Workshop was successful in several areas: 1) it brought scientists from all PICES countries together for the first time to carry out a collaborative research project involving sample collection and analysis, 2) the careful planning and execution of the workshop has led to a data set that provides new information on the status of chemical contamination in the Harbour, and 3) the workshop was a key step in initiating efforts to compare and contrast techniques used by PICES member countries in assessing the status and pollution in coastal trends of chemical ecosystems.

There are two recommendations for future PICES activities that have a format similar to our Practical Workshop. First, focusing on a more limited research approach would provide greater opportunity for more in-depth exchange of technical approaches and for conducting analyses during the workshop. The ability to share data and demonstrate techniques in real time would be effective in furthering technology transfer. Second, it is our conclusion that the structure for the workshop we conducted is applicable to other PICES committees, and we encourage the committees to consider the value of a Practical Workshop format in meeting their scientific objectives.

#### Acknowledgements

Funding for workshop supplies, shipping of samples, and travel for some of the workshop provided were by participants PICES. Appreciation is extended to the Practical Workshop Co-Chairmen Drs. John Stein and Colin Levings, and to Dr. Richard Addison for developing and overseeing the planning of the Workshop. Thanks are also extended to Ms. Christine Elliott and Ms. Beth Piercy who assisted with logistics for lodging, obtaining supplies and helped host the Workshop at the West Vancouver Laboratory, Fisheries and Oceans Canada. Thanks also to Mr. Dan Lomax, Mr. Paul Plesha, and Mr. Brian Bill from the Northwest Fisheries Science Center, National Marine Fisheries Service, U.S.A., for operating the R/V Harold W. Streeter, and transiting the vessel to and from Seattle, WA, U.S.A., and Vancouver Harbour, Canada. Appreciation is also extended to launch operators Mr. Bruce Clark and Mr. Corino Salomi from the Department of Fisheries and Oceans. Canada. Thanks is also extended to Mr. Geoff Lang from the Alaska Fisheries Science Center, National Marine Fisheries Service, U.S.A., for developing the relational database so that the Practical Workshop data can be easily accessed. Thanks also to Nara Mehlenbacher, West Vancouver Laboratory, Canada, for assistance with GIS and mapping. Additional personnel who helped with sample collection included Ms. Bernadita Anulacion, Mr. Sean Sol, Ms. Gina Ylitalo, Mr. Mark Myers, and Mr. Larry Hufnagle. The Northwest Fisheries Science Center, U.S.A., provided funding for the operation of the research vessel. Fisheries and Oceans Canada provided funding for the operation of the launch and availability of the laboratory space.

#### References

- Addison, R.F. and K.R. Clarke (eds.). 1990. Special issue on biological effects on pollutants in a subtropical environment. J. Exp. Mar. Biol. Ecol. Vol. 138: 1–8.
- Bayne, B.L., Clarke, D.R., and J.S. Gray (eds.).
  1988. Biological effects of pollutants. Results of a practical workshop. Mar. Ecol. Prog. Ser. Special Issue Vol. 46. 278 pp.

- Myers, M.S., Rhodes, L.D., and B.B. McCain. 1987. Pathological anatomy and patterns of occurrence of hepatic neoplasms, putative preneoplastic lesions, and other idiopathic hepatic conditions in English sole (*Parophrys vetulus*) from Puget Sound. Journal National Cancer Institute 78(2): 333–363.
- Myers, M.S., Stehr, C.M., Olson, O.P., Johnson, L.L., McCain, B.B., Chan S-L. and U. Varanasi. 1994. Relationships between toxicopathic hepatic lesions and exposure to English sole chemical contaminant in (Pleuronectes *vetulus*) starry flounder (*Platichthys stellatus*) and white croaker (Genyonemus lineatus) from selected marine

sites on the Pacific Coast, USA. Environmental Health Perspectives 102: 200–215.

- Myers, M.S., Johnson L.L., Olson, O.P., Stehr, C.M., Horness, B.H., Collier, T.K., and B.B. McCain. 1998. Toxicopathic hepatic lesions as biomarkers of chemical contaminant exposure and effects in marine bottomfish species from the Northeast and Pacific Coasts, USA. Mar. Poll. Bull. 37: 93–113.
- Stebbing, A.R.D. and V. Dethlefsen. 1992. Introduction to the Bremerhaven workshop on biological effects of contaminants. Mar. Ecol. Prog. Ser. 91: 1–8.

#### **Participation List**

#### <u>Canada</u>

Richard F. Addison\* Stelvio Bandiera\* Christine Elliott Colin D. Levings\* Beth Piercy Terri Sutherland

#### <u>China</u>

Zhengyan Li Tian Yan\*

#### <u>Japan</u>

Toshihiro Horiguchi\* Makato Shimizu\* Munetaka Shimizu Seiichi Uno\*

#### Korea

Jong Jeel Je\* Ji Hyun Yun

#### <u>Russia</u>

Tatyana Belan\* Tatyana Lishavskaya Alexander V. Tkalin\*

#### U.S.A.

Bernadita Anulacion Brian Bill Larry Hufnagle Dan Lomax Mark Myers Paul Plesha Sean Sol Carla Stehr\* John Stein\* Gina Ylitalo

\*Workshop organizers and project leaders

## Section II Site Description and Oceanography

#### Colin D. Levings<sup>1</sup> and Steve Samis<sup>2</sup>

- <sup>1</sup> Fisheries and Oceans Canada, Science Branch, West Vancouver Laboratory, 4160 Marine Drive, West Vancouver B.C., Canada. V7V 1N6
- <sup>2</sup> Fisheries and Oceans Canada, Science Branch, Habitat and Enhancement Branch, 555 West Hastings Street, Vancouver, B.C., Canada. V6B 5G3

#### Vancouver Harbour

Vancouver Harbour, here defined as the waters to the east of Point Atkinson (Figs. 1.2-1.4), consists of three or four water bodies, namely Outer Burrard Inlet or English Bay, Inner Burrard Inlet, Port Moody Arm, and Indian Arm, a long fjord (22 km) which leads to the northeast from the main harbour. All of the PICES sampling stations were on the first three water bodies, except for a far field reference station located about 15 km to the north, in another part of the Strait of Georgia (see below). The approximate length of the inlet system is about 30 km with maximum width of approximate 4 km in English Bay. Inner and Outer Burrard Inlets are separated by a narrowing of the harbour, known as First Narrows. Further to the east, Inner Burrard Inlet and Indian Arm/Port Moody are separated by Second Narrows. Each narrows is about 0.5 km wide. Maximum depth ranges from about 45 m in Outer Burrard Inlet to about 10 m in Port Moody Arm.

The harbour is the largest port on the west coast of Canada. For administration purposes, the harbour comes under the jurisdiction of the Vancouver Port Authority, and includes port facilities on Roberts Bank and the Fraser River estuary, which is outside of the area where the PICES workshop was focused. In 1998 there were about 2500 deep sea ship landings in the harbour. About 8 million tons of ballast water was discharged into the harbour in 1999, and 71.2 million tons of cargo (containers and bulk goods) were handled, including 1.07 metric ton equivalent units of containers. Coal and sulfur are stockpiled in large volumes on docks and backup land adjacent to the The shoreline of the harbour has been docks. modified for dock construction, with 42.1 km out of the total shoreline length of 102.7 km converted to riprap revetment or docks. The undisturbed

shorelines consist primarily of rock and cobble beaches, rocky shores, and mudflats, with the latter most common in Port Moody Arm.

The following description of the general oceanography of the harbour is adapted from Stockner and Cliff (1979) who relied extensively on Tabata (1971) for their text.

#### Tides and currents

Tides in Vancouver Harbour are of the mixed diurnal type, with mean range of 3.1 m and maximum of 4.9 m. At both First and Second Narrows, maximum tidal currents can range up to 11 km·h<sup>-1</sup>. These are the areas of greatest tidal mixing in the harbour. In a recent study currents at depth were found to be as high as  $1.5 \text{ m·s}^{-1}$  (Isachsen and Pond 2000). The average tidal prism for the inlet is approximately  $8.4 \times 10^7 \text{ m}^3$  (Davidson 1979 cited in Lewis and Thomas 1986).

#### Temperature and salinity

Figures 2.1a and b show sections of temperature and salinity through the harbour area obtained during a survey in July 1966. The pattern shown is supported by more recent work (eg Davidson 1979). The positions of the four stations sampled by trawling and the additional sediment sampling stations are also shown. Bottom water temperatures near the locations were about 10-11°C except for the shallow stations in Port Moody Arm (Stations T-38, B-38 and B-41B). Surface temperatures, which might represent conditions on the intertidal zone, ranged from 13-15°C in Outer Burrard Inlet to 16–18°C in Port Moody Arm.

Salinity in outer Burrard Inlet is strongly influenced by discharge from the Fraser River (annual mean discharge  $3600 \text{ m}^3 \cdot \text{s}^{-1}$ ). During



**Fig. 2.1** Location of trawl and benthos sites in relation to longitudinal variation in bottom water temperature (A) and salinity (B) in Vancouver Harbour. Oceanographic section data are from Thomson (1981).

high discharge periods, the freshwater plume of the Fraser River occasionally penetrates through First Narrows, into the inner harbour. Other sources of freshwater include the Capilano River (regulated, discharge range 4.5 to 25.0 m<sup>3</sup>·s<sup>-1</sup>) and the Seymour River (regulated 2.8 to 23.3 m<sup>3</sup>·s<sup>-1</sup>) which enters the harbour near the First and Second Narrows, respectively. Bottom salinities in July 1966 decreased from about 29.5 psu in outer Burrard Inlet to between 22.0 and 24.4 psu in Port Moody Arm. Surface salinities ranged from 12 psu in outer Burrard Inlet to 18 – 22 psu in Port Moody Arm.

#### **Dissolved** oxygen

In the main harbour Stockner and Cliff (1979) recorded a seasonal dissolved oxygen (DO) range

of 5.0 to 10.0 mg·l<sup>-1</sup>, well above the levels that would impair marine organisms. Early investigations of pollution in the harbour (Waldichuk 1965) established that even in shallow Port Moody Arm, at the landward end of the Inlet system, the estuarine circulation enabled a relatively rapid flushing of bottom water so bottom water DO was always > 6.0 mg·l<sup>-1</sup>. Recent investigations connected with dispersal of heated effluent in Port Moody Arm have tended to confirm Waldichuk's findings (Taylor *et al.* 2001).

#### Nutrients

Data from 1976 (Stockner and Cliff 1979) showed little evidence of eutrophication in Vancouver Harbour when their phytoplankton surveys were conducted in 1976. Nitrate levels in June were 0.120 mg·l<sup>-1</sup> in Outer Burrard Inlet, 0.175 mg·l<sup>-1</sup> and 0.120 mg·l<sup>-1</sup> in Inner Burrard Inlet and Port Moody Arm, respectively. Since there is less discharge of untreated sewage into the harbour now relative to when their surveys were made, it is likely nutrient levels have not increased.

#### Sediments

Sediments in Vancouver Harbour range from fine mud in deposition areas such as Port Moody Arm, to coarse cobble and gravel at First and Second Narrows, and on river deltas such as the mouth of Capilano River. However all of the PICES stations were located on mud substrates, as shown in the benthic invertebrate study of Je et al. (this report). The sediment transport patterns are McLaren (1994) relatively well known. concluded that the west portion of Inner Burrard Inlet and the north portion of outer Burrard Inlet were essentially characterized by a counterclockwise circulation with flood-directed sediment transport dominating the south side, and ebbdirected transport dominating the central and northern half. Dredging is needed at First Narrows to maintain the navigational channel, indicating net deposition at that location. In Port Moody Arm, sedimentation rates of about 1 cm  $y^{-1}$ have been documented (Pedersen and Waters 1989) and dredging of deep-sea berths is periodically needed in this area.

#### Thornbrough Channel (Howe Sound)

A far field reference area was chosen in Howe Sound, specifically on the southern end of Thornbrough Channel near Granthams Landing, about 2 km north of the town of Gibsons (population about 4000) (Figs. 1.2-1.4). Both trawling and intertidal collecting were conducted to match sampling in Vancouver Harbour. However, because of bottom conditions, the trawling could not be done at the same depth relative to the Outer Burrard Inlet station (T-49, 45 m) and hence the three trawls were completed at deeper depths, between 55 to 75 m. Thornbrough Channel is connected to the same water masses as Vancouver Harbour via deeper channels leading to the Strait of Georgia. Sediments in the deeper parts of the Channel are

sand (see Je *et al.*, this report) and beach substrates at Granthams Landing consist of sand and gravel.

Only a few data are available on the physical and chemical oceanography of southern Thornbrough Channel. Although part of Howe Sound, which is considered a true fjord, Thornbrough Channel is well outside the area of the sill in the fjord and thus shows characteristics similar to the adjacent Strait of Georgia.

#### Temperature, salinity and dissolved oxygen

Waldichuk *et al.* (1968) gave limited data from a station within one km of PICES station T-50. In September 1960, at 50 m depth, temperature was 8.6°C and salinity 29.6 psu. Dissolved oxygen was  $6.2 \text{ mg} \cdot l^{-1}$ .

#### Sediment transport

McLaren *et al.* (1993) concluded that sediment in southern Thornbrough Channel was moving from south to north and that deposition was occurring in the area of the PICES station. As shown by Je et al. (this report) sediments were sandy at the sampling site (mean grain size  $0.25 \ \mu m$ ). Some of this sediment may be transported to the area from nearby islands.

#### Victoria and Mission Point

Three sites in Victoria, Vancouver Island, and one on the eastern side of the Strait of Georgia north of Howe Sound (Mission Point, near Sechelt, Fig. 1.5), were chosen for imposex studies suitable neogastropod because monitoring organisms were absent at the time of sampling from Vancouver Harbour at the PICES stations. Victoria is situated at the south east point of Vancouver Is. (Fig. 1.5) and is exposed to tidal currents from the eastern Strait of Juan de Fuca. The "estuarine" circulation conditions attributable to the influence of the Fraser River discharges on the Strait of Georgia are probably at the limits of their influence at the most northerly Victoria sampling site at Ten Mile Point. All sites have moderately wave-exposed rocks and sand or sandy-mud beaches. Tributyltin contamination arising from large vessel traffic, either locally or

through the Straits of Georgia and Juan de Fuca, is likely to have the most impact at the Breakwater and Clover Point sampling sites; Ten Mile Point is likely to be less affected. Mission Point is similarly located in an area where nearby vessel traffic is minimal.

#### Sources of Contamination

#### Vancouver Harbour

and industrialization began Shipping in Vancouver Harbour in the late 19<sup>th</sup> century. The first major cargo exported from the harbour was wood products from the forest industry. Other industries located around the shoreline after 1900 included petroleum refineries, shipyards, a chlorine plant, seafood processing industries, fuel Some of these loading docks, and marinas. industries are no longer present on the harbour but their footprints or remnant contamination may still be present, as described below.

Burrard Inlet has about 36 permitted discharges to the marine environment, comprised of municipal and industrial effluents. The largest discharge is from Burrard Thermal, a gas-fired electrical generator. The operator of Burrard Thermal has a permit to discharge 1,700,000 m<sup>3</sup>/day of cooling water into Port Moody Arm at a temperature of 27°C. Second in size is the Lion's Gate Waste Water Treatment Plant, the operator of which has a permit to discharge 102,000 m<sup>3</sup>/day of primary treated sewage at First Narrows (Burrard Inlet Environmental Action Program, 1997).

Burrard Inlet also receives effluent from 32 unpermitted combined sewer overflows (CSOs), the largest of which is at Clark Drive. The two Clark Drive overflows (49°17.31'N, 123°4.65'W; 49°17.27'N, 123°4.69'W) discharge approximately 143 times per year, with an average annual discharge of 20,800,000 m<sup>3</sup> of mixed stormwater and untreated domestic sewage. Non-point source discharges in Burrard Inlet include those from 29 marinas, 11 ship repair facilities, 7 fueling operations, 29 ship loading facilities (sulfur, metal concentrates, coal, potash, phosphate rock, grain, forest products, chemicals, petroleum) and 38 anchorages. Sediments in Vancouver Harbour are contaminated with a variety of heavy metals and organics, as described by Tkalin et al. (this report) as well as several comprehensive recent reports by Canadian authorities (Boyd *et al.* 1998). The origins of these pollutants are likely a combination of the above point and non-point sources.

#### Thornbrough Channel

There are no industrial developments in southern Thornbrough Channel but there are residences on the shore. These homes have septic tanks that may contribute contaminants to the groundwater above the intertidal zone. Very large volumes of logs from elsewhere in BC are brought to the north end of Thornbrough Channel where they are dumped into the water, stored, and eventually towed for processing at sawmills in the lower Fraser River and elsewhere. A marina is located in the town of Gibsons. Sewage is treated in a secondary sewage treatment plant with an outfall discharge located at 49°23.13'N, 123°30.78'W. Permitted effluent volume is 1389  $m^3/day$ . A pulp mill located at Port Mellon, about 12 km north of the PICES sample station has a permitted discharge of 106,500 m<sup>3</sup>/day of pulp mill effluent, and 44,500  $m^3$ /day of cooling water. The main diffuser outfall from Howe Sound Pulp and Paper at Port Mellon is located at 49°31.19'N, This mill was upgraded to 123°28.50′W. secondary treatment and chlorine substitution in response to amended and new federal Fisheries Act and Canadian Environmental Protection Act regulations enacted in May 1992. The Howe Sound pulp outfall diffuser has 6 ports ranging in depth from 30 m to 115 m below the low water mark. The outfall extends 277 m into the channel from shore into northern Thornbrough Channel where it enters a predominately northward flow. According to McLaren et al. (1993), Thornbrough Channel is entirely tidally dominated. As a result, the ebb and flood tidal currents probably disperse contaminants to the north and south of the discharge point.

#### **Fisheries closures**

Vancouver Harbour is closed for commercial trawling for fish but portions are open for shrimp trawling, primarily for smooth pink shrimp (*Pandalus borealis eos*). English Bay/Outer

Burrard Inlet has supported a shrimp fishery for over 75 years (Butler 1980). Until several years ago there was large by-catch of a variety of fish species in this fishery, including English sole (Pleuronectes vetulus), the target species for the ecophysiological studies in the PICES workshop. By-catch in the shrimp fishery has been reduced by the use of mandatory escape devices or extruders which are now built into the trawl nets. Inner Burrard Inlet was closed to crab fishing in May 1992, due to dioxin/furan contamination of crab hepatopancreas. The contaminant-related closure was lifted in August 1995, however, due to navigational risk, the area between First Narrows and Second Narrows is closed to all crab and shrimp fishing. Commercial and recreational crab fishing is permitted in Outer Burrard Inlet and east of Second Narrows, including Port Moody Arm.

Southern Thornbrough Channel is also closed for commercial trawling for fish but is an area for shrimp trawling. Howe Sound, including south Thornrough Channel, remains closed to commercial crab harvesting because of dioxin and furan contamination of hepatopancreas. Recreational crab harvesting is allowed with a consumption advisory issued to the public on crab hepatopancreas.

#### References

- Boyd, J., Baumann, J., Hutton, K., Bertold, S. and B. Moore. 1998. Sediment quality in Burrard Inlet using various chemical and biological benchmarks. Prepared for the Burrard Inlet Environmental Action Program. Burnaby, BC. 87 p + app.
- Burrard Inlet Environmental Action Program. 1997. Burrard Inlet point source discharge inventory. Environmental Quality Objectives and monitoring Action Team. 38 pp. + Appendices. ISBN 0-7726-3284-7.
- Butler, T.H. 1980. Shrimps of the Pacific Coast of Canada. Can. Bull. Fish. Aquat. Sci.: 202.
- Davidson, L.W. 1979. Physical oceanography of Burrard Inlet and Indian Arm, British Columbia. MSc thesis Univ. of British Columbia.

- Isachsen, P.E, and S. Pond. 2000. The influence of the spring-neap tidal cycle on currents and density in Burrard Inlet, British Columbia Canada. Estuar. Coast. Shelf Sci. 51: 317– 330.
- Lewis, A.G. and A.C. Thomas. 1986. Tidal transport of planktonic copepods across the sill of a British Columbia fjord. J. Plankton Res 8: 1079–1089.
- McLaren, P. 1994. Sediment transport in Vancouver Harbour: Implications to the Fate of Contaminated Sediments and/or dredged material disposal. Final Report to Burrard Inlet Environmental Action Program, Burnaby, BC. 25 pp. + app.
- McLaren, P., Cretney, W.J. and R.I. Powys. 1993. Sediment pathways in a British Columbia fjord and their relationship with particleassociated contaminants. J. Coast. Res. 9: 1026–1043.
- Pedersen, T.F. and R.D. Waters. 1989. Assessment of the enrichment of cadmium and other metals in the sediments of Port Moody and Indian Arm, British Columbia. Ocean Dumping Research Fund Report No. 15.2.2. 35 pp. Environment Canada.
- Stockner, J.G. and D.D. Cliff. 1979. Phytoplankton ecology of Vancouver Harbour. J. Fish. Res. Bd. Canada 36: 1–10.
- Tabata, S. 1971. A brief oceanographic description of the waters of Burrard Inlet and Indian Arm. MS Rep. to Mar. Sci. Dir., Pac. Reg., Dep. Environ. Canada: 48 pp.
- Taylor, A.E, Fissel, D.B. and I.K. Birtwell. 2001.A Study of the Thermal Regime of Port Moody Arm, Burrard Inlet, BC. Can. Tech. Rep. Fish. Aquat. Sci. 2344, 48 p.
- Thomson, R.E. 1981. Oceanography of the British Columbia Coast. Can. Spec. Publ. Fish. Aquat. Sci.: 56. 291 pp.
- Waldichuk, M. 1965. Water exchange in Port Moody, British Columbia, and its effect on waste disposal. J. Fish. Res. Bd. Canada 22: 801–825
- Waldichuk, M., Markert, J.R., and J.H. Meikle.
  1968. Fraser River estuary, Burrard Inlet, Howe Sound and Malaspina Strait Physical and Chemical Oceanographic Data 1957-1966. Vol 1, September 1957 to February 1962. J. Fish. Res. Bd. Canada 939. 244 pp.

## **Section III – Extended Abstracts**

The extended abstracts that follow are summaries of the interpreted results presented at the PICES Ninth Annual Meeting in Hakodate, Japan, October 24, 2000.

# Environmental assessment of Vancouver Harbour: The results of an International Workshop – trace metals

**Alexander V. TKALIN<sup>1</sup>**, T.S. Lishavskaya<sup>1</sup>, L.T. Kovekovdova<sup>2</sup>, M.V. Simakov<sup>2</sup>, V.M. Shulkin<sup>3</sup>, N.N. Bogdanova<sup>3</sup>, T.L. Primak<sup>3</sup>, and E.A. Slin'ko<sup>4</sup>

- <sup>1</sup> Far Eastern Regional Hydrometeorological Research Institute (FERHRI), Vladivostok, Russia
- <sup>2</sup> Pacific Research Centre of Fisheries and Oceanography (TINRO-Centre), Vladivostok, Russia
- <sup>3</sup> Pacific Geographical Institute, Far East Branch, Russian Academy of Sciences (PGI FEB RAS), Vladivostok, Russia
- <sup>4</sup> Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences (POI FEB RAS), Vladivostok, Russia

#### Materials and methods

#### Sampling

#### Bottom sediments

Bottom sediment samples were collected by Van Veen grab from seven stations (Section I, Fig. 1.2). Three replicate samples were taken at each station. The surface layer of sediments was collected by plastic spoon in pre-cleaned Ziploc plastic bags. Samples were frozen after collection, then freeze-dried in the shore laboratory and transported to Russia for further analysis.

#### Mussels

Mussels (about 30 at each site) were collected from rocks and concrete piles during low tide at seven stations (Section I, Fig. 1.3). At all stations, mussels *Mytilus trossolus* were found. At station I-6, oysters *Crassostrea gigas* were also found. In the shore laboratory, soft tissues were removed, weighed, placed in pre-cleaned plastic containers and stored frozen. Then samples were freezedried and transported to Russia for further analysis.

#### <u>Fish</u>

Fish were collected by bottom trawl at 5 stations (Section I, Fig. 1.4). Fish muscle samples were taken from 5 individuals (English sole) at each trawling station and kept in pre-cleaned plastic bags on ice aboard the research vessel and then frozen in the shore laboratory. After freeze-drying, samples were transported to Russia for further analysis.

#### Analysis

In Vladivostok (Russia), samples of bottom sediments, mussel and fish tissues were homogenized and distributed for analysis in three laboratories:

- Pacific Research Centre of Fisheries and Oceanography (TINRO-Centre);
- Pacific Geographical Institute, Far East Branch, Russian Academy of Sciences (PGI FEB RAS);
- Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences (POI FEB RAS).

Analytical methods used at the TINRO-Centre are briefly described below.

#### Bottom sediments

After homogenization, about 0.4 g of dry sample was placed in a 50 ml Teflon beaker, HClO<sub>4</sub>, HNO<sub>3</sub> and HF were added, the beaker was closed and heated to 50°C for 24 hours. Then HNO<sub>3</sub> and HF were added again and the beaker content was dried at 80°C. After that, 1 ml of concentrated HNO<sub>3</sub> and deionised water were added up to final volume of 20 ml. Concentrations of trace metals (Al, Fe, Co, Cr, Cu, Mn, Ni and Zn) were determined using the flame atomic absorption spectrophotometer NIPPON JARREL ASH, model AA-885, with D<sub>2</sub>O background correction. For Al analysis, N<sub>2</sub>O-acetylene mixture was used, for other metals – acetylene-air mixture. Contents of Cd and Pb were determined using a graphite furnace on atomic absorption spectrophotometer

HITACHI 170-70, with Zeeman background correction. Detection limits (ppm) were as follows: Al and Fe - 2, Cd - 0.0002, Cr - 0.02, Cu - 0.005, Pb - 0.04, Zn - 0.02.

#### Mussels

After homogenization, 1-3 g of dry sample were soaked in a Teflon beaker with concentrated HNO<sub>3</sub> (10 ml) for 24 hours, then the acid solution was heated to 120°C for 3 hours. After filtration, trace metal contents (Al, Fe, Co, Cr, Cu, Mn, Ni, Zn) were determined using the flame atomic absorption spectrophotometer NIPPON JARREL ASH, model AA-885. For Al analysis, N<sub>2</sub>Oacetylene mixture was used, for other metals – acetylene-air mixture. Contents of Cd and Pb were determined using a graphite furnace on atomic absorption spectrophotometer HITACHI 170-70, with Zeeman background correction.

#### <u>Fish</u>

After homogenization, 1-3 g of dry sample were soaked in a Teflon beaker with concentrated HNO<sub>3</sub> (10 ml) for 24 hours, then the acid solution was heated to 120°C for 3 hours. After filtration, trace metal contents (Al, Fe, Co, Cr, Cu, Mn, Ni, Zn) were determined using the flame atomic absorption spectrophotometer NIPPON JARREL ASH, model AA-885. For Al analysis, N<sub>2</sub>Oacetylene mixture was used, for other metals – acetylene-air mixture. Contents of Cd and Pb were determined using a graphite furnace on atomic absorption spectrophotometer HITACHI 170-70, with Zeeman background correction.

#### Preliminary results and discussion

#### Metals in bottom sediments

Data on trace metal contents in bottom sediments are presented in the data section of this report. The results obtained in PGI and POI are in reasonable agreement with the TINRO-Centre data. According to the Fe content (from 2.3 to 4.4%), bottom sediment characteristics at sampling sites were auite different. Concentrations of total copper at all stations except B-50 (Howe Sound, reference site) were higher than 34 ppm (ERL, Long et al. 1995). Maximum concentration, 333 ppm, was observed at station B-3A (Sulfur Dock/Copper Ore Dock). On the contrary, contents of cadmium at all stations except B-3A were below ERL value, 1.2 ppm. Concentrations of Pb and Zn exceeded those criteria (46.7 ppm and 150 ppm respectively) at stations B-3A, B-38 (Port Moody, refinery) and B-41B (Port Moody, Ioco). For all these metals, maximum contents were observed at station B-3A (Sulfur Dock/Copper Ore Dock).

A large amount of data on trace metal contents in bottom sediments of Vancouver Harbour have been obtained by Canadian researchers (e.g., Goyette and Boyd 1989; Boyd *et al.* 1998). Data from these two reports for Cd, Cu, Pb and Zn are given in Table 1 along with the results from the PICES MEQ Practical Workshop. A similar comparison for the most polluted (in 1999) station B-3A is shown in Table 2. In both cases a decreasing trend in trace metal concentrations is evident.

Table 1. Trace metals in bottom sediments of Vancouver Harbour in 1985-87, 95 and 99 (ppm, dry weight).

| Year      | Cd        | Cu      | Pb       | Zn      | Reference              |
|-----------|-----------|---------|----------|---------|------------------------|
| 1985–1987 | <0.3-10.2 | 48–9760 | 17-15420 | 88-2267 | Goyette and Boyd, 1989 |
| 1995      | 0.1-3.6   | 31-1008 | 17–123   | 50-800  | Boyd et al., 1998      |
| 1999      | 0.3-1.2   | 11–333  | 4–76     | 35-407  | This work              |

Table 2. Trace metals in bottom sediments of Vancouver Harbour at station B-3A (ppm, dry weight).

| Year      | Cd  | Cu    | Pb   | Zn    | Reference              |
|-----------|-----|-------|------|-------|------------------------|
| 1985–1987 | 7.4 | 1200* | 250* | 1300* | Goyette and Boyd, 1989 |
| 1995      | 3.6 | 1008  | 123  | 800   | Boyd et al., 1998      |
| 1999      | 1.2 | 333   | 76   | 407   | This work              |

\*approximate value from diagram

#### Metals in mussels

Data on trace metal contents in mussels *Mytilus trossolus* are presented in the data section of this report. The results obtained in PGI and POI are in reasonable agreement with the TINRO-Centre data. Concentrations of Al, Fe, Cd, Cu and Pb were maximum at station I-2A (Sulfur Dock/Copper Dock). Highest zinc content was registered at station I-3A (Longsdale Quay). Metal concentrations in soft tissues of mussels at other stations were comparable with values from reference stations (I-1, PEI, and I-7, Howe Sound).

A large amount of data on trace metal contents in mussels has been collected within US NOAA NS&T Program (e.g., O'Connor 1998). Data from this paper for Cd, Cu, Pb and Zn are given in Table 3 along with the results of the PICES MEQ Practical Workshop. It is necessary to take into account that NS&T sampling stations are situated outside the "hot spots". Therefore, contaminated sites in Vancouver Harbour (stations I-2A and I-3A) should not be considered as exceptionally polluted.

#### Metals in fish tissues

Data on trace metal contents in fish tissues (English sole, muscle) are presented in the data section of this report. Concentrations of Al, Cd and Cu were maximum at station T-48 (Cates Park, Indian Arm). Highest zinc content was registered at station T-38 (Port Moody, refinery) and maximum lead content at station T-11B (Longsdale Quay). Even the highest

concentrations of copper, zinc and other metals in fish muscle were comparable with values from reference stations (T-49, PEI, and T-50, Howe Sound).

A large amount of data on trace metal contents in fish tissues have been collected by Canadian researchers (Goyette and Boyd 1989). Data from this report for Cd, Cu, Pb and Zn are given in Table 4 along with the results of the PICES MEQ Workshop. As in the case of bottom sediments, the decreasing trend in trace metal contents can be seen.

#### Conclusions

According to the results on trace metal contents in bottom sediments, station B-3A (Sulfur Dock/Copper Ore Dock) is the most polluted (among those sampled in May 1999). Comparison with data obtained in 1985-1987 and in 1995 revealed a decreasing trend in trace metal concentrations. To characterize temporal trends more precisely, analysis of dated sediment cores might be necessary.

Maximum contents of most metals (except Zn) in soft tissues of mussels were observed at station I-2A (Sulfur Dock/Copper Ore Dock). The highest concentration of zinc was determined at the Longsdale Quay (station I-3A).

In the case of trace metals in fish muscle, even the highest concentrations were comparable with values from reference sites. Contents of trace metals in 1999 were lower than in 1985–1986.

Table 3. Trace metal contents in mussels from Vancouver Harbour in 1986-1996 and 1999 (ppm, dry weight).

| Year      | Cd      | Cu       | Pb        | Zn      | Reference      |
|-----------|---------|----------|-----------|---------|----------------|
| 1986–1996 | 2.0-3.2 | 7.2-10.0 | 0.6-1.1   | 104–143 | O'Connor, 1998 |
| 1999      | 1.7-5.9 | 6.1-60.8 | 1.0-218.7 | 112-325 | This work      |

**Table 4.** Trace metal contents in muscle of fish from Vancouver Harbour in 1985–1986 and 1999 (ppm, dry weight).

| Year      | Cd        | Cu      | Pb        | Zn        | Reference              |
|-----------|-----------|---------|-----------|-----------|------------------------|
| 1985–1986 | 0.04-0.51 | 0.4-4.6 | 0.08-1.59 | 5.1-39.8  | Goyette and Boyd, 1989 |
| 1999      | 0.02-0.04 | 1.2-1.5 | 0.23-0.62 | 16.0-23.7 | This work              |

#### References

- Boyd, J., Baumann, J., Hutton, K., Bertold, S., and B. Moore. 1998. Sediment quality in Burrard Inlet using various chemical and biological benchmarks. Burrard Inlet Environmental Action Program (BIEAP), November 1998.
- Goyette, D., and J. Boyd. 1989. Distribution and environmental impact of selected benthic contaminants in Vancouver Harbour, British

Columbia, 1985-1987. Environment Canada Regional Program Report: 89-02.

- Long, E.R., MacDonald, D.D., Smith, S.L., and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19: 81–97.
- O'Connor, T.P. 1998. Mussel Watch results from 1986 to 1996. Marine Pollution Bulletin 37: 14–19.

#### Assessment of chemical contaminant exposure and effects in English sole

**Carla STEHR**, Mark Myers, Dan Lomax, Richard Boyer, Sylvester Spencer and John Stein Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, U.S.A

The Marine Environmental Quality Committee of PICES sponsored a Practical Workshop in Vancouver Harbour, Canada, during the summer of 1999. The goal of the workshop was to exchange information about approaches PICES member countries use to assess the biological impacts from marine pollution. To accomplish this, scientists from PICES member countries worked cooperatively to study the effects of chemical contaminants on marine organisms at several sites in Vancouver Harbour, British Columbia.

As part of this workshop, the Northwest Fisheries Science Center examined the relationship between liver lesions and chemical contaminant exposure in English sole (*Parophrys vetulus*). English sole is a benthic flatfish used extensively as a sentinel species for contaminant effects in North American west coast marine environments. English sole live in close association with bottom sediments, preying on clams, worms and other benthic invertebrates. This species of fish lives in nearshore environments that are often affected by urban activities, and are therefore at high risk of being exposed to chemical contaminants.

Fish were collected with a bottom trawl from a reference site outside the harbour (Howe Sound), a site near the entrance to the harbour (West



Fig. 1 Location of fish collection sites.

Vancouver Lab), and three industrial sites (Lonsdale Quay, Indian Arm and Port Moody) within Vancouver Harbour (Fig. 1). Samples of fish liver, fish bile and sediment were collected, preserved, and returned to the laboratory for analyses. Liver and bile were collected from 30 fish at each site. A portion of the liver was preserved in Dietrichs fixative for histopathology. Paraffin sections were prepared and examined microscopically for non-infectious, toxicopathic lesions. Liver was also collected for chlorinated hydrocarbon analyses. Three composites of liver were analyzed. Each composite contained equal weights of liver from five fish. Bile from 10 individual fish was analyzed at each sampling site. Bile was analyzed for metabolites of aromatic hydrocarbons using HPLC as described by Krahn

*et al.* (1986). A Van Veen grab was used to collect sediment from each site.

After fishing operations were completed, the center of the trawl area was determined, the anchor was deployed to maintain position, and three grabs of sediment were taken from this area. At sites where no trawling was done, the site location was established by the location of the sediment sample. An equal amount of sediment from each grab was combined to form a sample for each site and analyzed for aromatic

hydrocarbons (AHs) and chlorinated hydrocarbons (CHs). Sediment AHs and CHs, and liver CHs were analyzed by gas chromatography/mass spectroscopy as described by Sloan *et al.* (1993).

Sediment concentrations of aromatic hydrocarbons were higher at the three industrialized sites in Vancouver Harbour (Fig. 2). Chlorinated hydrocarbons were higher at Indian Arm and Port Moody, the two industrial sites located farthest inside the Harbour (Fig. 2). Concentrations of PCBs and hexachlorobenzene in English sole liver



Fig. 2 Comparison of chemical concentrations in English sole and sediment.





bd = all three samples were below detection limits

 $bd^{1}$  = two of the three samples were below detection limits.

The detection limit is different for each sample depending on sample size.

Fig. 3 Chlorinated hydrocarbons in English sole liver.

were significantly higher at all three industrial sites compared to the Howe Sound reference site (Fig. 3). Concentrations of aromatic hydrocarbon metabolites in English sole bile were significantly higher at the Indian Arm and Port Moody sites compared to the reference sites (Fig. 4).

Histopathology of English sole liver was examined as a biological marker of contaminant effects. Fish were examined for toxicopathic liver lesions including proliferative disorders (such as hepatocellular regeneration and cholangiofibrosis), degeneration/necrosis specific (including megalocytic hepatosis and hepatocellular nuclear preneoplastic pleomorphism), conditions (including eosinophilic, basophilic and clear cell foci), and neoplasms (including adenomas and carcinomas). Toxicopathic liver lesions were observed in 20 to 23% of the fish at each of the three industrial sites, while no lesions were observed at either of the reference sites (Fig. 5).


Naphthalene equivalents of aromatic hydrocarbon metabolites (low molecular weight, typical of fuel oils)





Fig. 4 Aromatic hydrocarbon metabolites (fluorescent aromatic compounds) in bile of English sole.



**Fig. 5** Liver lesions in English sole.

Fish age data were provided by Colin Levings and colleagues at Fisheries and Oceans Canada in West Vancouver. Otoliths collected from English sole were aged as part of their fish community study that was conducted during the Practical Workshop. The average age of fish was 6 to 7 years at all sites except at Port Moody, where the average age was 9 years. Analysis of variance indicated that the mean age of English sole at Port Moody were significantly older than at other sites. It is important to account for fish age when evaluating prevalences of liver lesions, because the risk of developing these lesions increases with age (Rhodes et al. 1987). Therefore, the high prevalence of toxicopathic liver lesions in English sole from Port Moody may be occurring in part because these fish are older than those at the other sites. In other words, the prevalence of liver lesions at Port Moody would probably be somewhat less than 23% if only fish of comparable age were compared with the other Vancouver Harbour sites.

Spearman-Rank correlations showed that the prevalence of toxicopathic liver lesions was significantly associated with low and high molecular weight aromatic hydrocarbons in sediment. and with aromatic compounds fluorescing Benzo[a]pyrene at wavelengths measured in the bile. This is consistent with the hepatocarcinogenicity and hepatotoxicity of high molecular weight polycyclic aromatic hydrocarbons that has been observed in fish,

including English sole, from other contaminated sites along the northeastern Pacific coast.

## References

- Krahn, M.M., Moore, L.K., and W.D. MacLeod, Jr. 1986. Standard analytical procedures of the NOAA National Analytical Facility. Metabolites of aromatic compounds in fish bile. U.S. Dept. Commerce NOAA Tech. Memo. NMFS F/NWC 102, 25 pp.
- Myers, M.S., Rhodes, L.D., and B.B. McCain. 1987. Pathologic anatomy and patterns of occurrence of hepatic neoplasms, putative preneoplastic lesions, and other idiopathic hepatic conditions in English sole (*Parophrys vetulus*) from Puget Sound, Washington. JNCI 78(2): 333–363.
- Rhodes, L.D., Myers, M.S., Gronlund, W.D., and B.B. McCain. 1987. Epizootic characteristics of hepatic and renal lesions in English sole (*Parophrys vetulus*) from Puget Sound. J. Fish. Biol. 31: 395–407.
- Sloan, C.A., Adams, N.G., Pearce, R.W., Brown, D.W., and S.-L. Chan. 1993. Northwest Fisheries Science Center organic analytical procedures. Sampling and analytical methods of the National Status and Trends Program, National Benthic Surveillance and Mussel Watch Projects: 1984–1992. In: Comprehensive Descriptions of Trace Organic Analytical Methods, Vol. IV, p. 182. U.S. Dept. Commerce NOAA Tech. Memo. NOS ORCA 71.

# Organochlorine and polyaromatic hydrocarbon residues in English sole, *Pleuronectes vetulus*, at Vancouver Harbour

Seiichi UNO, Jiro Koyama, and Hisashi Yamada

National Research Institute of Fisheries and Environment of Inland Sea, 2-17-5, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan

### Introduction

The processes for intake of the contaminants by aquatic animals are roughly classified. One is bioconcentration or the intake of dissolved chemicals in water through the gills, and the other is biomagnification through the food web (Herbert 1986). In general, most of the lipophilic compounds such as PCBs and DDTs are accumulated due to biomagnification. Therefore, these chemicals are accumulated at much higher concentrations in the upper trophic level of the

food chain (Bentzen et al. 1996; Campfens and Mackay 1997; Morrison et al. 1997). The lipophilic contaminants could cause negative effects on reproduction and individual health. As a result of regulations by the governments of advanced countries, use of some persistent organochlorine chemicals has declined, and their residual levels in the environment have been decreasing. But these organochlorine chemicals have been detected in wildlife, and contamination has continued at low levels. Benthic fish have been good indicators of coastal pollution in the water column and sediments, although the bioaccumulation patterns of the different chemicals varied substantially among species (Pastor et al. 1996).

Usually, soxhlet and ultrasonic extraction methods are used for the extractions of PCBs and polyaromatic hydrocarbons (PAHs) from biological samples. These are fine methods, but they are time consuming and also need complicated preparation, such as hydrolysis of lipids by saponification. In addition, many pesticides are broken down during saponification.

Supercritical fluid extraction (SFE) is performed with carbon dioxide at temperatures and pressures above critical point. The SFE extraction is completed in a shorter time compared to the usual method, and it is possible to simultaneously perform the rough clean-up using alumina and silica. Therefore sample preparation such as the removal of the lipids is expected to be simplified. In addition, SFE is able to extract PCBs, PAHs and organochlorine pesticides simultaneously. Although the application of SFE is increasing for real environmental samples, presently there are only few reports that have examined biological samples from the field (Chester et al. 1998).

The PICES Practical Workshop was held from May 24 to June 7, 1999, in Vancouver Harbour, Canada. In this study, English sole, (*Pleuronectes vetulus*), which occupies the upper trophic level in the food chain, were collected from 5 sites within Vancouver Harbour (sampling sites are shown in Section I, Fig. 1.4). English sole tissues were analyzed to determine concentrations of PCBs, organochlorine pesticides and PAHs. SFE was used to extract the contaminants.

# Methods

English sole were collected at 5 sites within Vancouver Harbour. Fish were immediately dissected on the ship, and tissues were frozen. Before analysis, the tissue samples were homogenized, and freeze-dried for 24 - 48 hours. The freeze-dried samples were cut into pieces with scissors.

PCBs, PAHs, and organochlorine pesticides in the organs were extracted by SFE using carbon dioxide and a 1% modifier of methanol. The temperature and pressure of SFE were 50°C and 214 bar, respectively (carbon dioxide density, 0.80 g/ml). Before the extraction, the supercritical carbon dioxide was equilibrated in the sample for 10 min, and the extractions were performed for 40 min. The flow rate of supercritical carbon dioxide was 3.0 ml/min. Each sample was put into a stainless steel tube, and 1 g-alumina was packed on the sample. The extracts were adsorbed to a florisil trap which was kept at 65°C. After the extraction, the extracts were eluted first with 3 ml hexane and then with 3 ml acetone. The elutions were combined, the solvent was exchanged to hexane completely, and the hexane solution was concentrated to 1 ml under a nitrogen stream. The concentrated extract was loaded on a florisil column (packed in a Pasteur pipette), washed with 5 ml hexane, eluted with 10 ml hexane, and then with 10 ml - 5% diethyl ether - hexane. Each eluent was concentrated to 0.1 ml under a nitrogen stream and quantified by GC/MS. The analytical assurances were certified by standard reference material 2974 (organics in freeze-dried mussel tissue (Mytilus edulis) of the National Institute of Standards and Technology.

# **Results and discussion**

# **PCBs**

Figure 1 shows total PCBs ( $\Sigma$ PCBs) in organs. The concentration distributions were different for muscle, ovaries, testes, and liver among each sampling point. The total PCB concentrations in liver were remarkably high, about 3 - 670 times higher compared to other organs, at all sampling sites. Total PCBs were detected at relatively high levels in organs at sites T-11B, T-38, and T-48. The ratios of the concentrations were different among the sampling sites, but the order of the concentration was liver > testis > ovarian > muscle.

Seventy PCB congeners were measured. The ratios of distribution for individual PCB congeners in organs were similar. As an example, at site T-11B, the concentration of PCB 153 was highest for all organs (muscle: 0.96 ng/g, ovaries: 1.08 ng/g, testes: 8.92 ng/g, and liver: 27.65 ng/g (Fig. 2)). In addition, the concentrations of PCB 138, 187, 180, 110, and 99 were high in organs. Although fewer congeners were detected in testes than in other organs, the individual concentrations were higher than in muscle and ovary. The concentrations of individual congeners in muscle and ovaries were similar, but these concentrations were 1/20 - 1/400 of that in liver.

### PAHs

The concentrations of naphthalene, and 1- and 2-methylnaphthalene were relatively high in all organs. But these chemicals are easily introduced as contaminants during the extraction process, therefore these quantities could be overestimated. In this investigation, because only a small amount of testes were gathered at all sampling sites, naphthalene and methylnaphalene could influence the concentration of total PAHs ( $\Sigma$ PAHs). Except for naphthalene, the concentrations of  $\Sigma$ PAHs in testes and liver were roughly similar at each site. In addition, PAH concentrations in testes and liver were higher than in muscle and ovaries, although the differences were smaller than those found in the case of PCBs. Concentrations of PAHs were lower and less variable among organs than PCBs. This suggested that PAHs were metabolized considerably more than PCBs (Krahn et al. 1993) and the parent compounds of PAHs showed less bioaccumulation in lipids than PCBs. The highest concentration of total PAHs in organs was detected at site T-11B. Concentrations of PAH at sites T-50, T-49, T-38, and T-48 were similar, with a slightly higher concentration at site T-50.

Of the individual PAHs measured in fish tissues at the sampling sites (Fig. 3.), phenanthrene was found at the highest concentrations. Furthermore, concen-trations of pyrene, dibenzothiophene, and



**Fig. 1** Concentration of total PCBs in the tissue of English sole from Vancouver Harbour.



**Fig. 2** Concentration of PCB congeners in tissues of English sole at site T-11B.

fluoranthene were slightly elevated. In the mussel investigation portion of the Vancouver Harbour Practical Workshop (see Mussel report, this publication), mussels (Mytlilus trossulus) were collected from intertidal sites within Vancouver Harbour and whole body tissue was analyzed for PAHs. The distribution pattern of PAH concentrations in mussels were different from that of fish. Namely, fluoranthene concentrations were higher in mussel than phenanthrene, and concentrations of phenanthrene and pyrene were similar. In addition, dibenzothiophene concentrations were only a small proportion of total PAHs in mussels. These differences may be caused by dissimilar methods of PAH uptake by English sole and mussels.

#### **Organochlorine** pesticides

The primary organochlorine pesticides detected in English sole were DDTs (p,p'- and o,p' -) and its metabolites (p,p'-, and o,p'-DDDs and DDEs). Other pesticides were found at considerably lower The concentrations of DDTs and its levels. metabolites were highest in liver, and second highest in ovaries. Concentrations of DDTs and its metabolites were higher in liver of fish from sites T-49, T-11B and T-38 (33.36 ng/g, 66.28 ng/g, and 44.36 ng/g, respectively) compared to other organs (Fig. 4). Relatively low concentrations of DDTs were detected in testes, even though PCB and PAH concentrations were high.

The concentration of DDE was higher than DDT and DDD for all organs. Concentrations of DDT metabolites accounted for 40 - 90% of total DDTs (Fig. 5). Concentrations of DDT metabolites in muscle, testis and liver accounted for more than 80% of total DDTs. However, at all sites, DDT concentrations in ovaries were higher than in other organs, and ovaries accumulated parent DDTs at much higher concentrations compared to other organs. The concentration of o,p'-DDT was lower in all organs, and it was detected much less frequently than p,p'-DDT.



**Fig. 3** Concentrations of individual PAHs in tissues of English sole from Vancouver Harbour.

#### Conclusion

In this study, the contaminant concentrations in muscle, ovaries, testes, and liver of English sole were investigated at Vancouver Harbour, Canada, during the PICES Practical Workshop. The concentrations of PAHs in testes and liver were higher than in muscle and ovaries. The highest concentration of  $\Sigma$ PAHs in organs was detected at site T-11B. Concentrations of PAHs in tissue of English sole from sites T-50, T-49, T-38, and T-48, were similar to each other. Of the individual PAHs measured, phenanthrene was found at the highest concentrations in all tissues. Pyrene, dibenzothiphene, and fluoranthene were also found at detectable levels



Fig. 4 Concentrations of DDT and its metabolites in tissues of English sole, Vancouver Harbour.

The concentrations of DDT and its metabolites were highest in liver and second highest in ovaries. The concentrations of DDT and its metabolites in liver were relatively high in fish from sites T-49, T-11B and T-38. The concentration of DDE was higher in all organs compared to DDT and DDD. DDT metabolites accounted for 40–90% of total DDT concentrations. However, DDT concentration in ovaries of fish from all sites were higher than in other organs, and ovaries accumulated DDT parent compounds at much higher levels than other organs.



**Fig. 5** Concentrations of DDT and its metabolites in tissues of English sole.

## References

- Bentzen, E., Lean D.R.S., Taylor, W.D., and D. Mackay. 1996. Role of food web structure on lipid and bioaccumulation of organic contaminants, by lake trout (*Salvelinus namaycush*). Can. J. Fish. Aquat. Sci. 53: 2397–2407.
- Campfens, J and D. Mackay. 1997. Fugacitybased model of PCB bioaccumulation in complex aquatic food webs. Environ. Sci. Technol. 31: 577–583.
- Chester, T.L., Pinkston, J.D., and D.E. Raynie. 1998. Superecritical fluid chromatography and extraction. Anal. Chem. 70: 301R–319R.
- Herbert, H.O. 1986. A review of the correlation between physicochemical properties and bioaccumulation. Pest. Sci. 17: 265–276.
- Krahn, M.M., Ylitalo, G.M., Buzitis, J., Chan, S., and U. Varanasi. 1993. Rapid highperformance liquid chromatographic methods that screen for aromatic compounds in environmental samples. J. Chromatogra. 642: 15–32.
- Morrison, H.A., Gobas, F.A.P.C., Lazar, R., Whittle, D.M., and G.D. Haffner. 1997.
  Development and verification of a benthic/pelagic food web bioaccumulation model for PCB congeners in Western Lake Erie. Environ. Sci. Technol. 31: 3267–3273.
- Pastor, D., Boix, J., Fernández, V., and J. Albaigés. 1996. Bioaccumulation of organochlorinated contaminants in three estuarine fish species (*Mullus barbatus*, *Mugil cephalus* and *Dicentrarcus labrax*). Mar. Pollut. Bull. 32: 257–262.

# Organochlorine and polyaromatic hydrocarbon residues in bivalves at Vancouver Harbour

Seiichi UNO, Jiro Koyama, and Hisashi Yamada

National Research Institute of Fisheries and Environment of Inland Sea, 2-17-5, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan

### Introduction

Since bivalves have a wide distribution, extensive populations, filtering habits, and ability to

accumulate organic contaminants, analysis of chemicals in the soft tissue of bivalves is useful as an index of contamination in the aquatic environment. In general, invertebrates have low metabolic abilities and the contaminants are accumulated and remain in them for a longer period than in vertebrates. This is especially true for the lipophilic compounds such as organochlorine contaminants (e.g. PCBs and DDT), and polyaromatic hydrocarbons (PAHs) (Connell 1995). These contaminants could cause negative effects for reproduction and individual health. As a result of regulations for the use of some persistent organochlorine chemicals by the governments of advanced countries, residual levels of these chemicals in the environment have declined. But organochlorine chemicals have been detected in wildlife, and contamination has still continued at low levels. Therefore, bivalves have been used by a number of investigators to study the contamination of wildlife (Tanabe et al. 1987, Colombo et al. 1995, Hofelt and Shea 1997).

Supercritical fluid extraction (SFE) is performed with carbon dioxide under temperatures and The SFE pressures above a critical point. extraction can be completed in a shorter time compared to the usual method, and it is possible to simultaneously perform the rough clean-up using alumina and silica. Therefore sample preparation for GC/MS and HPLC can be simplified. In addition, SFE is able to simultaneously extract PCBs, PAHs and organochlorine pesticides from biological samples. In this decade, the application of SFE is increasing for real environmental samples. However, only few studies of biological samples from the field have been reported so far (Chester et al. 1998).

The PICES Practical Workshop was held from May 24 to June 7, 1999, in Vancouver Harbour, Canada. In this study, the contamination levels of PCBs, organochlorine pesticides, and PAHs in mussel, *Mytilus trossulus*, were investigated at West Vancouver Harbour, Canada. Furthermore, 6 species of bivalves were also sampled at a few sampling sites where mussels were collected. Chemical concentrations were also determined in these bivalves and the inter-species differences were examined.

# Methods

Mussels were gathered at 9 sampling sites in Vancouver Harbour (these I-sites are shown in

Fig. 1). Before analyses, the soft tissue of bivalve samples were shelled, homogenized, frozen at  $-20^{\circ}$ C for a day, and then freeze-dried for 24 - 48 hours. The freeze-dried samples were broken to pieces with scissors.

PCBs, PAHs, and organochlorine pesticides in the bivalves were extracted by SFE using carbon dioxide with a 1% modifier of methanol. The temperature and pressure of SFE were 50°C and 214 bar, respectively (carbon dioxide density, 0.80 g/ml). Before the extraction, the supercritical carbon dioxide was equilibrated in the sample for 10 minutes, and the extractions were performed for 40 minutes. The flow rate of supercritical carbon dioxide was 3.0 ml/min. The sample was put into the stainless steel tube, and 1 g alumina was packed on the sample. The extracts were adsorbed to a florisil trap which was kept at 650°C. After the extraction, the extracts were eluted first with 3 ml hexane, and then with 3 ml acetone. The elutions were combined, the solvent



Fig. 1 Sampling sites in Vancouver Harbour.

was exchanged to hexane completely, and the hexane solution was concentrated to 1 ml under a nitrogen stream. The concentrated extract was loaded on a florisil column (packed in a Pasteur pipette), washed with 5 ml hexane, eluted with 10 ml hexane, and then with 10 ml 5% diethyl ether–hexane. Each elutant was concentrated to 0.1 ml under nitrogen stream and quantified by GC/MS. The analytical assurances were certified by standard reference material 2974 (organics in freeze-dried mussel, *Mytilus edulis*, tissue) of the National Institute of Standards and Technology.

#### **Result and discussion**

#### PCBs in mussels

The concentrations of total PCBs ( $\Sigma$ PCBs) detected in mussels at each sampling site were classified roughly into 3 groups, namely, a first group with  $\Sigma$ PCB concentration of about 5 ng/g or more (sites I-3A, I-4, and I-6), a second group with  $\Sigma$ PCB concentration of about 2 ng/g (sites I-3B and I-3C), and a third group with  $\Sigma$ PCB concentration of about 1 ng/g or below (sites I-1, I-2, I-5B and I-7) (Fig. 2).

At the site I-5, the concentration of  $\Sigma$ PCBs was much lower than at the other sampling sites, and low molecular weight congeners (with less than 4 chlorines) made up the highest percentage of total



**Fig. 2** Concentration of total PCBs in *M. trossulus*.



Fig. 3 Rate of PCB congeners in *M. Trossulus*.

PCBs. At the other sampling sites, 70 - 87% of total PCBs were made up of higher molecular weight congeners with over 5 chlorines. The dominant group of PCB congeners had 6 chlorines, and these accounted for 33 to 55% of total PCBs. The proportions of congeners with 6 and 7 chlorines were relatively higher at sites I-2, I-3A and I-3B (63%, 70% and 64%, respectively) than at other sampling sites (40 - 57 %).

For the individual PCB congeners in mussel, PCB 153 and 138 occurred at much higher concentrations than the other congeners. Furthermore, the concentrations of PCB 74, 110, and 187 were also relatively high. The ratios of these five congeners in  $\Sigma$ PCBs were over 50% at all sampling sites, except for site I-5B (45%) (Fig. 3).

#### Organochlorine pesticides in mussels

In this investigation, there was no common pattern in the distribution of organochlorine pesticides among the sampling sites (Fig. 4). At almost all sampling sites, the concentrations for  $\alpha$ -,  $\beta$ -, and  $\gamma$ -HCHs were higher than those of other organochlorine pesticides. Levels of  $\gamma$ -HCH similar to the other HCHs were detected at all sampling sites, although the most common isomers generally found in the environment are  $\alpha$ -,  $\beta$ - and  $\gamma$ - (Walker. *et al.* 1999). The concentrations of  $\alpha$ -HCH at sites I-1 and I-2 were relatively high (1.5 ng/g and 1.3 ng/g, respectively), although the concentrations of  $\Sigma$ PCBs at both sites were low. The distribution patterns and the concentrations of  $\beta$ - and  $\gamma$ -HCH were similar among all sampling sites. In particular, these concentrations were highest at site I-3C (3.2 ng/g for  $\beta$ -HCH and 3.4 ng/g for  $\gamma$  -HCH, respectively) among all sampling sites, although the concentrations of  $\Sigma$ PCBs were not so high at this site. On the other hand, although concentrations of  $\beta$ - and  $\gamma$  -HCH were low (0.75 and 0.84 ng/g, respectively).

The highest concentrations of p,p'-DDT and its metabolites were detected at site I-4, except for DDD. The concentration of p,p'-DDD was remarkably high (7.7 ng/g). The distribution patterns for p,p'-DDT and metabolites were similar, if DDD at I-3C is excluded.

For heptachlor, it is remarkable that the concentrations were relatively high at sites I-1, I-5B, and I-7, where PCBs levels were low.

# PAH in mussels

The maximum concentration of total PAHs (252 ng/g) was detected at site I-4 and the minimum was 53 ng/g at site I-5B. Fluoranthene was detected at highest concentrations at all sampling sites, and those concentrations were 5 - 81 ng/g. Furthermore, the concentrations of phenanthrene, chrysene, and pyrene were relatively high: more than 50% of total PAHs at all sites except for I-5B (Fig. 5).

The benzo[a]pyrene concentration was about 0.2 ng/g at all sampling sites. The concentrations of naphthalene, 1- and 2-methylnaphthalene, biphenyl, fluorene, and acenaphthene (group 1) were similar, and about 1–10 ng/g, at all sampling sites. On the other hand, the concentrations of phenanthrene, anthracene, fluoranthene, pyrene, chrysene, and 1,2-benzoanthracene (group 2) were different among the sites (Fig 6). However, the same compounds were found at all sites, and tended to co-occur with PCBs, although the concentrations of each PAH were quite different.

These distributional similarities between PAHs of group 2 and PCBs could exist because PAHs were adsorbed through the food web. Broman *et al.* (1990) did not find biomagnification of PAHs from food in a natural Baltic Sea food chain. But for group 2 all octanol/water coefficients (in logarifmic scale,  $lgK_{OW}$ ) were above 4 (4.46 for phenanthrene, 4.45 for anthracene, 5.16 for fluoranthene, 4.88 for pyrene, 5.73 for chrysene, and 5.79 for 1,2-benzanthracene (Hansch *et al.* 1995). Spacie *et al.* (1982) estimated that



**Fig. 4** Concentrations of organochlorine pesticides in *M. trossulus*.







*p,p'*-DDT





Fig. 4 continued.

the uptake of chemicals with  $lgK_{ow} > 5$  through the gill membrane declines gradually. Therefore, a large amount of PAHs in group 2 mussels could be taken up through the food web, although  $lgK_{ow}$  for phenanthrene and anthracene is small.

## Differences between species

Differences of contaminant concentrations were observed between mussel and other species. As an example, at site I-4, the concentrations of  $\Sigma$ PCBs in Pacific littleneck (*Protothaca staminea*), Nuttall's cockle (*Clinocardium nuttallii*), and Butter clam (*Saxidomus gigantea*) were higher than that in mussel. On the other hand, the concentrations of PAHs in these three species of bivalves were lower than that in mussel. There was no consistent pattern in organochlorine pesticide concentrations among the four species of bivalves.

In this investigation, the concentrations of contaminants in Pacific oyster (*Crassostrea gigas*) were much higher than in other bivalves. For example, the concentration of total PCBs was 30 ng/g in Pacific oyster at site I-6, and that was about 6 times higher than in mussel (4.8 ng/g) from the same site. The concentration of total PAHs in oyster was also about two times higher than that in mussel at this site. Furthermore, all organochlorine pesticides were detected at higher levels in oysters than in mussels (Fig. 7). Results show that Pacific oyster could accumulate more contaminants than mussel.

# Conclusions

In this study, the contaminants in mussels and other bivalves were investigated at Vancouver Harbour, Canada, during the PICES Practical Workshop. The highest concentrations of PCBs and PAHs were detected at site I-4 near Cates Park. The distributional patterns of organo-chlorine pesticide concentrations were individually different. The main congeners of PCBs were IUPAC No. 153, 138, 74, 110, and 187, those of PAHs were phenanthrene, chrysene, and pyrene, and those of organochlorine pesticides were  $\alpha$ -,  $\beta$ -, and  $\gamma$ -HCHs.



Fig. 5 Rate of PAHs in *M. trossulus* at Vancouver Harbour.





**Fig. 6** Concentrations of individual PAHs in *M. trossulus*.















Concentration (ng/g) 0.3 0.2 0.1 0 I- I-4 I- I-6 I-7 I-1 I-2 I-I-3B 3C 5B 3A



Benzo[a]pyrene



**Fig. 7** Concentrations of organochlorine pesticides in the Pacific Oyster (*C. gigas*) and Blue Mussel (*M. trossulus*) at site I-6.

The intakes of phenanthrene, anthracene, fluoranthene, pyrene, chrysene, and 1,2-benzoanthracene could be through the food web. Since the patterns of distribution among sampling sites were similar with that of  $\Sigma$ PCBs, most of these contaminants were thought to be absorbed from food.

In general, since most of the PCBs and organochlorine pesticides in aquatic animals are accumulated through the food web, these concentrations could be variable seasonally with the dietary quantity (Hühnerfuss *et al.* 1995). Therefore, it is necessary to conduct a few investigations at the same sites for a year to understand these pollution levels.

### References

Broman, C., Näff, C., Lundberg, I., and Y. Zebuhr. 1990. An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons in an aquatic food chain (seton-*Mytilus edulis* L.-Somateria *mollisima*) from the Baltic: An ecotoxiclogical perspective. Environ. Toxicol. Chem. 9: 429–442.

- Chester, T.L., Pinkston, J.D., and D.E. Raynie. 1998. Supercritical fluid chromatography and extraction. Anal. Chem. 70: 301R–319R.
- Colombo, J.C., Bilos, C., Campanaro, M., Rodriguez Presa, M.J., and J.A. Catoggio. 1995. Bioaccumulation of polychlorinated biphenyls and chlorinated pesticides by the asiatic clam *Corbicula fluminea*: Its use as sentinel organism in the Rio de La Plata estuary, Argenina. Environ. Sci. Technol. 29: 914–927.
- Connel, D.W. 1995. Prediction of bioconcentration and related lethal and sublethal effects with aquatic organisms. Mar. Pollut. Bull. 31: 201–205.
- Hansch, C., Leo, A., and D. Hoekman. Exploring QSAR – Hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DC. 1995.
- Hofelt, C.S. and D. Shea. 1997. Accumulation of organochlorine pesticides and PCBs by semipermeable membrane devices and Mytilus edulis in New Bedford Harbour. Envrion. Sci. Technol. 31: 154–159.
- Hühnerfuss, H, Pfaffenberger, B., Gehrcke, B., Karbe, L., König, and O. Landgraff. 1995.
  Stereochemical effects of PCBs in the marine environment: Seasonal variation of coplanar and atropisomeric PCBs in blue mussels (*Mytilus edulis* L.) of the German bight. Mar. Pollut. Bull. 30: 332–340.
- Spacie, A., and J.L. Hamelink. 1982. Alternative models for describing the bioconcentration of organics. Environ. Toxicol. Chem. 1: 309– 320.
- Tanabe, S. Tatsukawa, R., and D.J.H. Phillips. 1987. Mussels as bioindicators of PCBs pollution: A case study on uptake and release of PCB isomers and congeners in green lipped mussels (*Perna viridis*) in Hong Kong waters. Environ. Pollut. 47: 41–62.
- Walker, K., Vallero, D.A., and R.G. Lewis. 1999. Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ. Sci. Technol. 33: 4373–4378.

# Lipid class and fatty acid composition of mussel, *Mytilus trossulus*, in Vancouver Harbour

Seiichi UNO<sup>1</sup>, Yun, Ji Hyun<sup>2</sup>, Masaki Kaneniwa<sup>3</sup>, Jiro Koyama<sup>1</sup>, Hisashi Yamada<sup>1</sup>, and Kumiko Ikeda<sup>1</sup>

- <sup>1</sup> National Research Institute of Fisheries and Environment of Inland Sea, 2-17-5, Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan
- <sup>2</sup> Pukyung National University, Haeundaegu U 1dong 714-1, Pusan, 612-822, Korea
- <sup>3</sup> National Research Institute of Fisheries Science, 2-12-4, Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8684, Japan

#### Introduction

Lipids are divided broadly into two categories: namely, neutral lipid (NL), which is the stored fat and is mainly composed of triglycerides, and phospholipids (PL) and cholesterol, which are building blocks of membranes. Identification of lipid composition is important for physiological studies. Furthermore, PCBs and other oraganochlorine contaminants are known to accumulate in tissue, and the information for lipid composition is helpful to explain the mechanism for the accumulation of these chemicals.

Fatty acids are the principal components in lipids. Their diversity in terms of chain length, degree of unsaturation, geometry, and position of the double bonds is responsible for the definitive characteristics of lipids for different organisms (Gutnikov 1995).

The Iatroscan TLC method was used to separate lipids by thin layer chromatography using the hydrogen flame ionization detector (FID). This method was developed by Okumura *et al.* (1975). The next step was done with an adsorbent sintered thin layer chromatographic quartz rod that consisted of silica gel powder fused by fine glass powder as the binding agent and an automatic scanner, which contains a hydrogen-FID for sample detection. The combination of these two steps makes quantitative TLC a rapid and easy method for the routine analysis of lipids separated by regular TLC.

The PICES Practical Workshop was held from May 24 to June 7, 1999, in Vancouver Harbour, Canada. In this study, the lipid and fatty acid composition of mussel, *Mytilus trossulus*, were determined at 7 sites (I-1, I-2, I-3A, I-4, I-5B, I-6, and I-7) in Vancouver Harbour (Fig. 1).

### Methods

One hundred mussels of various sizes were gathered at each site. Mussels were shelled, and soft tissues were homogenized. Lipids were extracted from 5 g subsamples using a 30 ml solvent mixture of chloroform-methanol (2:1, v/v)(Blig and Dyer 1959). The chloroform layer, (which contains dissolved lipids) was collected, washed with 0.88% potassium chloride, and removed completely using a rotary-evaporator and a centrifugal-evaporator. Then, the concentration of lipids was adjusted to 100 mg/ml with chloroform. The separation of NL and PL was performed using a Sep-pak Silica washed with 10 ml chloroform. 50 µl of chloroform with extracted lipids was then loaded onto the Sep-pak. The NL was eluted with 8 ml chloroform, and the PL was eluted with 10 ml methanol.

For the determination of the lipidic composition, 0.2  $\mu$ l of chloroform containing the extracted lipids was spotted onto the base of Chromarods, and developed with hexane-diethylether-acetic acid (70:30:1). After the solution was developed to a certain position, Chromarods were dried at 100°C, and lipids were analyzed by an Iatroscan. Fatty acids in NL and PL were analyzed according to the methods of the American Oil Chemists' Society (A.O.C.S.) (1991). The extracted lipids were removed using nitrogen gas and a centrifugal evaporator, and saponificated with 0.5 N sodium hydroxide at 100°C for 5 minutes. Then, the saponificated samples were methylated by 14% boron trifloride methanol complex methanol solution at 100°C for 30 minutes. After the methylation, fatty acids were dissolved in Isooctane, and analyzed by GC/MS.



Fig. 1 Sampling sites in Vancouver Harbour.

### **Results and discussion**

#### Lipid composition in mussels

Results of analysis by the Iatroscan TLC showed that the main lipids in mussels were triglyceride (TG), free fatty acid (FFA), sterol (ST), and phospholipid (PL). The ratios of these compounds to total lipid were 10 - 23% for TG 24 - 37% for FFA, 4 - 7% for ST, and 36 - 55% for PL (Fig. 2). Furthermore, we analyzed PL using a thin layer chromatograph (TLC) and the Iatroscan TLC. TLC results showed that phospholipid was composed of phosphatidylethanolamine (PE), ceramide 2-aminoethyl phosphate (CAEP), phosphatidylserine lysophosphatidyl-(PS).



TG, Triglyceride; FFA, Free Fatty Acid; ST, Sterol; PE, Phosphatidylethanolamine; CAEP, Ceramide 2-aminoethylphosphonate; LPE, Lysophosphatidylethanolamine; PS, phosphatidylserine;

PC, Phosphatidylcholine;

Others, Lysophosphatidylcholine+Unknown component

**Fig. 2** Lipid composition in *M. trossulus* (weight % to total lipid).

ethanolamine (LPE), phosphat-idylcholine (PC), lysophosphatidyl-choline (LPC), and others. The individual quantities of CAEP, PS, and LPE could not be determined, because they were not separated completely. The ratios of compositions in the PL were 27 - 37% for PE, 28 - 55% for CAEP+PS+LPE, 11 - 25% for LPC. All components of total lipids are shown in Figure 2.

The depot lipid is mainly TG and the lipid composition changes depending on the nutrient condition. On the other hand, the tissue lipid is mainly PL and its composition does not change. On the basis of these lipidic characteristics, we tried to evaluate the nutrient conditions of mussels at all sampling sites using the TG/PL ratio (Fig. 3). The ratio was highest at site I-7 and the nutrient condition of mussels at this site appeared to be better than at other sites.



**Fig. 3** Tryglyceride to total phospholipids ratio in *M. trossulus*.

It is well known that the oxidation and hydrolysis of lipids in fish and shellfish during frozen storage cause serious deterioration of quality (e.g. Jeong, et al. 1990; Shimada and Ogura 1990; Refsgaard et al. 1998). Jeong et al. (1990) reported that the contents of TG and PC in oyster, Crassostrea gigas, decreased during storage at -20°C while the concentration of free fatty acids increased. In this study, the mussel samples were stored at -20°C until analysis. Samples were transported from Canada to Japan on dry ice. Under these circumstances, in our analysis the content of FFA in total lipid could be higher, and content of TG and PC could be lower, than those in live animals. But all samples were kept in the same condition until analysis so that the nutrient condition among the sampling sites might be compared from the TG/PL ratio.

Ota *et al.* (1990) reported that TG was the main component of total lipid (TL) in rainbow trout (91.3%) and other fishes. According to Ozawa *et al.* (1993), the TG content in TL of kokanee salmon's muscle was 65.3% for the dorsal portion, 82.8% for the ventral portion, and 66.7% for the tail. Kawasaki *et al.* (1994) also reported that the TG content in TL in firefly squid's liver was 60.9 -72.4%. Since the quantity of TG changes considerably with the season, the comparison between mussel and other aquatic animals is difficult. But the TG concentration in mussel was lower than that in fish and squid.

# Fatty acid composition

The fatty acid composition was identified for 41 classes by GC/MS. Table 1 shows the fatty acid composition in lipids for those classes that were more than 1% of the total fatty acids. The dominant components of total fatty acids were 16:0, 16:1n-7, 18:1n-7, 20:5n-3, and 22:6n-3. The composition of fatty acids in NL was 41 classes, while that in the PL was 29 classes. Especially, 20:5n-3 and 22:6n-3 contained higher levels of fatty acids and they were 8.8 - 18.8% and 6.4 - 14.5%, respectively. The compositions of 20:4, 20:5, 22:5, and 22:6 are special for aquatic organisms (Koike and Tsuchiya 1988), and these ratios were 20 - 33% in total fatty acids.

Similar levels of 14:0, 16:0, 16:2n-7, 18:0, and 20:5n-3 were found in NL and PL. The contents of 17:0, 18:1n-9, 18:1n-7, 18:3n-3, 18:4n-3, and 20:2n-6 were higher in NL than those in the PL. On the other hand, the contents of 16:1n-7, 20:5n-3, 22:1n-11, and 22:6n-3 were higher in PL than in NL.

Jeng et al. (1990) reported that the percentages of polyenoic acid in PL, NL, and TL for *C. gigas* decreased and the percentage of saturated acids increased during storage at  $-20^{\circ}$ C. In this study, unsaturated fatty acids could be underestimated in comparison with lipid compositions found in live animals.

# Conclusion

In this study, the lipid and fatty acid composition in mussel, M. trossulus, was determined at Vancouver Harbour, Canada, during the PICES Practical Workshop. The main components of lipid were tryglyceride, free fatty acid, sterol, and composed phospholipids. which were of phosphatidylethanolamine, ceramide 2-aminoethylphosphonate, phosphatidylserine, lyphosphatidvlethanolamine. phosphatidylcholine. and lysosphatidylcholine. The ratio of triglyceride in total lipid was lower than that in fish.

The dominant components of total fatty acids were 16:0, 16:1n-7, 18:1n-7, 20:5n-3 and 22:6n-3. The composition of fatty acids in neutral lipid and phospholipid was identified for 41 and 29 classes, respectively.

Generally, the fatty acid composition is influenced by feeding, season, water temperature, and depth of the habitat (Hori and Itasaka 1978). In the future, if the plant and animal plankton of food for mussels can be gathered at the sampling sites, the dietary life could be estimated from the fatty acid composition.

The fatty acid and lipid composition might have deteriorated during transportation from Canada to Japan, and during storage until analysis. If more accurate quantitative analysis is needed, lipid determinations will have to be performed as soon as the samples have been gathered.

| l Phospholipids of M. trossulus. |  |
|----------------------------------|--|
| otal, Neutral, and               |  |
| y Acid Components in T           |  |
| Table 1. Fatty                   |  |

|            |      | I-1  |      |      | I-2  |        |      | [-3A |      |      | I-4  |      |      | I-5B |      |      | I-6  |      |      | I-7  |      |
|------------|------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Fatty Acid | TL   | NL   | PL   | TL   | NL   | PL     | TL   | NL   | PL   | TL   | NL   | PL   | TL   | NL   | PL   | TL   | NL   | PL   | TL   | N    | PL   |
| 14:0       | 3.6  | 3.7  | 2.9  | 2.4  | 2.4  | . 2.5  | 1.9  | 2.0  | 1.6  | 3.0  | 3.2  | 2.8  | 3.4  | 3.5  | 3.1  | 2.9  | 2.8  | 2.9  | 5.4  | 5.7  | 4.4  |
| 16:0       | 18.9 | 19.3 | 15.6 | 16.0 | 15.4 | . 17.5 | 15.9 | 16.5 | 15.0 | 15.5 | 15.3 | 15.7 | 15.7 | 16.0 | 15.1 | 15.9 | 15.8 | 16.2 | 14.9 | 15.3 | 13.5 |
| 16:1n-7    | 5.0  | 4.2  | 11.2 | 8.5  | 8.3  | 9.2    | 8.4  | 9.6  | 6.4  | 6.5  | 4.4  | 9.4  | 6.5  | 3.7  | 11.3 | 6.7  | 5.7  | 10.3 | 10.6 | 9.2  | 16.0 |
| 16:2n-7    | 1.9  | 2.2  | 1.6  | 1.0  | 1.4  | . 1.6  | 0.8  | 1.2  | 1.6  | 0.8  | 1.3  | 1.5  | 1.0  | 1.5  | 1.2  | 1.0  | 1.2  | 1.5  | 1.5  | 1.9  | 1.4  |
| 17:0       | 1.9  | 1.9  | ı    | 1.5  | 1.5  | 1      | 1.5  | 1.5  |      | 1.4  | 1.4  | ı    | 1.3  | 1.3  | ı    | 1.5  | 1.5  | ı    | 1.6  | 1.6  | ı    |
| 18:0       | 2.8  | 2.8  | 2.8  | 2.8  | 2.7  | 3.1    | 3.1  | 3.0  | 3.1  | 2.6  | 2.5  | 2.8  | 2.5  | 2.4  | 2.7  | 2.7  | 2.7  | 2.7  | 2.2  | 2.2  | 2.3  |
| 18:1n-9    | 3.1  | 3.2  | 2.0  | 2.3  | 2.9  | 0.6    | 2.6  | 3.2  | 1.5  | 2.3  | 2.8  | 1.8  | 3.0  | 3.5  | 2.0  | 2.7  | 3.0  | 1.9  | 2.6  | 2.9  | 1.5  |
| 18:1n-7    | 5.9  | 6.2  | 3.7  | 4.3  | 4.7  | 3.3    | 4.8  | 5.8  | 3.1  | 4.6  | 5.3  | 3.6  | 4.8  | 5.4  | 3.9  | 5.1  | 5.4  | 3.7  | 6.2  | 6.9  | 3.4  |
| 18:2n-6    | 2.2  | 2.3  | 1.3  | 1.4  | 1.6  | 1.0    | 1.6  | 1.9  | 1.0  | 2.1  | 2.5  | 1.6  | 2.6  | 3.1  | 1.7  | 2.4  | 2.6  | 1.8  | 2.0  | 2.2  | 1.2  |
| 18:3n-3    | 3.0  | 3.3  | ı    | 1.9  | 2.1  | ı      | 1.3  | 2.0  | ·    | 2.5  | 3.1  | ı    | 3.4  | 3.4  | ı    | 2.2  | 2.9  | ı    | 1.6  | 1.6  | ı    |
| 18:4n-3    | 7.1  | 7.7  | 3.0  | 4.3  | 5.0  | 2.6    | 3.7  | 4.7  | 1.9  | 5.1  | 6.6  | 3.0  | 4.8  | 7.6  | 3.3  | 5.3  | 6.1  | 2.4  | 1.4  | 1.8  | 1.8  |
| 20:1n-11   | 0.8  | 0.7  | 1.7  | 1.0  | 0.9  | 1.4    | 1.5  | 1.6  | 1.3  | 1.1  | 0.9  | 1.3  | 1.1  | 0.9  | 1.5  | 1.2  | 0.9  | 2.1  | 0.9  | 0.7  | 1.5  |
| 20:1n-9    | 1.5  | 1.2  | 3.1  | 4.2  | 4.7  | 3.0    | 5.2  | 6.1  | 3.6  | 3.3  | 3.4  | 3.3  | 3.5  | 3.8  | 2.9  | 4.3  | 4.7  | 3.0  | 3.3  | 3.6  | 2.3  |
| 20:1n-7    | 4.2  | 4.4  | 2.2  | 3.0  | 3.3  | 2.3    | 2.6  | 2.8  | 2.4  | 3.1  | 3.5  | 2.6  | 3.0  | 3.4  | 2.3  | 3.5  | 3.8  | 2.4  | 2.9  | 3.2  | 1.8  |
| 20:2*      | 3.4  | 3.5  | 2.7  | 1.7  | 1.3  | 2.9    | 3.2  | 2.4  | 4.7  | 1.9  | 1.2  | 3.0  | 1.9  | 1.2  | 3.1  | 1.7  | 1.1  | 3.8  | 1.5  | 0.8  | 3.9  |
| 20:2*      | 1.1  | 1.1  | 1.2  | 0.7  | 0.7  | 0.0    | 1.2  | 0.9  | 1.6  | 1.0  | 0.9  | 1.2  | 0.7  | 0.7  | 0.8  | 0.9  | 0.8  | 1.0  | 0.9  | 0.7  | 1.5  |
| 20:2n-6    | 1.2  | 1.2  | 0.8  | 1.0  | 1.0  | 0.7    | 0.9  | 1.0  | 0.7  | 1.1  | 1.2  | 0.9  | 1.3  | 1.4  | 1.2  | 1.2  | 1.3  | 1.0  | 0.7  | 0.8  | 0.5  |
| 20:4n-6    | 2.0  | 2.1  | 1.5  | 1.9  | 2.0  | 1.6    | 3.4  | 3.8  | 2.6  | 2.0  | 2.1  | 1.8  | 1.7  | 1.8  | 1.4  | 2.4  | 2.6  | 1.7  | 2.5  | 2.7  | 2.1  |
| 20:5n-3    | 8.8  | 7.2  | 20.7 | 15.3 | 13.0 | 21.4   | 11.0 | 5.4  | 20.9 | 17.6 | 16.9 | 18.5 | 16.8 | 15.1 | 19.8 | 14.5 | 13.6 | 17.7 | 18.8 | 18.6 | 19.5 |

#### References

- Blig, E. B., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.
- Gutanikov, G. 1995. Fatty acid profiles of lipid samples. J. Chromatogr. B, 671: 71–89.
- Hori, T., and O. Itasaka. 1978. Lipid of shellfish. SEIKAGAKU 50: 331–346 (Japanese).
- Joeng, B. Y., Ohshima, T., and C. Koizumi. 1990. Lipid deterioration and its inhibition of Japanese oyster *Crassostrea gigas* during frozen storage. Nippon. Suisan. Gakkaishi 56: 2083–2091.
- Kawasaki, K., Ooizumi, T., Hayashi, S., and K. Hayashi. 1994. Lipid class and fatty composition of liver of firefly squid *Watasenia scintillans*. Nippon Suisan Gakkaishi 60: 247–251 (Japanese).
- Koike, H., and T. Tsuchiya. 1988. Fatty acid composition of aquatic animals. J. College of Liberal Arts, Saitama Univ. 24: 55–72 (Japanese).

- Official and tentative methods of the American Oil Chemists' Society, American Oil Chemists' Society, Champaign, IL, 1969, revised to 1991, Method Ce 1b-89.
- Okumura, T., Kadano, T., and A. Iso'o. 1975. Sintered thin-layer chromatography with flame ionization detector scanning. J. Chromatogr. 108: 329–336.
- Ota, T., Sasaki, S., Abe, T., and T. Takagi. 1990. Fatty acid compositions of the lipids obtained from commercial salmon products. Nippon Suisan Gakkaishi 56: 323–327.
- Ozawa, A., Satake, M., and T. Fujita. 1993. Comparison of muscle lipids between wild and cultured kokanee salmon. Nippon Suisan Gakkaishi 59: 1545–1549 (Japanese).
- Refsgaard, H. H. F., Brockhoff, P. B., and B. Jensen. 1998. Sensory and chemical changes in farmed Atlantic salmon (*Salmo salar*) during frozen storage. J. Agric. Food Chem. 46: 3473–3479.
- Shimada, K., and N. Ogura. 1990. Lipid changes in sea urchin gonads during storage. J. Food. Sci. 55: 967–971.

# CYP1A and related measurements in English sole (*P. vetulus*) from Vancouver Harbour

Kelsey A. MILLER<sup>1</sup>, Richard F. Addison<sup>2</sup>, and S.M. Bandiera<sup>1</sup>

- <sup>1</sup> Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, B.C., Canada. V6T 1Z3
- <sup>2</sup> Department of Fisheries and Oceans, Institute of Ocean Sciences, Sidney, B.C., Canada. V8L 4B2

### Introduction

Vancouver Harbour is a busy seaport and gets a considerable influx of anthropogenic pollutants including metals, PCBs, organochlorine pesticides, and polyaromatic hydrocarbons. English sole (Pleuronectes vetulus) are bottom-feeding fish and subject bioaccumulation of lipophilic to hydrocarbon compounds, which contaminate the sediments in the harbour and are linked to toxicity in various marine organisms. English sole is an excellent sentinel species for monitoring marine ecosystem health because they are relatively slow growing, are widely distributed throughout the harbour and adjacent waters, and individual fish

have a small home range or forage in a relatively confined area. In addition, English sole is a potential source of human contaminant exposure because it is fished commercially.

Induction of hepatic microsomal cytochrome P450 (CYP) enzymes is a common and characteristic biochemical response to halogenated hydrocarbon exposure that accompanies and often precedes toxicity in all animals examined thus far. CYP is a large and ubiquitous group of hemeproteins found in fish. mammals. birds. plants. and microorganisms that catalyze the oxidative biotransformation of diverse lipophilic xenobiotic and endogenous compounds. Because CYP

enzymes play a critical role in the metabolism, bioaccumulation, and potential toxicity of halogenated and nonhalogenated hydrocarbons found in the food chain, levels of individual CYP are important determinants enzvmes of susceptibility to environmental contaminant exposure. CYP enzyme induction in fish populations has been suggested as a sensitive biochemical marker of contaminant exposure, and by inference, of marine ecosystem health (Safe 1990; Goksøyr and Förlin 1992; Stegeman et al. 1992; Addison 1996; Addison et al. 1994; Campbell et al. 1996). Induction of the CYP1A subfamily of enzymes can be determined by measurement of associated enzymes activities such as ethoxyreosufin O-deethylase (EROD) and benzo[a]pyrene hydroxylase or by measuring CYP1A protein using immunochemical methods.

The purpose of the present study was to measure EROD activity and CYP1A protein levels in liver tissue of English sole from five sites in and around Vancouver Harbour, and to compare these biochemical parameters with sediment levels of hydrocarbon pollutants measured at these same sites.

# Materials and methods

# Liver samples

English sole were collected by trawl net during May and June 1999, from five sites in and around Vancouver Harbour. The sites were designated as T-50 (Howe Sound), T-49 (West Vancouver), T-11B (Lonsdale Quay), T-38 (Port Moody), and T-48 (Indian Arm) (see Section I, Fig. 1.4). Thirty fish were collected from each site. Fish were weighed, separated by sex, and a blood sample was taken. Fish were then killed by dissection of the spinal cord, and livers were removed and placed into ice-cold Tris-HCl buffer, pH 7.4. Hepatic microsomes were prepared from 68 male and female fish (at least 10 fish per site), by differential centrifugation. Microsomal pellets were suspended in 0.25 M sucrose and aliquots of the suspension were stored at  $-75^{\circ}$ C until used.

Twenty additional English sole were collected from site T-49 for use as positive and negative controls for the microsomal CYP assays in a controlled exposure experiment. These fish were housed in salt-water aquaria at a temperature of 8°C in the West Vancouver Facility. After acclimation for 5 days, the fish were weighed and 10 fish in one aquarium tank were treated with  $\beta$ naphthoflavone ( $\beta$ -NF) in corn oil by a single i.p injection at a dosage of 50 mg/kg. Ten fish in a second tank were treated similarly with corn oil (vehicle) only at a dosage of 0.25 ml/100 g body weight. One week after treatment, the fish were killed by dissection of the spinal cord, weighed, and liver microsomes were prepared as described above.

# Determination of cytochrome P450 and protein

Total CYP content was determined from the carbon monoxide difference spectrum using the method of Omura and Sato (1964). Protein concentration was measured by the method of Lowry *et al.* (1981).

# Enzyme assays

Microsomal EROD activity was measured using a spectrofluorometric assay as described by Burke *et al.*(1985). Each microsomal sample was assayed directly in a fluorescence cuvette incubated at room temperature (22–25°C) using a Shimadzu Model RF-540 fluorometer interfaced with a Shimadzu DR-3 data recorder.

# Preparation of antibodies

Antibody against CYP1A was raised in female New Zealand rabbits immunized with a synthetic peptide corresponding to trout CYP1A coupled to keyhole limpet hemocyanin as described previously (Lin *et al.* 1998). This antibody is specific for mammalian CYP1A1 and recognizes a single CYP1A protein in all fish species tested to date.

# Immunoblots and densitometric quantitation

Polyacrylamide gel electrophoresis (PAGE) was performed essentially as described by Laemmli (1970). English sole liver microsomal samples were applied to gels at a final concentration of either 2 or 5 pmol total microsomal CYP per lane. Microsomal proteins resolved on SDS-PAGE were transferred electrophoretically to nitrocellulose and probed with antibodies as described by Towbin et al. (1979). Blots were incubated with anti-cytochrome P450 1A peptide IgG at a concentration of 10 µg IgG/ml. Bound primary antibody was located using alkaline phosphataseconjugated goat anti-rabbit IgG secondary antibody. Immunoreactive proteins were detected by reaction with a substrate solution containing 0.01% NBT, 0.05% BCIP, and 0.5 mM MgCl<sub>2</sub> in 0.1 M Tris-HCl buffer, pH 9.5. Assay conditions were optimized to ensure that colour development did not proceed beyond the linear response range of the phosphatase reaction. Staining intensities of the bands were quantified with a pdi 420 oe scanning densitometer connected to an IBM-type personal computer using Quantity One® Version 3.0 software (pdi Inc., Huntington Station, NY). The amount of immunoreactive protein was determined from the integral of the optical density of the stained band. Staining intensities of bands on each blot were normalized with a purified rat hepatic CYP1A1 standard that was included on every gel as an internal standard.

## Statistical analysis

Data are presented as the mean  $\pm$  standard error of the mean of values determined from 10-20 fish per trawl site. Correlations between hepatic microsomal EROD activities and CYP1A protein levels were analyzed by simple linear regression. Coefficients of variation (r<sup>2</sup>) with a p value <0.05 were considered statistically significant.

### Results

Table 1 lists mean values of body and liver weight, and total cytochrome P450 (CYP) content for liver microsomes prepared from fish treated with corn oil and  $\beta$ -naphthoflavone. As can be seen from the data, liver weight was decreased and the total CYP content was increased for fish treated with  $\beta$ naphthoflavone in comparison with corn oiltreated fish. Table 2 lists mean values of total CYP content for liver microsomes prepared from fish collected from 5 sites. As can be seen from the data, the mean value of total CYP content was variable for fish collected from the different sites. EROD activity was measured in English sole liver microsomes. Mean values of fish from the five sites, along with mean values of the  $\beta$ -naphthoflavone and corn oil-treated fish, are shown in Figure 1. Treatment with  $\beta$ -naphthoflavone resulted in a large increase in EROD activity (approximately 18-fold) compared with corn oiltreatment. EROD activity was also elevated in fish from sites T-50 and T-38 compared to fish from sites T-49 and T-11B. In fact, the mean EROD activity of fish from site T-50 was approximately 11-fold greater than the mean EROD activity of corn oil-treated fish and 4-fold greater than that of fish from site T-49.

English sole liver microsomes were analyzed on immunoblots probed with antibody generated to a synthetic peptide corresponding to trout CYP1A1. This antibody detected a single protein band in the microsomal preparations, implying that English sole liver contains one protein that is immunochemically related to trout CYP1A1. As seen on the immunoblot in Figure 2, the CYP1A band in microsomal preparations of fish from site T-50 was stained more intensely than the band in fish from site T-49, indicating that there is increased expression of CYP1A protein in fish from site T-50 relative to site T-49.

**Table 1.** English sole treated with corn oil or  $\beta$ -naphthoflavone.

| Parameter                              | Corn oil         | <b>b</b> -NF      |
|----------------------------------------|------------------|-------------------|
| Number of fish                         | 10               | 10                |
| Age (yr)                               | n.d.             | n.d.              |
| Body weight (g)                        | $132.3 \pm 12.3$ | $103.8 \pm 14.4$  |
| Liver weight (g)                       | $1.49\pm0.13$    | $0.97\pm0.10^{*}$ |
| Total CYP content<br>(nmol/mg protein) | $0.29\pm0.02$    | $0.54 \pm 0.05*$  |
| Number of female fish                  | 5                | 5/6               |
| Number of male fish                    | 5                | 5/4               |

Values for body weight, liver weight, and total CYP content are expressed as the mean ± SEM.

\* Indicates that the value is significantly different from that of the corn oil-treated group.

| Site                     | Number<br>of fish | Mean<br>age<br>(yr) | Total CYP<br>content<br>(nmol/mg) | Number of<br>male fish | Number of<br>female fish |
|--------------------------|-------------------|---------------------|-----------------------------------|------------------------|--------------------------|
| T-50 (Howe Sound)        | 14                | 7.7                 | $0.46\pm0.03^{a,b}$               | 5                      | 9                        |
| T-49<br>(West Vancouver) | 20                | 6.2                 | $0.29\pm0.02^{a}$                 | 13                     | 6                        |
| T-11B<br>(Lonsdale Quay) | 10                | 7.5                 | $0.31\pm0.04^{\text{b}}$          | 4                      | 6                        |
| T-38<br>(Port Moody)     | 12                | 10.5                | $0.37\pm0.02$                     | 2                      | 10                       |
| T-48<br>(Indian Arm)     | 12                | 8.1                 | $0.38 \pm 0.03$                   | 4                      | 8                        |

 Table 2. English sole from five sites in Vancouver Harbour.

Values for total CYP content are expressed as the mean  $\pm$  SEM.

<sup>a</sup> indicates that the value is significantly different for these two groups (p < 0.001).

<sup>b</sup> indicates that the value is significantly different for these two groups (p < 0.05).



Fig. 1 Hepatic microsomal EROD activity of English sole from Vancouver Harbour.



**Fig. 2** Representative immunoblot of hepatic microsomes from English sole probed with anti-CYP1A peptide IgG. Samples were applied to the gel at the concentrations indicated. Lane 1 contains purified rat CYP1A1 (1.0 pmol/lane), lane 2 contains liver microsomes from a fish from site T-48 (2 pmol/lane), lanes 3-6 contain liver microsomes from individual fish from site T-49 (5 pmol/lane), lanes 7-11 contain liver microsomes from individual fish from site T-50 (2 pmol/lane), and lanes 13-15 contain liver microsomes from individual fish from site T-49 (5 pmol/lane).

The microsomal CYP1A protein in all 88 English sole was quantified by densitometry and the data are displayed in Figure 3. As was the case with EROD activity, the mean CYP1A protein level was increased after treatment with  $\beta$ -naphtho-flavone (approximately 13-fold) relative to fish treated with corn oil. CYP1A protein levels were elevated in fish from sites T-50, T-38, and T-48 compared to fish from sites T-49 and T-11B. The CYP1A expression livers of fish from site T-50 was approximately equal to that of  $\beta$ -naphtho-flavone-treated fish and was 7-fold greater than that of fish from site T-49.



**Fig. 3** Hepatic microsomal CYP1A protein levels in English sole from Vancouver Harbour.



**Fig. 4** Correlation between hepatic EROD activity and CYP1A protein levels in English sole samples.

The relationship between CYP1A protein levels and EROD activity for all 88 fish was examined (see Fig. 4). As expected, CYP1A protein levels were found to be highly correlated with EROD activity ( $r^2 = 0.66$ , p < 0.05).

No correlation was found between age of the English sole and CYP1A levels or EROD activity. When fish were segregated according to sex, no correlation was found between sex and EROD activity for fish from most of the sites. The exception was site T-11B, where EROD activity was greater in female than male fish, but the number of male and female fish in this group, as in most of the other groups, was too small for rigorous statistical analysis.

The relationship between CYP1A levels and sediment concentrations of various organochlorine and polyaromatic hydrocarbon compounds was examined. Sediment chemistry data from the PICES Vancouver Harbour Workshop indicated high levels of high molecular weight aromatic compounds (>4000 ng/g dry weight) and high levels of PCBs (>40 ng/g dry weight) at site T-48, with slightly lower levels at site T-38 (4500 and 34 ng/g dry weight, respectively), and even lower levels at site T-49 (2000 and 9.5 ng/g dry weight, respectively). Site T-50 is unusual in that very low or undetectable levels of these compounds were found at this site. Thus, it appears that, except for site T-50, there is a positive correlation between the amount of CYP1A in English sole and total aromatic hydrocarbon and total PCB levels in sediments at these sites.

#### Discussion

The present study, using English sole liver samples collected from 5 sites in and around Vancouver Harbour demonstrated the following:

- 1. Hepatic microsomal EROD activity was induced 18-fold by  $\beta$ -naphthoflavone treatment and was 5 to 9 times greater in fish from sites T-38 (Indian Arm), T-48 (Port Moody), and T-50 (Howe Sound) than in corn oil-treated fish.
- 2. Hepatic CYP1A protein levels were 5 to 6 times greater in fish from sites T-38 (Indian

Arm), T-48 (Port Moody), and T-50 (Howe Sound) than in corn oil-treated fish.

- 3. Hepatic microsomal EROD activity and CYP1A protein levels were well correlated, supporting the role of CYP1A as the primary catalyst of EROD activity in English sole.
- 4. A comparison of sediment chemistry data showed that fish with increased CYP1A expression came from sites (T-38 and T-48) high containing relatively levels of hydrocarbon polvaromatic (PAH) and organochlorine compounds, suggesting that CYP1A was induced in English sole by environmental exposure to PAHs and PCBs and related compounds.
- 5. The sediment data does not explain the high EROD activity and CYP1A protein levels found in fish from site T-50 (Howe Sound). We assume that induction of CYP1A induced in these fish was caused by environmental exposure to effluent from pulp and paper mills nearby (e.g. the Port Mellon mill).
- 6. Hepatic EROD activity and CYP1A protein levels in English sole are effective indicators of hydrocarbon pollutant levels in the marine environment.

### Acknowledgements

We thank the North Pacific Marine Science Organization (PICES) for making this study possible.

# References

- Addison, R.F. 1996. The use of biological effects monitoring in studies of marine pollution. Environ. Rev. 4: 225–237.
- Addison, R.F., Willis, D.E., and M.E. Zinck. 1994. Liver flounder mono-oxygenase induction in winter flounder (*Pseudopleuronectes americanus*) from a gradient of sediment PAH concentrations at Sydney Harbour, Nova Scotia. Marine Environ. Res. 37: 283–296.
- Burke, M.D., Thompson, S., Elcombe, C.R., Halpert, J., Haaparanta, T., and R.T. Mayer. 1985. Ethoxy, pentoxy and benzyloxyphenoxazones and homologues: A series of substrates to distinguish between different induced cytochromes P450. Biochem. Pharmacol. 34: 3337–3345.

- Campbell, P.M., Kruzynski, G.M., Birtwell, I.K., and R.H. Devlin. 1996. Quantitation of dose-dependent increases in CYP1A1 messenger RNA levels in juvenile chinook salmon exposed to treated bleached-kraft mill effluent using two field sampling techniques. Environ. Toxicol. Chem. 15: 1119–1123.
- Goksøyr, A., and L. Förlin. 1992. The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquat. Toxicol. 22: 287–312.
- Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
- Lin, S., Bullock, P.L., Addison, R.F., and S.M. Bandiera. 1998. Detection of cytochrome P4501A in several species using antibody against a synthetic peptide derived from rainbow trout cytochrome P4501A1. Environ. Toxicol. Chem. 17: 439–445.
- Lowry, O.H., Rosebrough, N. J., Farr, A.J., and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.
- Omura, T., and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemeprotein nature. J. Biol. Chem. 239: 2370–2378.
- Safe, S.H. 1990. Polychlorinated biphenyls (PCBs), dibenzo-*p*-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds: Environmnental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). CRC Crit. Rev. Toxicol. 21: 51–88.
- Stegeman, J.J., Brouwer, M., Di Giulio, R., Forlin, L., Fowler, B.A., Sanders, B.M., and P.A. Van Veld. 1992. Molecular responses to environmental contamination: Enzyme and protein systems as indicators of chemical exposure and effect. *In* Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress. *Edited by* R.J. Huggett, R.A. Kimerle, P.M. Mehrle, Jr., and H.L. Bergman. pp. 235–335, Lewis Publish.,Chelsea, MI.
- Towbin, H., Staehlin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

# Contamination of organotin compounds and imposex in molluscs from Vancouver, Canada

Toshihiro HORIGUCHI<sup>1</sup>, Seiichi Uno<sup>2</sup>, Makoto Shimizu<sup>3</sup>, Hiroaki Shiraishi<sup>1</sup> and Masatoshi Morita<sup>1</sup>

- <sup>1</sup> National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
- <sup>2</sup> National Research Institute of Fisheries and Environment of Inland Sea, Ohno-cho, Hiroshima, 739-0452, Japan
- <sup>3</sup> University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan

#### Introduction

Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPhT), have been used worldwide in antifouling paints for ships and fishing nets since the mid-1960s, and have caused imposex in neogastropods and mesogastropods in the world (Goldberg 1986; Horiguchi 2000). Imposex is defined as a superimposition of male sexual organs (penis and vas deferens) on female gastropods, and may bring about reproductive failure at severely affected stages (Smith 1971; Gibbs and Bryan 1986; Gibbs *et al.* 1987, 1988, 1990). Imposex is thought to be endocrine disruption induced by TBT and TPhT in gastropods (Matthiessen and Gibbs 1998).

The use of TBT has been banned in antifouling paints for ships smaller than 25 m in length in many developed countries, such as European countries and the United States, since the 1980s (Stewart 1996). In Japan, the production, import and use of organotins (TBT and TPhT) have been regulated by law and administrative guidance since 1990, resulting in no production in 1997 (Horiguchi 2000). TBT-based antifouling paints, however, have still been used in developing countries, such as Asian countries, and also for most vessels larger than 25 m in length (Stewart 1996; Horiguchi 2000). The worldwide ban of TBT is being discussed by the Marine Environmental Protection Committee (MEPC) of the International Maritime Organization (IMO) (Horiguchi, 2000).

A PICES Practical Workshop was held from May 24 to June 7, 1999, in Vancouver, Canada. The aim of this study is to know the tissue concentrations of organotin (butyltin and

phenyltin) compounds in molluscs (gastropods and bivalves) from Vancouver, the imposex symptoms in gastropods around Vancouver, and to assess the present status on organotin contamination in Vancouver.

### Materials and methods

Molluscan specimens (gastropods and bivalves) were collected at 15 sites near Vancouver and Victoria during the Workshop. After sampling them, raw or frozen gastropod specimens were used for imposex identification: sex determination and imposex identification were anatomically done (Gibbs *et al.* 1987). The degree of imposex was expressed as incidence (frequency) (%), Relative Penis Length (RPL) Index (%), Relative Penis Size (RPS) Index (%) and Vas Deferens Sequence (VDS) Index through the measurement of penis length and observation of the development of vas deferens (Gibbs *et al.* 1987; Horiguchi *et al.* 1994).

Chemical analysis of organotin (butyltin and phenyltin) compounds in tissues of both gastropod and bivalve specimens were conducted by the methods described in Horiguchi et al. (1994). Briefly, tissues were extracted with 0.1% tropolone/benzene and 1N HBr/ethanol by ultrasonication, derivatized with propylmagnesium bromide. cleaned by silica gel column quantified chromatography and by gas chromatography with a flame photometric detection (GC-FPD). The detection limit of the instrument was 50 pg, and certified reference material of Japanese sea bass, Lateolabrax japonicus, for TBT and TPhT analysis (prepared by the National Institute for Environmental Studies; NIES CRM No. 11) was used for quality assurance and quality control. The analytical conditions are described in more detail in Horiguchi *et al.* (1994).

## **Results and discussion**

No neogastropod specimens (e.g. Nucella lima) were collected at sites in Vancouver in this study. No neogastropod specimens were collected either in the survey around Vancouver in 1994 (Tester et al. 1996). Neogastropods, such as Nucella, however, were observed around Vancouver in the 1970s (Levings, personal communication). It is possible that neogastropod populations have been by some biological wiped out and/or environmental factors in Vancouver since the 1980s.

Results on imposex survey in the file dogwinkle, *Nucella lima*, and the frilled dogwinkle, *Nucella lamellosa*, from Ogden Point, Clover Point and Ten-mile Point in Victoria, and from Mission Point in Wilson Creek (see Section I, Fig. 1.5) are shown in Table 1. Slightly affected imposex was observed in populations of both the file dogwinkle and frilled dogwinkle (3.3 - 19.0, 0.004 - 0.7 and 1.1 - 2.9 for RPL, RPS and VDS Indices in the file dogwinkle and 8.2 - 23.1, 0.1 - 1.2 and 1.0 for RPL, RPS and VDS Indices in the frilled dogwinkle, respectively) although the incidences of imposex were high (71-100% and 100% in populations of the file dogwinkle and the frilled dogwinkle, respectively).

Butyltin concentrations in tissue of both the file dogwinkle and frilled dogwinkle are shown in Figure 1. Phenyltin compounds were not detected in both the file dogwinkle and frilled dogwinkle. Regarding TBT, 2.4 - 14.4 ng/g wet wt. and 6.5 - 22.0 ng/g wet wt. were detected in the file dogwinkle and frilled dogwinkle, respectively. Total butyltin concentrations in tissue (sum of TBT and its metabolites, monobutyltin (MBT) and dibutyltin (DBT)) of the file dogwinkle and frilled dogwinkle and frilled dogwinkle and frilled 4.0 ng/g wet wt., respectively.

**Table 1.** Imposex in the File Dogwinkle (*Nucella lima*) and the Frilled Dogwinkle (*Nucella lamellosa*) from Victoria (Ogden Pt., Clover Pt. and Ten-Mile Pt.) and Wilson Creek (Mission Pt.).

| Imposex in the | File Dogwi   | nkle ( <i>Nuce</i> | lla lima)       |
|----------------|--------------|--------------------|-----------------|
|                | Ogden<br>Pt. | Clover<br>Pt.      | Ten-Mile<br>Pt. |
| Frequency(%)   | 100          | 72                 | 71              |
| RPL Index (%)  | 19.0         | 11.8               | 3.3             |
| RPS Index (%)  | 0.7          | 0.2                | 0.004           |
| VDS Index (%)  | 2.9          | 2.1                | 1.1             |

| Imposex in the <i>lamellosa</i> ) | Frilled Dogw | inkle ( <i>Nucella</i> |
|-----------------------------------|--------------|------------------------|
|                                   | Ten-Mile Pt. | Mission Pt.            |
| Frequency(%)                      | 100          | 100                    |
| RPL Index (%)                     | 8.2          | 23.1                   |
| RPS Index (%)                     | 0.1          | 1.2                    |
| VDS Index (%)                     | 1.0          | 1.0                    |



**Fig. 1** Tissue concentrations of butyltin in the dogwinkle.

Comparison of these analytical values with reported concentrations of TBT and/or butyltin compounds in tissues of organisms shows that TBT and/or butyltin concentrations detected in the dogwinkles from the sites of Victoria and Wilson Creek were relatively low (Belfroid et al. 2000; Environmental Agency of Japan 1999; Tanabe et al. 1998; Takahashi et al. 1997). As imposex seems to have been extensively caused by relatively low contamination levels of TBT in dogwinkle populations surveyed in this study, it is suggested that dogwinkles may be sensitive to TBT and that imposex may be induced even at a low environmental concentration of TBT in dogwinkles. Under laboratory experimental conditions, imposex was induced at 64 ng/l of average exposure concentration of TBT for 120 days in the file dogwinkle, and bioconcentration factor of TBT was estimated to be approximately 2200 (Stickle et al. 1990).

Biological monitoring using the foolish mussel, Mytilus trossulus, was also carried out to determine the present status on organotin contamination in Vancouver. Results on chemical analysis of organotin compounds in tissues of the foolish mussel specimens are shown in Figure 2. Phenyltin compounds were not detected in the foolish mussel specimens either. Butyltin compounds were detected in foolish mussel specimens from all of sites surveyed, including a reference site (I-7), with a maximum concentration of 173.2 ng/g wet wt. (I-4). TBT was the most predominant among butyltin compounds detected in the foolish mussel, except for the specimens from I-3-A station: DBT was the most predominant among butyltin species detected in the foolish mussel from I-3-A, possibly suggesting some sources of the contamination of DBT near I-3-A because DBT has been used in PVC stabilizer.

Concentrations of TBT detected in tissues of the foolish mussel from Vancouver in this study were relatively high, compared with those of TBT in marine organisms reported in recent publications, although they were below the tolerable average residue level of Canada (Belfroid *et al.* 2000; Environmental Agency of Japan 1999; Takahashi *et al.* 1997). TBT concentrations in sediment core samples collected from Vancouver Harbour



**Fig. 2** Tissue concentrations of butyltins in the foolish mussel from Vancouver Harbour (May-June 1999).

(Burrard Inlet) do not show the temporal declining but still high (Thompson 1997). It could result from a continuous use of TBT in antifouling paints for vessels larger than 25 m in length, and a persistence of TBT in bottom sediments. TBT contamination was therefore confirmed to have still continued in Vancouver. Based on the results mentioned above, it is strongly believed that one of the causal factors having wiped out neogastropod populations in Vancouver is TBT from antifouling paints.

A remarkable difference of TBT accumulation in tissue was observed among the bivalve species (Fig. 3). The highest concentration of TBT was detected in the horse clam, Tresus capax (2229.9 ng/g wet wt.). Although bioconcentration factor of TBT and/or bioavailability of TBT through contaminated sediment are unknown in the horse clam, remarkably high concentration of TBT in tissue may have caused some adverse effects in the horse clam because some chronic toxicities have been observed in bivalves by exposure to low concentrations of TBT (Alzieu and Heral 1984; Thain and Waldock 1986; Bryan et al. 1987; Lawler and Aldrich 1987; Salazar and Champ 1988). Further study is necessary to examine possible adverse effects in the horse clam. Regarding the ratio of butyltin species in tissue, TBT was the most predominant in almost all bivalve specimens surveyed, suggesting low metabolic rate of TBT in these bivalve species. Phenyltin compounds were not detected in bivalves other than the foolish mussel either.



**Fig. 3** Tissue concentrations of butyltins in bivalves at station I-4 in Vancouver Harbour (May 30, 1999).

The highest TBT concentration in tissue was consistently observed in the Pacific oyster, *Crassostrea gigas*, among the marine invertebrates collected in every intertidal zone of 3 sites of Japan (Horiguchi et al., unpublished data). As TBT concentrations in tissue were also consistently higher in the Pacific oyster than in the foolish mussel in this study, the Pacific oyster could be useful for biological monitoring of TBT contamination.

#### References

- Alzieu, C. and M. Heral. 1984. In Ecotoxicological Testing for the Marine Environment. Edited by G. Persoone et al., Vol.2, State Univ. Ghent and Inst. Mar. Scient. Res., Bredence, Belgium, pp. 187–196.
- Belfroid, A.C. et al. 2000. Mar. Pollut. Bull. 40: 226–232.
- Bryan, G.W. et al. 1987. J. Mar. Biol. Ass. U.K. 67: 525–544.
- Environmental Agency of Japan. 1999. In Chemicals in the Environment. Edited. by Environmental Health and Safety Division,

Environmental Agency of Japan, pp. 239–260. (in Japanese)

- Gibbs, P.E. and G.W. Bryan. 1986. J. Mar. Biol. Ass. U.K. 66: 767–777.
- Gibbs, P.E. et al. 1987. J. Mar. Biol. Ass. U.K. 67: 507–523.
- Gibbs, P.E. et al. 1988. J. Mar. Biol. Ass. U.K. 68: 715–731.
- Gibbs, P.E. et al. 1990. J. Mar. Biol. Ass. U.K. 70: 639–656.
- Goldberg, E.D. 1986. Environment 28: 17-20, 42-44.
- Horiguchi, T. et al. 1994. J. Mar. Biol. Ass. U.K. 74: 651–669.
- Horiguchi, T. 2000. In Problems of Endocrine Disruptors in Fisheries Environment. Edited by S. Kawai and J. Koyama. Koseisha-Koseikaku, Tokyo, pp.54–72. (in Japanese)
- Lawler, I.F. and J.C. Aldrich. 1987. Mar. Pollut. Bull. 18: 274-278.
- Matthiessen, P. and P.E. Gibbs. 1998. Environ. Toxicol. Chem. 17: 37–43.
- Salazar, M.H. and M.A. Champ. 1988. Oceans '88: 1497–1506.
- Smith, B.S. 1971. Proc. Malacol. Soc. Lond. 39: 377–378.
- Stewart, C. 1996. In Tributytltin: Case study of an environmental contaminant. Edited by S.J. de Mora. Cambridge Univ. Press, pp.264–297.
- Stickle, W.B. et al. 1990. J. Exp. Mar. Biol. Ecol. 143: 165–180.
- Takahashi, S. et al. 1997. Environ. Sci. Technol. 31: 3103–3109.
- Tanabe, S. et al. 1998. Environ. Sci. Technol. 32: 193–198.
- Tester, M. et al. 1996. Environ. Toxicol. Chem. 15, 560–567.
- Thain, J.E. and M.J. Waldock. 1986. Wat. Sci. Tech. 18: 193–202.
- Thompson, J.A.J. 1997. A Report prepared for the Dept. of Fisheries and Oceans, Institute of Ocean Sciences, 19 pp.

# Changes in benthic communities along a presumed pollution gradient in Vancouver Harbour

Jong-Geel JE<sup>1</sup>, Tatyana Belan<sup>2</sup>, Colin D. Levings<sup>3</sup> and Bon Joo Koo<sup>1</sup>

- <sup>1</sup> Korea Ocean Research and Development Institute (KORDI), Korea
- <sup>2</sup> Far Eastern Regional Hydrometeorological Research Institute (FERHRI), Russia
- <sup>3</sup> West Vancouver Laboratory, Science Branch, Fisheries and Oceans Canada, Canada

Objectives of this work during the MEQ Practical Workshop were to assess degree of pollution in Vancouver Harbour by analyzing macrobenthic community structure, and examine the potential usefulness of higher-level taxa of macrobenthos in detecting degree of pollution.

Samples for benthic community studies were collected with a Van Veen grab at 7 stations on a presumed pollution gradient from the head of Vancouver Harbour through to Howe Sound (see Section I, Fig. 1.2). 5 replicate grab samples were taken at each site. Sediments were immediately passed through a 0.5 mm sieve. Benthic organisms were removed from the sieve, and preliminary sorting of fauna was carried out in the West Vancouver Laboratory, Fisheries and Oceans Canada. Samples were preserved and transported to Russia and Korea for further analysis.

Detailed identification of polychaetes was completed at the Far Eastern Regional Hydrometeorological Institute (Vladivostok),



ophiuroids, nemertineans, crustaceans, sipunculans and others at the Institute of Marine Biology (Vladivostok), and molluscs at the Korean Ocean Research and Development Institute (Seoul). The data were then combined for community analyses using a station by species matrix.

The sediments were analyzed for grain size at KORDI using standard sieving and settling tube technique. It was shown that all stations are characterized by mud, except the Howe Sound station that is dominated by sand. 171 species were identified in the sorted 8 faunal groups. The stations were divided into 3 groups by species and abundance similarity: 2 stations in Port Moody Arm, 4 stations in the Inner and Outer Harbours, and 1 station in Howe Sound.

Some preliminary results on faunal composition (Fig. 1-3, Table 1), along with interpretation of changes relative to the data on contaminants in the sediments found by other researchers (Fig. 4) are presented in this report.



**Fig. 1** The faunal group composition of macrobenthos occurring in Vancouver Harbour: mean density = 957 individuals/m<sup>2</sup> (top left); mean biomass = 114.2 g per m<sup>2</sup> wet weight (top right); 171 species in 8 Phyla (bottom left).



■Mollusca ■Anthropoda □Annelida □Others

**Fig. 2** The abundance (top left), biomass (top right) and species number (bottom left) of macrobenthos occurring in Vancouver Harbour.



**Fig. 3** A dendrogram from the cluster analysis using the abundance of macrobenthos occurring in study areas near Vancouver Harbour by percent similarity and weighted pair group average linkage.



**Fig. 4** MDS ordination of Bray-Curtis similarities from 4th-root transformed species abundance data at 7 stations (a); same MDS but with superimposed circles of increasing size with increasing concentration of Mz (b), organochlorine pesticides (c) polychlorinated biphenyls (d), and polycyclic aromatic hydrocarbons (e). Units for (c)-(e) are ng/g dry weight.

 Table 1. Ecological parameters and dominant species in each station group.

|                                               |           | <b>STATIO</b> | N GROUP    |           |
|-----------------------------------------------|-----------|---------------|------------|-----------|
| Parameters                                    | I         | II-1          | II-2       | III       |
| Number of station (n)                         | 2         | 2             | 2          | 1         |
| Number of species                             | 45        | 77            | 84         | 72        |
| Mean no. of species (Spp./0.5m <sup>2</sup> ) | 27.5      | 52.5          | 52.5       | 72        |
| Mean density (Inds./m <sup>2</sup> )          | 526.0     | 798.0         | 1658.0     | 732       |
| ECOLOGICAL INDICES                            |           |               |            |           |
| Species diversity (H')                        | 2.06      | 2.87          | 2.28       | 3.51      |
| Eveness (J)                                   | 0.63      | 0.73          | 0.58       | 0.82      |
| DOMINANT SPECIES (INDS./M <sup>2</sup> )      |           |               |            |           |
| Tharyx multifilis (P)                         | 235       | 1             | -          | -         |
| Nephtys cornuta franciscanum (P)              | <u>81</u> | 16            | 8          | -         |
| Spionidae indet.1 (P)                         | 45        | -             | 14         | 2         |
| Lumbrineris luti (P)                          | 36        | <u>81</u>     | 57         | <u>56</u> |
| Axinopsida serricata (M)                      | 21        | <u>104</u>    | 717        | <u>96</u> |
| Transenella tantilla (M)                      | -         | <u>89</u>     | -          | 2         |
| Ophelina acuminata (P)                        | -         | <u>122</u>    | 13         | -         |
| Bivalvia indet.5 (M)                          | 1         | 1             | <u>161</u> | -         |
| Macoma calcarea (M)                           | 3         | -             | <u>143</u> | -         |
| Nucula tenuis (M)                             | 1         | -             | 23         | <u>52</u> |
| Tellina capenteri (M)                         | -         | -             | -          | <u>26</u> |
| Pinnixa rathbunae (C)                         | 5         | -             | -          | <u>62</u> |
| Tanaidacea indet. (C)                         | -         | -             | -          | <u>42</u> |
| Chaetozone setosa (P)                         | -         | 4             | 5          | <u>30</u> |
| <i>Glycera sp.</i> (P)                        | 1         | -             | 6          | <u>32</u> |
| Nephtys firruginea (P)                        | 1         | 16            | 61         | <u>30</u> |
| Scoloplos armiger (P)                         | -         | 3             | 1          | <u>30</u> |

Underline numbers are the mean density of dominant species in each station group; P: polychaetes; M: molusks; C: crustaceans; "-": not occured. 1)

<sup>2)</sup> 

<sup>3)</sup> 

# Fish communities and life history attributes of English sole (*Pleuronectes vetulus*) in Vancouver Harbour

# Colin D. LEVINGS and Stacey Ong

West Vancouver Laboratory, Science Branch, Fisheries and Oceans Canada, Canada

### Introduction

The species composition of fish communities has been proposed as a key variable to assess the biological integrity of estuarine ecosystems (Deegan et al. 1997), and is also used as a monitoring variable to detect changes in coastal water quality. In this paper, we report on the spatial changes and relative abundance of demersal or bottom dwelling fish in Vancouver Harbour, and evaluate the usefulness of the data for evaluation of environmental quality in the context of the PICES Practical Workshop. There are some data available on fish communities in Vancouver Harbour collected several decades or years ago (Levings 1973; Goyette and Thomas 1987, Goyette and Boyd 1989, Washington Dept of Fish and Wildlife 1995), enabling comparisons over the longer term. The English sole (Pleuronectes vetulus) was identified as a dominant demersal species in the earlier work. Because the physiological and health status of English sole was studied extensively by other investigators in the Workshop, basic data on length, weight, age and growth, and feeding were also obtained.

# Methods

# Field sampling

A small otter trawl (mesh size in body/wing 38 mm, 3.2 mm in codend, width of opening estimated 4.9 m) was towed by the NOAA vessel *Harold W. Streeter* at 5 stations, on a presumed pollution gradient from inner to outer Vancouver Harbour (see Section I, Fig 1.4; Table 1). Each station was sampled between 3 and 7 times. The net was towed between 5 and 10 minutes, and sampled an estimated area of between 1,643 to 8,570 m<sup>2</sup> in each trawl.

**Table 1.** Basic data on trawl stations inVancouver Harbour\* indicates one additionaltrawl completed but results discarded because ofgear problems.

| Site name              | Station<br>name | Number<br>of trawls | Depth<br>range<br>(m) |
|------------------------|-----------------|---------------------|-----------------------|
| Port Moody             | T-38            | 3                   | 11-14                 |
| Indian Arm             | T-48            | 3                   | 26-30                 |
| Lonsdale Quay          | T-11B           | 4                   | 24-26                 |
| West Vancouver<br>Lab* | T-49            | 6                   | 30-45                 |
| Gibsons-Howe<br>Sound* | T-50            | 3                   | 55-73                 |

The catch from each trawl was sorted by species, then enumerated by species and weight. The larger invertebrates such as Dungeness crab (Cancer magister), tanner crab (Chionocetes tanneri), anemone (Metridium spp) and a few species of bivalve molluscs were also enumerated and weighed. The total length of each English sole in the catch was measured to the nearest millimetre. Data on weight, stomach content, and age were obtained for English sole specimens autopsied by Stehr et al. (this report) for physiological condition and histopathology. The minimum size for the latter studies was 25 cm, the approximate length of sexual maturity for this species. After autopsy, the stomach was removed from each fish and preserved in 3.7% formalin. For ageing, the right otolith was removed and placed in a glycerol-thymol mixture.

### Laboratory methods

Stomach contents of a random sample of 10 English sole stomachs were examined in the laboratory. A Wild M-5 Stereomicroscope was used to enumerate organisms, which were identified to the major group level. Ages were determined by the Fish Aging Unit, DFO Science Branch, Pacific Biological Station, Nanaimo. Condition factor was computed using Fulton's K where  $K = wt/l^3 \times 10^5$ .

## Results

#### Fish community data

The mean number of fish species obtained in the trawls ranged from 11 (se 0.5) at station T-38 to 12.2 (se 0.2) at T-49. However based on the total number of species caught in the trawls at a particular site, the fish community at Station T-11B was most diverse (19 species), with the other stations as follows: T-38, 12 species; T-48, 16 species; T-49, 17 species; and T-50, 17 species. Mean biomass ranged from 0.65 kg·100 m<sup>-2</sup> (se 0.1) at T-38 to 0.15 kg·100 m<sup>-2</sup> (se 0.1) at T-11B,

and number of individuals from 350 100 m<sup>-2</sup> (se 50) to  $100 \cdot 100 \text{ m}^{-2}$  (102) at the latter 2 stations.

15 fish species accounted for at least 1% of the catch in the trawls at particular stations (Table 2). Flatfish (Pleuronectidae and Bothidae) were the dominant species, especially English sole (Pleuronectes vetulus). Starry flounder (Platichthys stellatus), Flathead sole (Hippoglossoides elassodon), Dover sole pacificus), Rex sole (Microstomus (Errex zachirus), slender sole (Lyopsetta exilis) and Rock sole (Pleuronectes bilineatus). Flatfish were the dominant taxa at the inner harbour station (T-38), accounting for more than 50% of the fish caught there. Other dominant species were the Pacific tomcod (Microgadus proximus) and the blackbelly Species eelpout (Lycodopsis pacifica). composition at the five sites differed significantly (p<0.05) after testing with  $\chi^2$ .

**Table 2.** Percentage data for abundance of fish species accounting for at least 1% of catch (numerical data) at any of the five stations sampled in Vancouver Harbour. Percentages computed using only fish data.

| Species/Station     | T-38 | T-48 | T-11B | T-49 | T-50 |
|---------------------|------|------|-------|------|------|
| Longfin smelt       | 1.7  | 3.1  | 1.2   | 0.0  | 0.0  |
| Herring             | 2.8  | 1.6  | 5.5   | <1.0 | 0.0  |
| Longnose skate      | 0.0  | 0.0  | <1.0  | 0.0  | 0.0  |
| Spiny dogfish       | 0.0  | 0.0  | 0.0   | 0.0  | <1.0 |
| Pacific hake        | 0.0  | 0.0  | 0.0   | 0.0  | 35.5 |
| Walleye pollock     | 0.0  | <1.0 | 0.0   | 0.0  | 0.0  |
| Pacific tomcod      | 8.6  | 10.3 | 10.5  | 1.1  | 9.2  |
| Shiner seaperch     | 4.1  | 1.0  | 1.0   | <1.0 | <1.0 |
| Copper rockfish     | 0.0  | 0.0  | 0.0   | 0.0  | <1.0 |
| Tadpole sculpin     | 0.0  | 0.0  | 0.0   | 0.0  | <1.0 |
| Roughback sculpin   | 0.0  | 1.0  | 1.9   | <1.0 | 0.0  |
| Buffalo sculpin     | 0.0  | 0.0  | <1.0  | 0.0  | 0.0  |
| Staghorn sculpin    | 3.3  | 1.7  | <1.0  | <1.0 | 0.0  |
| Sturgeon poacher    | 0.0  | <1.0 | 1.0   | <1.0 | 7.1  |
| Midshipman          | 4.3  | 1.6  | 0.0   | <1.0 | <1.0 |
| Whitespot greenling | 0.0  | <1.0 | <1.0  | 0.0  | 0.0  |
| Blackbelly eelpout  | 0.0  | 6.6  | 2.1   | 38.2 | 3.1  |
| Flathead sole       | 1.0  | 14.7 | 1.0   | 14.1 | 1.6  |
| Dover sole          | 13.1 | 0.0  | 0.0   | 1.3  | <1.0 |
| English sole        | 49.6 | 56.1 | 56.8  | 14.9 | 35.9 |
| Rock sole           | 0.0  | <1.0 | 6.2   | 1.5  | <1.0 |
| Slender sole        | 0.0  | 0.0  | 2.9   | 8.8  | 3.3  |
| Starry flounder     | 9.6  | 1.0  | 4.5   | 5.7  | 0.0  |
| Butter sole         | 0.0  | 0.0  | <1.0  | 0.0  | 0.0  |
| Rex sole            | 0.0  | 0.0  | 0.0   | 10.2 | 1.2  |
| Sand sole           | 1.1  | <1.0 | 2.6   | 1.3  | 0.0  |
| Speckled sandab     | 0.0  | 0.0  | 0.0   | 0.0  | <1.0 |
| Pacific sandab      | 1.0  | 0.0  | 2.1   | 1.0  | 1.0  |

## Abundance

Mean abundance of English sole varied between the stations, ranging from about 6 fish·100 m<sup>-2</sup> (se 1) at station T-38 to <1·100 m<sup>-2</sup> (se 1) at station T-49. Biomass showed the same pattern, ranging from about 0.35 kg·100 m<sup>-2</sup> (se 0.05) at station T-38 to 0.05 kg·100 m<sup>-2</sup> (se 0.7) at station T-49. Abundance and biomass at station T-38 was significantly higher (p<0.05) compared to the other stations.

## Length, sex ratio, and age

Mean English sole length was 291 mm (se 4.6) at Station T-38, 270 mm (se 4.7) at T-48, 242 mm (se 4.6) at T-11b, 254 mm (se 3.9) at T-49, and 240 mm (se 4.8) at T-50. As judged by ANOVA, lengths were significantly different between stations (Table 3, p<0.05), with the largest fish at Station T-38. Mean lengths at Station T-38 were statistically significant (p<0.05) when tested against all other stations. Comparisons among the other stations were variable.

# Sex ratio

Female English sole were more common (chi - square, P < 0.05) in the inner harbour stations (T-50, T-48, and T-11B) relative to the outer harbour stations (Table 4).

## Age and growth

Age of the English sole ranged from 2 - 15 years (Fig. 2) and mean age over all stations and sexes was 7.3 y. Mean age at the various stations were 9.3 y at T-38, 7.4 y at T-48, 6.4 y at T-11B, 6.3 y at T-49, and 7.4 y at T-50. The percentage accounted for the various age groups was significantly (p<0.05) different over all the stations, as judged by chi-square. More older fish were found in the inner harbour stations. The only 14 and 15 y fish in the survey were caught at station T-38.

**Table 3.** Statistical comparisons of mean lengthsof English sole at the five stations.

| Station | T-50   | <b>T-48</b> | T-11B  | <b>T-38</b> | T-49 |
|---------|--------|-------------|--------|-------------|------|
| T-50    | -      | -           | -      |             |      |
| T-48    | < 0.05 | -           | -      |             |      |
| T-11B   | ns     | < 0.05      | -      |             |      |
| T-38    | < 0.05 | < 0.05      | < 0.05 | -           |      |
| T-49    | ns     | ns          | ns     | < 0.05      | -    |

**Table 4.** Percentage of male and female English sole at the five stations.

| Site/sex | <b>T-38</b> | <b>T-48</b> | T-11B | T-49 | T-50 |
|----------|-------------|-------------|-------|------|------|
| Percent  | 75          | 86          | 76    | 45   | 44   |
| Female   |             |             |       |      |      |
| Percent  | 25          | 14          | 24    | 55   | 56   |
| Male     |             |             |       |      |      |
| Number   | 28          | 28          | 30    | 42   | 27   |
| of Fish  |             |             |       |      |      |



Fig. 2 Age distribution of English sole from all sample stations combined.

English sole growth was estimated by the slope of the regression line between age (x) and length (y). Using combined data for both males and females, English sole grew fastest at station T-11B (y=9.35x + 182.25), followed by T-38 (y=3.31x + 265.77), T-48 (y=3.05x + 248.11), T-50 (y=1.92x + 225.92), and T-49 (y=1.69x + 243.30).

## **Condition** factor

Condition factor was lower for male and female English sole at Stations T-38 and T-50 (K < 0.787) relative to the other three stations (K > 0.808) (Table 5).

**Table 5.** Fulton's condition factor (K, se, and number of fish) for female and male English sole.

|         | Female English  | Male English    |
|---------|-----------------|-----------------|
| Station | sole            | sole            |
| T-38    | 0.787, 0.01, 21 | 0.726, 0.02, 7  |
| T-48    | 0.821, 0.02, 24 | 0.808, 0.04, 4  |
| T-11B   | 0.853, 0.01, 23 | 0.838, 0.02, 7  |
| T-49    | 0.827, 0.02, 19 | 0.844, 0.01, 23 |
| T-50    | 0.758, 0.02, 12 | 0.716, 0.02, 15 |

## Feeding habits

In ranked order, annelid worms, bivalve molluscs, foraminifera, amphipods, and unidentified

crustaceans were the dominant organisms in English sole stomachs at all stations except T-38. At the latter station, annelid worms were the dominant taxa. The mean number of organisms per stomach ranged from about  $48 \cdot \text{fish}^{-1}$  (se 10) at Station T-38 to  $22 \cdot \text{fish}^{-1}$  (se 9) at Station 11-B.

## References

- Washington Department of Fish and Wildlife. 1996. Puget Sound/Georgia Basin 1995 Transboundary Survey: analytical results for a Georgia Basin bottomfish survey. Final Report, July 23 1996.
- Levings, C.D. 1973. Sediments and abundance of *Lycodopsis pacifica* (Pisces, Zoarcidae) near Point Grey, B.C., with catch data for associated demersal fish. Fish. Res. Bd. Canada Tech. Rep. No. 393. 32 pp.
- Deegan, L.A., Finn, J.T., Ayvazian, S.G., Ryder-Kieffer, C.A., and J. Buonaccorsi. 1997.Development and validation of an Estuarine Biotic Integrity Index. Estuaries 20: 601–617.
- Goyette, D., and M. Thomas. 1987. Vancouver harbour benthic environmental quality studies May 1985 to September 1986. Relative species abundance and distribution - trawl catch. Environment Canada, Regional Data Report 87-03. 62 pp.

# Marine environmental quality assessment using polychaete taxocene characteristics in Vancouver Harbour

# Tatiana A. BELAN

Far Eastern Regional Hydrometeorological Research Institute (FERHRI), 24 Fontannaya St., Vladivostok 690600, Russia

### Introduction

An International Practical Workshop on biological effects of pollutants, organised by the Marine Quality Committee of PICES, took place from May 24 to June 7, 1999, in Vancouver, British Columbia, Canada. Specialists from all PICES member countries participated in the sampling and analysing of the data obtained to detect biological consequences of contaminants in the marine environment. To evaluate marine environment quality, a set of chemical and biological properties was used. Biological properties included the characteristics of polychaete taxocene. Polychaetes are one of the most important groups of marine benthic animals. This group is characterised by high species richness and diversity as well as high biomass and density (up to 80% of total benthos abundance). In addition, polychaetes have a high level of tolerance to adverse effects – both to pollution and natural perturbation (Bryan and
Gibbs 1987; Burd and Brinkhurst 1990; Levings et al. 1985; Rygg 1985a, b). Thus, the state of polychaete taxocenes indicates the state of marine bottom communities as a whole. So, for marine environmental quality assessment we used characteristics of polychaete taxocene and sediment chemistry data.

#### Materials and methods

## Sampling design

Benthic samples were collected in Vancouver Harbour in May-June of 1999 (see Section I, Fig. 1.2). 7 sites were sampled: one in Howe Sound (B-50), one in Outer Harbour (B-49), two in Inner Harbour (B-3A, B-11B), one in Indian Arm (B-48), two in Port Moody (B-38, B-41B). 5 replicate sediment samples were taken at each site with a Van-Veen grab (0.11 m<sup>2</sup>) to analyse a set of chemical and biological properties.

## Sample processing

The sediments were washed by seawater through a 1-mm sieve, and residues including macrobenthos were preserved with a 4% buffered formaldehyde solution. In the laboratory, benthic organisms were sorted from the sediment to major taxa. All individuals were identified to species level, but some organisms could only be identified to higher taxa. Wet weight of macrofauna was determined: organisms were blotted and air-dried for approximately one minute prior to weighing (Bilyard and Becker 1987).

## Data analysis

The software package PRIMER (Plymouth Routines In Multivariate Ecological Research), developed at the Plymouth Marine Laboratory was used for data analysis (Clarke and Green 1988, IOC 1983, UNEP 1995, UNESCO 1988). Univariate measures included Margalef richness index (R), Shannon-Wiener diversity index (H), Pielou evenness index (e), Simpson domination index (Si), total polychaetes biomass (B), abundance (N), and number of polychaetes species (S). Ecological indices were calculated as:

$$H = -\dot{a}p_i^{\prime}(log_2p_i),$$
  

$$e = H/log_2S$$
  

$$R = (S-1)/log_2N;$$
  

$$Si = \dot{a} (p_i)^2$$

where  $p_i$  is the proportion of abundance *i*-th species from total abundance of polychaetes; *S* is total number of polychaetes species.

Multivariate techniques included ordination of benthic samples by Multi-Dimensional Scaling (MDS) and their classification by clustering. Clustering was done by a hierarchical agglomerative method which employs groupaverage linking of Bray-Curtis similarities, after the 4<sup>th</sup> root transformation. Species biomass data, excluding those with count less than 2% of total polychaete biomass, were used. Ordination of polychaete taxocene parameters and environment factors was by Principal Component Analysis (PCA).

## **Results and discussion**

In total, 82 polychaete species were found. The biomass matrix consisted of 82 species at 7 sites, and was subjected to ordination and clusteranalysis. Results of ordination are shown in Figures 1. MDS technique detected 4 groups of stations according to dissimilarity of species composition. The reliability of this diagram was tested by value of stress coefficient. Low values



**Fig. 1** Polychaete fauna. MDS ordination of Bray-Curtis similarities from vv-transformed species biomass data from 7 sites. MDS stress = 0.01.

of this coefficient (0.01–0.05) indicate excellent correspondence and reliability. Thus these groups of stations have different species compositions.

Cluster-analysis confirmed the result of ordination, and detected the same 4 groups of stations as well, shown in Figures 2 and 3. The first diagram shows the results for 5 replicates, while the second diagram demonstrates the results of average biomass for 7 sites.



**Fig. 2** Polychaete fauna. Dendrogram for hierarchical clustering fop 5 replicates from each of 7 sites, using group-average linking of Bray-Curtis similarities calculated on  $\sqrt{\sqrt{-transformed}}$  biomass data.

The lowest Bray-Curtis sites similarity (15%) is observed between Site B-50 and the other sites. This may be explained by the natural environmental factors: depth and sediment type. Site B-50 is located at the deepest part of the research area – at a depth of 50 m on fine sands. While the other sites are disposed at the silty sediments with depths from 10 to 29 m, except for Site B-49, which is located at a depth of 49 m. Low Bray-Curtis species similarity (about 20%) is observed between Group IV (Sites B-38 and B-41B) and the others groups. But these differences probably have been caused by anthropogenic factors: sediment pollution and influence of H<sub>2</sub>S.



Fig. 3 Polychaete fauna. Dendrogram for 7 sites.

|                     | ERL –                         | ERM –Effect               | Observed       |                      |
|---------------------|-------------------------------|---------------------------|----------------|----------------------|
| Pollutants          | Effect range-low <sup>1</sup> | range-medium <sup>2</sup> | concentrations | Sites <sup>3,4</sup> |
| Cd (ppm)            | 0.676-1.2                     | 4.21-9.6                  | 0.2-1.2        | <u>B-3A</u>          |
| Cr                  | 52.3-81.0                     | 160-370                   | 25.0-68.3      | <i>B-41B</i>         |
| Cu                  | 18.7–34.0                     | 108-270                   | 10.8-172.5     | B-38                 |
| Pb                  | 30.2-46.7                     | 112–218                   | 4.0-75.8       | B-3A, B-41B, B-38    |
| Ni                  | 15.9–20.9                     | 42.8-51.6                 | 11.3-34.0      | <b>B-49</b>          |
| Zn (ppm)            | 124–150                       | 271–410                   | 35.0-406.7     | B-3A                 |
| $\Sigma$ DDTs (ppb) | 1.58                          | 46.10                     | 0-2.50         | <u>B-41B</u>         |
| ∑LACs               | 552                           | 3160                      | 70–2200        | <u>B-3A</u>          |
| ∑HACs               | 1700                          | 9600                      | 29-8800        | <u>B-3A</u>          |
| $\Sigma PCBs$ (ppb) | 22.7                          | 180                       | 0–48           | <u>B-48</u>          |

 Table 1. Pollutant concentrations adverse affects on marine benthic invertebrates.

<sup>1</sup> ERL-results in initial, reversible changes in benthic community.

<sup>2</sup> ERM-results in reduction of benthos abundance and species richness in bottom community, and 50% mortality in toxicology experiments (Boyd *et al.* 1998; Long *et al.* 1995).

<sup>3</sup> Shaded fields indicate stations with pollutant content, corresponding to ERM concentrations.

<sup>4</sup> Bold and italic show stations with pollutant content, corresponding to ERL concentrations.

Table 1 demonstrates the range of pollutant concentrations in bottom sediments that negatively affects marine benthos. These values were obtained by American and Canadian scientists (Bovd et al. 1998, Long et al. 1995). Pollution loads at the level of effects in initial reversible changes in benthic communities (range-low concentrations results), and at the level of effects in reduction of benthos abundance and species richness in communities, and 50% mortality in toxicological experiments (range-medium concentrations results). As shown in Table 2, these concentrations of trace metals, DDTs, PCBs, LACs and HACs were found at 5 stations.

The PCA of sediment chemistry data (concentrations of 22 pollutants in bottom sediments) detected 4 groups of stations, shown in Figure 4. Group II (sites B-38 and B-41B) is characterized by maximal and increasing concentrations of organic contaminant in bottom sediments. Site B-3A has maximal concentrations of trace metals. Low pollutant content was recorded at site B-50. Group III (sites B-11B, B-48, and B-49) is characterized by intermediate position. In this diagram Group II (sites B-38 and B-41B) disposes separately from the other sites, as it was shown in Figure 1. So we can propose that strong species dissimilarity of Sites B-38 and B-41B compared with other sites may be evidence of pollutant impact.

The PCA of polychaete taxocene characteristics, including number of species and ecological indices, has also indicated 4 groups (Fig. 5). Group I and II (sites B-38 and B-41B) have lowest values of number of species, as well as indices of diversity and richness. Site B-38 has maximal values of domination index. Domination of tolerant pollution species Tharyx multifilis and low density of sensitive-pollution species (Scoloplos armiger, Laonice cirrata) were detected at these stations. Sites of Group IV (B-50, B-49, B-48, and B-11B) are characterized by the highest values of the number of species, and maximal richness and diversity of polychaetes. Site B-3A is very close to Group IV.



**Fig. 4** PCA ordination of sediment chemistry data. Concentration of 22 pollutants in bottom sediments after transformation ( $\sqrt{}$ ) and normalization for 7 sites (% variance explained = 77%).



**Fig. 5** PCA ordination of 5 characteristics of polychaete taxocene variables after transformation (log x) and normalization for 7 sites (% variance explained = 99.6%).

Thus, sediment quality assessment indicates:

- Severe adverse effect at sites B-38 and B-41B;
- Sites B-48, B-49 and B-11B are characterized by low and moderate adverse effects;
- Site B-3A, judging by ecological indices and species structure has an intermediate position between severe and moderate adverse effects.

#### References

- Bilyard, G.R., and S. Becker. 1987. Recommended protocols for sampling and analyzing subtidal benthic macroinvertebrate assemblages in Puget Sound. US EPA Washington. Contract No. 68-01-6938. 30 pp.
- Boyd, J., Baumann, J., Hutton, K., Bertold, S., and
  B. Moore. 1998. Sediment Quality in Burrard
  Inlet Using Various Chemical and Biological
  Benchmarkers. Burrard Inlet Environmental
  Action Program. Burnaby, B.C., 37 pp.
- Bryan, G.W., and P.E. Gibbs. 1987. Polychaetes as indicators of heavy-metal availability in marine deposits. Oceanic Processes in Marine Pollution. Malabar, Publ. Co. 1: 194–200.
- Burd, B.J., and R.O. Brinkhust. 1990. Vancouver Harbour and Burrard Inlet Benthic Infaunal Sampling Program, October 1987. Canadian Technical Report of Hydrography and Ocean Sciences 122. 49 pp.

- Clarke, K.R., and R.N. Green. 1988. Statistical design and analysis for a 'biological effects' study. Mar. Ecol. Prog. Ser. 46: 213–226.
- IOC Workshop on the biological effects of pollutants. IOC Workshop Report No 53. Oslo, Norway, 1983. 53 pp.
- Levings, C.D., Anderson, E.P., and G.W. O'Connell. 1985. Biological effects of dredged-material disposal in Alberni Inlet. Wastes in the Ocean. Malabar, Publ. 6. 131– 155.
- Long, E.R., MacDonald, D.D., Smith, S.L., and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Management 19: 81–97.
- Rygg, B. 1985a. Effects of sediment copper on benthic fauna. Mar. Ecol. Prog. Ser. 25: 83– 89.
- Rygg, B. 1985b. Distribution of species along pollution-induced diversity gradients in benthic communities in Norwegian Fjords. Mar. Pollut. Bull. 16: 469–474.
- UNEP. 1995. Statistical analysis and interpretation of marine community data. Reference Methods for Marine Pollution Studies. UNEP No. 64.
- UNESCO. 1988 Second IOC Workshop on the Biological Effects of Pollutants. Bermuda, 10 Sept.-2 Oct. 1988. IOC, UNESCO, Paris, 30 p.

# Harmful algae survey in Vancouver Harbour

**Tian YAN**, Mingjiang Zhou, Jun Li, Rencheng Yu, Zhijun Tan and Fengyun Wang Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China. 266071

# Introduction

As part of the work conducted during the Practical Workshop sponsored by the Marine Environmental Quality Committee of the North Pacific Marine Science Organization (PICES), a harmful algae survey was carried out, including shellfish PSP distribution, ARTOX test and cyst distribution. Samples were collected during May 23 to June 8, 1999, at 9 stations in Vancouver Harbour (Fig. 1).

# Material and methods

# Shellfish sample collection

Shellfish samples collected for algal toxin analysis at each station are shown in Table 1. About 500g of whole mussels *Mytilus trossuous* were collected at each intertidal sampling site. Clam samples were also obtained from some interdital beaches (*Ruditapes philippinarium*, *Venerupis staninea*) and from benthic trawling (*Clinocardium nuttallii*, *Yoldia sp.*). Samples were weighed and processed immediately after collection, and then frozen for later lyophilizing. After lyophilization, samples were weighed and then stored in the laboratory before analysis.

# Mouse bioassay

The AOAC mouse bioassay method (AOAC 1990) for PSP was used in the investigation. Mice (strain ICR) were purchased from the Medical Inspection Institute of Qingdao. A dry sample (0.5g) was extracted with 3 ml 0.1N HCl, ultrasonicated for  $8 \times 10$  seconds, then centrifuged at 10,000 rpm for 10 minutes. 1 ml of supernant was used for mouse injection, and 1 ml 0.1N HCl was used as control. Purified STX at concentrations of 0.147 µg/ml and 0.294 µg/ml of STX (purchased from the National Research Council, Canada) were also tested. Symptoms exhibited by mice after injection were observed, and lethal time was recorded.



Fig. 1 Sampling sites in Vancouver Harbour.

| Sample<br>No. | Site<br>Time                | I1<br>0527 | B49<br>0527 | I3A<br>0528 | 15B<br>0529 | 16<br>0529 | T38<br>0529 | I4<br>0530 | I2A<br>0601 | 17<br>0602 |
|---------------|-----------------------------|------------|-------------|-------------|-------------|------------|-------------|------------|-------------|------------|
|               | Mytilus<br>trossulos        | 1, 2       |             | 4, 5        | 6, 7        | 8, 9       |             | 14, 15     | 18, 19      | 20, 21     |
| Intertital    | Ruditapes<br>philippinarium |            |             |             |             | 10         |             |            |             |            |
|               | Venerupis<br>staninea       |            |             |             |             |            |             | 16, 17     |             |            |
| Benthic       | Clinocardium<br>nuttallii   |            | 3           |             |             |            | 11,12       |            |             |            |
|               | <i>Yoldia</i> sp.           |            |             |             |             |            | 13          |            |             |            |

 Table 1. Shellfish sample number, collection station and collection time.

# Artemia Toxicity Test (ARTOX)

Several species of macroalgae were collected at each intertidal sampling site. Attached microalgal cells were scraped from macroalgae and concentrated for testing.

Artemia cysts were obtained from the Artemia Center in Belgium and kept at a low temperature (about 4°C) during transportation and storage. Hatching was initiated 2 days before experiments in Petri-dishes. 10 Artemia larvae at the second or third instar stage were transferred under a dissection microscope to 4 wells of the  $6 \times 4$ -well plates. Each well contained 1 ml of test algal culture. Each group consisted of three replicate wells and one rinsing well which was used to minimize dilution of the test solution during shrimp transfer. The Artemia were observed during the exposure at several-hour intervals and surviving Artemia were counted after 24 hours of incubation in the darkness. Seawater was used as a control in the Artemia test. Quality control tests were carried out using potassium dichromate  $K_2Cr_2O_7$  as the positive control toxin according to the standardized protocol of the method.

Replicate sediment core samples were collected near sites I-7, I-3 and I-6 (Fig. 1). The surficial sediment of each core was incubated using phytoplankton growth medium and optimal light conditions for approximately 3 weeks. Subsamples were collected every few days and preserved in Lugol's Solution. These samples will be analyzed for phytoplankton abundance and composition. The germination of potentially harmful phytoplankton will be documented.

# Results

# PSP analysis in shellfish samples

Wet and dry weight of shellfish samples collected from each station are shown in Table 2. Table 3 includes only intertidal samples. Only mussel samples were found to contain PSP. PSP was not determined in other shellfish samples, not even in shellfish collected from the sites which were very close to the site where PSP has been detected in mussel samples such as *Venerupis staninea* from site I-4 and *Clinocardium nuttallii* from site I-1. Table 4 shows that the PSP concentrations in mussels were all lower than eqv. STX 20  $\mu$ g/100g ww, which is below the common limit of eqv. STX 80 $\mu$ g / 100g ww.

The results indicated that PSP was found only in mussels, and only in English Bay and Burrard Inlet, but not in Port Moody and Gibsons. The concentrations showed a decreasing trend from the West Vancouver to the east of Vancouver Harbour (Fig. 2).

| Sample No. | Wet W.(g) | Dry W. (g) | W:D | Sample No. | Wet W. (g) | Dry W. (g) | W:D |
|------------|-----------|------------|-----|------------|------------|------------|-----|
| 1*         | 94.1      | 16.0       | 5.9 | 12         | 29.6       | 4.2        | 7.0 |
| 2*         | 83.4      | 14.5       | 5.8 | 13         | 5.3        | 0.9        | 5.9 |
| 3          | 20.5      | 3.0        | 6.8 | 14*        | 117.1      | 8.9        | 6.2 |
| 4*         | 103.6     | 17.5       | 5.9 | 15*        | 97.3       | 17.2       | 5.7 |
| 5*         | 89.5      | 14.8       | 6.0 | 16         | 98.3       | 16.1       | 6.1 |
| 6*         | 101.4     | 22.2       | 4.5 | 17         | 93.7       | 16         | 5.9 |
| 7*         | 106.5     | 26.0       | 4.0 | 18*        | 97.3       | 14.9       | 6.5 |
| 8*         | 78.3      | 16.5       | 4.7 | 19*        | 98.0       | 15.2       | 6.4 |
| 9*         | 76.5      | 15.7       | 4.9 | 20*        | 81.9       | 16.9       | 4.8 |
| 10         | 90.1      | 17.2       | 5.2 | 21*        | 56.7       | 11.3       | 5.0 |
| 11         | 117.7     | 18.9       | 8.1 |            |            |            |     |

 Table 2.
 Wet and dry weight of shellfish collected.

\*mussel sample



**Fig. 2** Distribution of PSP in shellfish collected May 27-June 3, 1999, in Vancouver Harbour. The size of the dots indicates the concentration of PSP.

Table 3. Average lethal time of mouse injected with shellfish sample extraction.

| Sample No. | Average lethal time ( h ) | Sample No. | Average lethal time (h) |
|------------|---------------------------|------------|-------------------------|
| 1*         | 12                        | 12         | —                       |
| 2*         | 1.5                       | 13         | _                       |
| 3          | _                         | 14*        | +( >24)                 |
| 4*         | 12                        | 15*        | +(>24)                  |
| 5*         | 24                        | 16         | _                       |
| 6*         | _                         | 17         |                         |
| 7*         | _                         | 18*        | +(>24)                  |
| 8*         | _                         | 19*        | 1.1                     |
| 9*         | _                         | 20*        | _                       |
| 10         | _                         | 21*        | _                       |
| 11         | _                         | Control    | _                       |

\*mussel sample

| Sample                                                        | Average lethal                  | PSP in extraction    | PSP in mussel         |
|---------------------------------------------------------------|---------------------------------|----------------------|-----------------------|
|                                                               | time                            | (eqv. STX μg/ml)     | (eqv. STX μg/100g ww) |
| STX 0.294µg/ml<br>I 1 mussel<br>I 2A mussel<br>STX 0.147µg/ml | 9.5 min<br>1 6.5h<br>12h<br>15h | 0.15-0.2<br>0.15-0.2 | 15-20<br>15-20        |
| I 3A mussel                                                   | 18h                             | <0.15                | <15                   |
| I 4 mussel                                                    | +>24h                           | <0.15                | <15                   |

 Table 4. Determination of PSP concentration in shellfish samples using purified STX.

+(>24h): showed classical PSP symptoms, such as paralyzed legs, slow but deep respiratory, twitching, trembling head, but survived after 24h.

**Table 5.** Artemia test results of samples from each station.

|         | Site | I 1  | I 3A | I 5B | I 6  | I 4  | I 2A | I 7  |
|---------|------|------|------|------|------|------|------|------|
|         | Date | 5.27 | 5.28 | 5.29 | 5.29 | 0530 | 0601 | 0602 |
| Artemia |      | _    | +    | -    | -    | Ι    | -    | _    |

+: swimming behavior of Artemia was inhibited and 24h LC50 of Artemia was about 50%.

## Artemia test

Positive results of the sample from Longsdale Quay I-3A (Table 5) indicated that toxic algae such as *Heterosigma* or DSP producer *Prorocentrum lima* might be present in the water (Demaret *et al.* 1995). However, no toxicity was found from re-samples collected 4 days later.

## Discussion

PSP contents and toxin profile will be further studied using HPLC. Cyst distribution work undertaken by T. Sutherland will be submitted once finished.

## References

- AOAC. 1990. Paralytic Shellfish Poison.
  Biological method. Final action[M]. In Official methods of analysis. Edited by K.
  Hellrich. 15th Edition. sec 959.08. Association of Official Methods of Analytical Chemists.
  Arlington. Virginia. USA. pp. 881–882.
- Demaret A., Sohet, K., and G. Houvenaghel. 1995. Effects of toxic Dinoflagellates on the feeding and mortality of *Artemia franciscana* larvae[M]. *In* Harmful marine algal blooms. *Edited by* P. Lassns, G. Arzul, D.E. Erardle, P. Gentien, and C. Marciallou. Lavoisier, Paris. pp. 427–432.

**Section IV – Comprehensive Data Tables** 

| a trawled   | are meters)    | 3734               | 5184               | 8570               | 6889               | 7385               | 5960          | 6637          | 6010          | 5257       | 3321       | 2308       | 3154       | 5930       | 6140       | 5035          | 1643              | 5838              | 3942              | 4650              | 7072               | 4709               |                    |                 |            |           |            |               |           |
|-------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------|---------------|---------------|------------|------------|------------|------------|------------|------------|---------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-----------------|------------|-----------|------------|---------------|-----------|
| Tide Are    | nbs)           | slack              | d slack            | slack              | slack              | slack              | flood         | flood         | flood         | ebb        | ebb        | slack      | ebb        | ebb        | ebb        | flood         | ebb               | ebb               | ebb               | ebb               | flood              | flood              |                    |                 |            |           |            |               |           |
| Notes       |                |                    | sod-end opene      |                    |                    |                    |               |               |               |            |            |            |            |            |            |               |                   |                   | proke off net     |                   |                    |                    |                    |                 |            |           |            |               |           |
| Start       | <b>Fime</b>    | 1017               | 1054 0             | 1120               | 1640               | 1513               | 1115          | 1143          | 1211          | 1034       | 1135       | 1215       | 1005       | 1030       | 1102       | 1015          | 1111              | 1142              | 1220 t            | 1305              | 936                | 1014               |                    |                 |            |           |            |               |           |
| ntion 5     | utes)          | 10                 | 10                 | 8                  | 10                 | 10                 | 10            | 10            | 10            | 10         | 5          | 5          | 5          | 10         | 10         | 10            | ٢                 | 10                | Ś                 | ×                 | 10                 | ٢                  |                    |                 |            |           |            |               |           |
| epth Dura   | t) (min        | 103                | 145                | 145                | 110                | 110                | 82            | 80            | 80            | 46         | 45         | 43         | 100        | 101        | 101        | 80            | 240               | 235               | 200               | 240               | 100                | 100                |                    |                 |            |           |            |               |           |
| End D       | (fee           |                    |                    |                    |                    |                    |               |               |               |            |            |            |            |            |            |               |                   |                   |                   |                   |                    |                    |                    |                 |            |           |            |               |           |
| Wire Out    | (meters)       | 100                | 150                | 150                | 100                | 100                | 80            | 80            | 80            | 40         | 40         | 40         | 100        | 100        | 100        | 85            | 250               | 250               | 190               | 240               | 100                | 100                |                    |                 |            |           |            |               |           |
| Start Depth | (feet)         | 100                | 150                | 150                | 100                | 100                | 80            | 80            | 80            | 38         | 37         | 37         | 87         | 85         | 85         | 85            | 225               | 225               | 180               | 230               | 100                | 100                |                    |                 |            |           |            |               |           |
| gitude 5    | minutes        | 14.017             | 14.002             | 14.051             | 14.040             | 14.084             | 5.214         | 5.107         | 5.142         | 53.555     | 53.490     | 53.471     | 56.620     | 56.420     | 56.390     | 4.620         | 29.740            | 29.368            | 29.488            | 29.254            | 14.180             | 13.602             |                    |                 |            |           |            |               |           |
| End Lon     | Degrees        | 123                | 123                | 123                | 123                | 123                | 123           | 123           | 123           | 122        | 122        | 122        | 122        | 122        | 122        | 123           | 123               | 123               | 123               | 123               | 123                | 123                |                    |                 |            |           |            |               |           |
| ngitude     | minutes        | 13.712             | 13.595             | 13.353             | 13.474             | 13.480             | 4.733         | 4.577         | 4.672         | 53.115     | 53.230     | 53.290     | 56.811     | 56.810     | 56.780     | 5.032         | 29.660            | 29.662            | 29.673            | 29.541            | 13.598             | 13.991             | 13.946             | 4.902           | 53.312     | 52.683    | 56.630     | 6.720         | 29.612    |
| Start Lo    | Degrees        | 123                | 123                | 123                | 123                | 123                | 123           | 123           | 123           | 122        | 122        | 122        | 122        | 122        | 122        | 123           | 123               | 123               | 123               | 123               | 123                | 123                | 123                | 123             | 122        | 122       | 122        | 123           | 123       |
| ıtitude     | minutes        | 20.194             | 20.102             | 20.056             | 20.212             | 20.232             | 18.271        | 18.241        | 18.239        | 17.736     | 17.760     | 17.752     | 18.130     | 18.175     | 18.165     | 18.120        | 24.300            | 24.632            | 24.603            | 24.671            | 20.240             | 20.190             |                    |                 |            |           |            |               |           |
| End L       | <b>Degrees</b> | 49                 | 49                 | 49                 | 49                 | 49                 | 49            | 49            | 49            | 49         | 49         | 49         | 49         | 49         | 49         | 49            | 49                | 49                | 49                | 49                | 49                 | 49                 |                    |                 |            |           |            |               |           |
| atitude     | minutes 1      | 20.146             | 20.000             | 19.932             | 20.125             | 20.125             | 18.176        | 18.118        | 18.112        | 17.780     | 17.830     | 17.800     | 18.013     | 17.970     | 17.945     | 18.180        | 24.370            | 24.369            | 24.428            | 24.498            | 20.152             | 20.239             | 20.128             | 18.185          | 17.755     | 17.946    | 18.046     | 18.550        | 24.582    |
| Start L     | Degrees        | 49                 | 49                 | 49                 | 49                 | 49                 | 49            | 49            | 49            | 49         | 49         | 49         | 49         | 49         | 49         | 49            | 49                | 49                | 49                | 49                | 49                 | 49                 | 49                 | 49              | 49         | 49        | 49         | 49            | 49        |
| Trawl       | #              | 1                  | 2                  | ŝ                  | 4                  | 5                  | 9             | 7             | œ             | 6          | 10         | 11         | 12         | 13         | 14         | 15            | 16                | 17                | 18                | 19                | 20                 | 21                 | sediment           | sediment        | sediment   | sediment  | sediment   | sediment      | sediment  |
| Site Name   |                | Vest Vancouver Lab | Lonsdale Quay | Lonsdale Quay | Lonsdale Quay | Port Moody | Port Moody | Port Moody | Indian Arm | Indian Arm | Indian Arm | Lonsdale Quay | ibsons Howe Sound | ibsons Howe Sound | ibsons Howe Sound | ibsons Howe Sound | Vest Vancouver Lab | Vest Vancouver Lab | Vest Vancouver Lab | Lonsdale Quay 3 | Port Moody | IOCO *    | Indian Arm | Sulfur Dock 3 | Gibsons : |
| Site        |                | T49 V              | T49 V              | Τ49 Υ              | T49 V              | T49 V              | TIIB          | TIIB          | TIIB          | T38        | T38        | T38        | T48        | T48        | T48        | TIIB          | T50 G             | T50 G             | T50 G             | T50 G             | T49 V              | T49 V              | B49 V              | 311B            | B38        | 341B      | B48        | B3A           | B50       |
| Date        |                | 5/27/99            | 5/27/99            | 5/27/99            | 5/27/99            | 5/27/99            | 5/28/99       | 5/28/99       | 5/28/99       | 5/29/99    | 5/29/99    | 5/29/99    | 5/30/99    | 5/30/99    | 5/30/99    | 6/1/9         | 6/2/99            | 6/7/99            | 6/7/99            | 6/2/99            | 6(3/99             | 6(3/99             | 5/28/99            | 5/29/99 1       | 5/30/99    | 5/30/99 1 | 5/31/99    | 6/7/99        | 6(3/99    |

 Table 1

 Trawl and sediment collection locations for the PICES Vancouver Harbour Practical Workshop.

 Investigators: Mr. Dan Lomax, Ms. Carla Stehr. Dr. Colin Levings

.

.

|                              | 0           |                       |                                                                 |
|------------------------------|-------------|-----------------------|-----------------------------------------------------------------|
| Site Name                    | Site Number | <b>Date Collected</b> | Comments                                                        |
| West Vancouver Lab           | 11          | 5/27/99               |                                                                 |
| Sulfur Dock                  | 12          | 6/1/99                | Site I2A same as site I2                                        |
| Lonsdale                     | I3A         | 5/28/99               | Lonsdale Quay                                                   |
| Burrard Narrows              | I3B         | 5/28/99               | At Dry Dock near I-3A                                           |
| Neptune Terminals            | I3C         | 5/28/99               | at pilings of Neptune Terminal                                  |
| Indian Arm (Cates Park east) | I4A         | 5/30/99               | east side of pier located in Cates Park, same as site I-4       |
| Indian Arm (Cates Park west) | I4B         | 5/30/99               | west side of Pier located in Cates Park                         |
| IOCO                         | I5A         | 5/29/99               | no molluscs collected                                           |
| IOCO                         | I5B         | 5/29/99               | at pilings of a pier near an oil refinery, also called site I-5 |
| Port Moody                   | I6          | 5/29/99               |                                                                 |
| Gibsons (Howe Sound)         | 17          | 6/2/99                |                                                                 |
| Mission Point (Schelt)       |             | 6/2/99                | Gastropods collected for imposex study                          |
| Ogden Point (Victoria)       |             | 5/31/99               | Gastropods collected for imposex study                          |
| Clover Point (Victoria)      |             | 5/31/99               | Gastropods collected for imposex study                          |
| Ten Mile Point (Victoria)    |             | 5/31/99               | Gastropods collected for imposex study                          |
|                              |             |                       |                                                                 |

•

.

Table 2Intertidal site locations for Vancouver Harbour Practical Workshop.Investigator: Dr. Toshihiro Horiouchi

| 7 | 6 |
|---|---|
| 1 | С |
|   |   |

Table 3 Sediment Grain Size. Investigators: Dr. Jong Jeel Je, Dr. Colin Levings

| Site | Core   | Depth    | Gravel | Sand  | Silt  | Clay  | Sediment | mm     | MZ(Phi) | Standard  | Skewness | Kurtosis |
|------|--------|----------|--------|-------|-------|-------|----------|--------|---------|-----------|----------|----------|
|      | Number | In Core* |        |       |       |       | Type**   |        |         | Deviation |          |          |
| B3A  | 5      | 1        |        | 10.45 | 48.33 | 41.23 | sM       | 0.0039 | 7.53    | 2.73      | -0.02    | 2.11     |
| B3A  | 5      | 2        |        | 7.12  | 45.55 | 47.33 | Μ        | 0.0039 | 7.95    | 2.77      | -0.20    | 2.16     |
| B3A  | 5      | 3        | 1.07   | 12.08 | 41.34 | 45.50 | (g)sM    | 0.0039 | 7.58    | 3.13      | -0.50    | 2.78     |
| B3A  | 5      | 4        | 21.24  | 11.23 | 31.80 | 35.72 | sM       | 0.0156 | 5.50    | 4.95      | -0.44    | 1.90     |
| B3A  | 5      | 5        | 1.37   | 16.63 | 37.96 | 44.03 | (g)sM    | 0.0078 | 7.38    | 3.32      | -0.36    | 2.35     |
| B3A  | 5      | 6        |        | 22.76 | 32.41 | 44.83 | sM       | 0.0078 | 7.44    | 3.36      | -0.08    | 1.59     |
| B3A  | 5      | 7        | 0.67   | 33.22 | 33.56 | 32.55 | (g)sM    | 0.0156 | 6.37    | 3.42      | 0.19     | 1.88     |
| B11  | 5      | 1        |        | 55.81 | 20.62 | 23.57 | mS       | 0.0031 | 5.28    | 3.40      | 0.83     | 2.18     |
| B11  | 5      | 2        |        | 57.89 | 20.06 | 22.05 | mS       | 0.0031 | 5.15    | 3.29      | 0.90     | 2.36     |
| B11  | 5      | 3        |        | 58.28 | 21.27 | 20.45 | mS       | 0.0031 | 4.99    | 3.24      | 0.95     | 2.49     |
| B11  | 5      | 4        |        | 59.33 | 18.81 | 21.85 | mS       | 0.0031 | 5.08    | 3.35      | 0.94     | 2.39     |
| B11  | 5      | 5        |        | 61.45 | 17.45 | 21.09 | mS       | 0.0031 | 4.97    | 3.34      | 1.01     | 2.51     |
| B11  | 5      | 6        |        | 62.74 | 18.40 | 18.86 | mS       | 0.0031 | 4.82    | 3.19      | 1.09     | 2.77     |
| B11  | 5      | 7        |        | 57.40 | 19.88 | 22.72 | mS       | 0.0031 | 5.17    | 3.32      | 0.85     | 2.28     |
| B38  | 1      | 1        |        | 2.97  | 40.25 | 56.78 | М        | 0.0020 | 8.83    | 2.49      | -0.26    | 1.75     |
| B38  | 1      | 2        |        | 3.36  | 51.54 | 45.10 | Μ        | 0.0039 | 7.86    | 2.57      | 0.07     | 1.89     |
| B38  | 1      | 3        |        | 3.78  | 40.76 | 55.46 | М        | 0.0020 | 8.64    | 2.49      | -0.23    | 1.85     |
| B38  | 1      | 4        |        | 2.86  | 44.13 | 53.02 | М        | 0.0020 | 8.52    | 2.44      | -0.10    | 1.82     |
| B38  | 1      | 5        |        | 3.58  | 44.18 | 52.24 | Μ        | 0.0020 | 8.49    | 2.44      | -0.09    | 1.85     |
| B38  | 1      | 6        |        | 3.56  | 45.06 | 51.38 | М        | 0.0020 | 8.43    | 2.40      | -0.04    | 1.88     |
| B38  | 1      | 7        |        | 2.63  | 43.34 | 54.03 | Μ        | 0.0020 | 8.57    | 2.41      | -0.10    | 1.82     |
| B41B | 1      | 1        |        | 3.32  | 35.22 | 61.46 | Μ        | 0.0020 | 8.92    | 2.33      | -0.35    | 2.10     |
| B41B | 1      | 2        |        | 2.75  | 34.12 | 63.14 | М        | 0.0020 | 9.03    | 2.30      | -0.38    | 2.10     |
| B41B | 1      | 3        |        | 3.50  | 33.57 | 62.94 | М        | 0.0020 | 9.02    | 2.37      | -0.43    | 2.11     |
| B41B | 1      | 4        |        | 3.09  | 33.51 | 63.40 | М        | 0.0020 | 9.11    | 2.37      | -0.46    | 2.05     |
| B41B | 1      | 5        |        | 3.09  | 35.05 | 61.86 | М        | 0.0020 | 8.96    | 2.37      | -0.38    | 2.05     |
| B41B | 1      | 6        |        | 2.47  | 32.72 | 64.81 | Μ        | 0.0020 | 9.14    | 2.32      | -0.46    | 2.08     |
| B41B | 1      | 7        |        | 2.33  | 33.46 | 64.20 | М        | 0.0020 | 9.14    | 2.29      | -0.41    | 2.02     |
| B48  | 1      | 1        |        | 40.81 | 30.92 | 28.27 | sM       | 0.0016 | 6.14    | 3.21      | 0.66     | 1.93     |
| B48  | 1      | 2        |        | 40.55 | 30.25 | 29.20 | sM       | 0.0016 | 6.22    | 3.25      | 0.61     | 1.85     |
| B48  | 1      | 3        |        | 43.38 | 29.71 | 26.91 | sM       | 0.0016 | 5.99    | 3.18      | 0.71     | 2.02     |
| B48  | 1      | 4        |        | 46.19 | 28.81 | 25.00 | sM       | 0.0016 | 5.78    | 3.20      | 0.79     | 2.17     |
| B48  | 1      | 5        |        | 39.45 | 35.66 | 24.89 | sM       | 0.0016 | 5.94    | 3.01      | 0.72     | 2.21     |
| B48  | 1      | 6        |        | 39.29 | 35.57 | 25.14 | sM       | 0.0016 | 5.93    | 3.00      | 0.76     | 2.22     |
| B48  | 1      | 7        |        | 46.06 | 31.78 | 22.16 | sM       | 0.0016 | 5.64    | 3.01      | 0.91     | 2.49     |
| B49  | 1      | 1        |        | 7.25  | 46.81 | 45.93 | М        | 0.0039 | 7.95    | 2.64      | 0.01     | 1.82     |
| B49  | 1      | 2        |        | 7.47  | 45.64 | 46.89 | М        | 0.0039 | 8.07    | 2.64      | -0.06    | 1.90     |
| B49  | 1      | 3        |        | 7.63  | 49.05 | 43.32 | М        | 0.0039 | 7.90    | 2.57      | 0.05     | 1.99     |
| B49  | 1      | 4        |        | 11.11 | 43.64 | 45.25 | sM       | 0.0039 | 7.91    | 2.85      | -0.13    | 1.92     |
| B49  | 1      | 5        |        | 2.72  | 48.19 | 49.09 | М        | 0.0039 | 8.30    | 2.48      | -0.03    | 1.91     |
| B49  | 1      | 6        |        | 7.77  | 43.52 | 48.70 | М        | 0.0039 | 8.24    | 2.76      | -0.11    | 1.68     |
| B50  | 4      | 1        |        | 96.80 | 3.20  |       | S        | 0.2500 | 1.97    | 0.95      | 0.53     | 3.27     |
| B50  | 4      | 2        |        | 97.43 | 2.57  |       | S        | 0.2500 | 1.97    | 0.92      | 0.52     | 3,36     |
| B50  | 4      | 3        |        | 96.87 | 3.13  |       | S        | 0.2500 | 2.07    | 0.94      | 0.47     | 3.06     |
| B50  | 4      | 4        |        | 97.06 | 2.94  |       | S        | 0.2500 | 1.96    | 0.94      | 0.51     | 3.38     |
| B50  | 4      | 5        |        | 97.24 | 2.76  |       | S        | 0.2500 | 1.93    | 0.94      | 0.58     | 3.34     |
| B50  | 4      | 6        |        | 97.30 | 2.70  |       | S        | 0.2500 | 1.97    | 0.90      | 0.57     | 3.50     |
| B50  | 4      | 7        |        | 97.29 | 2.71  |       | S        | 0.2500 | 1.99    | 0.93      | 0.50     | 3.28     |
|      |        |          |        |       |       |       |          |        |         |           |          | 0.20     |

sM = Sandy mud; M = Mud; (g)sM = sandy mud with gravel; mS = muddy sand; S = Sand.

\* each number represents 1 cm of sediment in the core. For instance, 1 = sediment from surface to 1 cm in depth, 2 = sediment 1-2 cm deep, 3 = sediment 2-3 cm deep, etc.

\*\* sediment type according to Folk, R.L., 1974. The Petrology of sedimentary rocks. Austin, Tex., USA, Hemphill Publishing, Co. 182p.

# Total organic carbon in sediment.

Investigator: Ms. Carla Stehr (analyses done by Columbia Analytical Services, Inc.)

| Site         | Matrix   | Basis | Units   | Result |
|--------------|----------|-------|---------|--------|
| B49          | Sediment | Dry   | PERCENT | 2.04   |
| B41B         | Sediment | Dry   | PERCENT | 4.36   |
| B3A          | Sediment | Dry   | PERCENT | 3.96   |
| B50          | Sediment | Dry   | PERCENT | 0.20   |
| B11B         | Sediment | Dry   | PERCENT | 1.99   |
| B38          | Sediment | Dry   | PERCENT | 3.69   |
| B48          | Sediment | Dry   | PERCENT | 2.69   |
| Method Blank | Sediment | Dry   | PERCENT | ND     |

ND= not detected

One composite sample was analyzed for each site. Three sediment grabs were collected at each site, and equal amounts of sediment from each grab were combined for the composite sample.

Polycyclic aromatic hydrocarbons in sediment from Vancouver Harbour (ng/g, dry weight). Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

| Site                       | B3-A          | B41-B           | T11-B        | T38        | T48        | T49          | T50        |
|----------------------------|---------------|-----------------|--------------|------------|------------|--------------|------------|
| Location                   | Sulfur Dock P | t. Moody IOCO I | onsdale Quay | Port Moody | Indian Arm | West Van Lab | Howe Sound |
| Dry Weight (%)             | 44.5%         | 24.0%           | 43.7%        | 28.4%      | 42.8%      | 42.0%        | 78.9%      |
| naphthalene                | 200           | 260             | 64           | 440        | 200        | 62           | pq         |
| 2-methylnaphthalene        | 110           | 170             | 94           | 150        | 120        | 61           | pq         |
| 1-methylnaphthalene        | 66            | 95              | 51           | 82         | 65         | 43           | pq         |
| biphenyl                   | 48            | <i>LL</i>       | 27           | 73         | 42         | 20           | pq         |
| 2,5-dimethylnaphthalene    | 71            | 130             | 71           | 110        | 89         | 42           | pq         |
| acenaphthylene             | 19            | 56              | 10           | 120        | 39         | 12           | pq         |
| acenaphthene               | 170           | 37              | 41           | 37         | 43         | 20           | pq         |
| 2,3,5-trimethylnaphthalene | 26            | 43              | 17           | 39         | 20         | 25           | pq         |
| fluorene                   | 150           | 88              | 53           | 74         | 69         | 42           | pq         |
| dibenzothiophene           | 45            | 29              | 18           | 27         | 23         | 12           | 68         |
| phenanathrene              | 810           | 430             | 350          | 530        | 500        | 240          | 2.1        |
| anthracene                 | 360           | 140             | 60           | 140        | 110        | 62           | pq         |
| 1-methylphenanathrene      | 94            | 75              | 59           | 16         | 75         | 43           | pq         |
| fluoranthene               | 1900          | 069             | 550          | 820        | 1000       | 340          | 8.6        |
| pyrene                     | 1700          | 970             | 550          | 1000       | 920        | 350          | 9          |
| benz[a]anthracene          | 780           | 250             | 280          | 250        | 290        | 170          | 2          |
| chrysene + triphenylene    | 1100          | 480             | 330          | 370        | 480        | 230          | 3.9        |
| benzo[b]fluoranthene       | 710           | 410             | 300          | 360        | 460        | 170          | 2.3        |
| benzo[j+k]fluoranthene     | 630           | 310             | 260          | 310        | 350        | 150          | 1.8        |
| benzo[e]pyrene             | 490           | 350             | 230          | 320        | 330        | 140          | 1.7        |
| benzo[a] pyrene            | 600           | 300             | 300          | 300        | 350        | 170          | 1.6        |
| perylene                   | 170           | 150             | 110          | 130        | 110        | 81           | 1.6        |
| indeno[1,2,3-c,d]pyrene    | 340           | 220             | 210          | 230        | 240        | 110          | pq         |
| dibenz[a,h]anthacene       | 64            | 46              | 43           | 41         | 52         | 23           | pq         |
| benzo[g,h,i]perylene       | 340           | 270             | 210          | 290        | 260        | 130          | pq         |
| LMWAH                      | 2200          | 1600            | 950          | 1900       | 1400       | 069          | 70         |
| НММАН                      | 8800          | 4400            | 3400         | 4500       | 4800       | 2000         | 29         |

Polycyclic aromatic hydrocarbons in sediment from Vancouver Harbour (ng/g, dry weight). Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

bd = below detection limits. Dectection limits vary depending on the analyte and sample weight. If detection limits are needed, please contact Carla Stehr at carla m.stehr@noaa.gov LMWAH = Low molecular weight aromatic hydrocarbons = naphthalene + 2-methylnaphthalene + 1-methylnaphthalene + 5.6-dimethylnaphthalene + 1-methylnaphthalene + 1-methylnaphth acenaphthylene + acenaphthene + 2,3,5-trimethylnaphthalene + fluorene + dibenzothlophene + phenanthrene + anthracene + 1-methylphenanthrene.

HMWAH = high molecular weight aromatic hydrocarbons = fluoranthene + pyrene + benz[a]anthracene + chrysene + triphenylene + benzo[b]fluoranthene + benzo[j]fluoranthene + benzo[k]fluoranthene + benzo[e]pyrene + benzo[a]pyrene + perylene + indeno[1,2,3-cd]pyrene + dibenz[a,h]anthracene + dibenz[a,c]anthracene + benzo[ghl]perylene.

using our gas chromatographic procedure. In addition, the compounds have very similar mass spectra, therefore we report their combined concentrations Chrysene is not resolved from triphenylene using our gas chromatographic procedure. In addition, the compounds have very similar mass spectra, In addition, the compounds have very similar mass spectra, therefore we report their combined concentrations as Dibenz[a,h]anthracene as Berzo[k]fluoranthene. Dibenz[a,h]anthracene is not resolved from dibenz[a,c]anthracene using our gas chromatographic procedure. therefore we report their combined concentrations as Chrysene. Benzo[k]fluoranthene is not resolved from benzo[j]fluoranthene

Each value represents the data from the analysis of one sample. Three grabs were made at each site. Equal amounts of sediment from each grab were combined into a single sample (composite) and analyzed.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography – size exclusion chromatography clean up, and analysis by gas chromatograph/mass spectrometry using scan mode.

all analytes are reported as if two figures are significant

Quality assurance data for polycyclic aromatic hydrocarbons in sediment (ng/g dry weight).

Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

| Sample #                   | 100-1998  | 100-1999  | 100-2000     | 100-2006  | 100-2007  | 100-2008     |
|----------------------------|-----------|-----------|--------------|-----------|-----------|--------------|
| SampleType                 | SRM 1941a | SRM 1941a | Method Blank | SRM 1941a | SRM 1941a | Method Blank |
| Sample Weight (g)          | 2.81      | 2.16      | 10.35        | 2.07      | 2.45      | 10.43        |
| Dry Wt (%)                 | 49.7      | 49.7      | 36.8         | 50.0      | 50.2      | 48.5         |
| naphthalene                | 1100      | 1100      | bd           | 1100      | 1100      | bd           |
| 2-methylnaphthalene        | 360       | 360       | bd           | 350       | 360       | bd           |
| 1-methylnaphthalene        | 200       | 200       | bd           | 200       | 200       | bd           |
| biphenyl                   | 100       | 100       | bd           | 110       | 110       | bd           |
| 2,5-dimethylnaphthalene    | 180       | 170       | bd           | 180       | 180       | bd           |
| acenaphthylene             | 59        | 53        | bd           | 56        | 60        | bd           |
| acenaphthene               | 53        | 45        | bd           | 43        | 50        | bd           |
| 2,3,5-trimethylnaphthalene | 72        | 91        | bd           | 58        | 74        | bd           |
| fluorene                   | 97        | 98        | bd           | 94        | 110       | bd           |
| dibenzothiophene           | 55        | 54        | bd           | 54        | 56        | bd           |
| phenanathrene              | 640       | 620       | bd           | 600       | 620       | bd           |
| anthracene                 | 220       | 220       | bd           | 230       | 220       | bd           |
| 1-methylphenanathrene      | 120       | 120       | bd           | 110       | 110       | bd           |
| fluoranthene               | 1300      | 1300      | bd           | 1200      | 1200      | bd           |
| pyrene                     | 1100      | 1000      | bd           | 980       | 1000      | bd           |
| benz[a]anthracene          | 570       | 530       | bd           | 510       | 540       | bd           |
| chrysene + triphenylene    | 760       | 730       | bd           | 720       | 750       | bd           |
| benzo[b]fluoranthene       | 920       | 870       | bd           | 880       | 930       | bd           |
| benzo[j+k]fluoranthene     | 780       | 740       | bd           | 720       | 720       | bd           |
| benzo[e]pyrene             | 700       | 630       | bd           | 680       | 680       | bd           |
| benzo[a]pyrene             | 700       | 650       | bd           | 650       | 680       | bd           |
| perylene                   | 450       | 440       | bd           | 440       | 450       | bd           |
| indeno[1,2,3-c,d]pyrene    | 610       | 540       | bd           | 570       | 590       | bd           |
| dibenz[a,h]anthacene       | 110       | 100       | bd           | 120       | 120       | bd           |
| benzo[g,h,i]perylene       | 620       | 600       | bd           | 570       | 620       | bd           |
| LMWAHs                     | 3300      | 3200      | bd           | 3200      | 3200      | bd           |
| HMWAHs                     | 8500      | 8100      | bd           | 8000      | 8300      | bd           |

nd = below detection limits. Detection limits vary depending on the analyte and sample weight. If detection limit data is needed, please contact Carla Stehr at carla.m.stehr@noaa.gov.

LMWAH = Low molecular weight aromatic hydrocarbons = naphthalene + 2-methylnaphthalene + 1-methylnaphthalene + biphenyl + 2,6-dimethylnaphthalene + acenaphthylene + acenaphthylene + 2,3,5-trimethylnaphthalene + fluorene + dibenzothlophene + phenanthrene + anthracene + 1-methylphenanthrene.

HMWAH = high molecular weight aromatic hydrocarbons = fluoranthene + pyrene + benz[a]anthracene + chrysene + triphenylene + benzo[b]fluoranthene + benzo[b]fluoranthene + benzo[k]fluoranthene + benzo[k]flu

Chrysene is not resolved from triphenylene using our gas chromatographic procedure. In addition, the compounds have very similar mass spectra, therefore we report their combined concentrations as Chrysene. Benzo[k]fluoranthene is not resolved from benzo[j]fluoranthene using our gas chromatographic procedure. In addition, the compounds have very similar mass spectra, therefore we report their combined concentrations as Benzo[k]fluoranthene. Dibenz[a,h]anthracene is not resolved from dibenz[a,c]anthracene using our gas chromatographic procedure. In addition, the compounds have very similar mass spectra, therefore we report their combined concentrations as Dibenz[a,h]anthracene

# Table 6 Quality assurance data for polycyclic aromatic hydrocarbons in sediment (ng/g dry weight). Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

The sample weight used to calculate concentrations for the method blank is the mean sample weight calculated for the field samples in the same set.

The concentrations of naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene were calculated using naphthalene-d8 as the surrogate standard; biphenyl, 2,6-dimethynaphthalene, acenaphthylene, acenaphthene, 2,3,6-trimethylnaphthalene, fluorene, dibenzothiophene, phenanthrene, anthracene, 1-methylphenanthrene, fluoranthene and pyrene were calculated using acenaphthene-d10 as the surrogate standard; benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indenopyrene, dibenz[g,h,i]perylene were calculated using benzo[a]pyrene-d12 as the surrogate standard.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography – size exclusion chromatography clean up, and analysis by gas chromatograph/mass spectrometry using scan mode.

All analytes are reported as if two figures are significant.

Table 7 PCB (chlorobiphenyl) congeners in sediment from Vancouver Harbour (ng/g dry weight). Investigators: Ms. Jennie Bolton and Ms. Carla Stehr

| -710              | 4 CC          | L 11 L          |               | 0 CL       | 110        | ci t          | 0 a L      |
|-------------------|---------------|-----------------|---------------|------------|------------|---------------|------------|
| olle              | DJ-A          | B41-B           | 111-B         | 158        | 148        | I 49          | 001        |
| Location          | Sulfur Dock F | Port Moody IOCO | Lonsdale Quay | Port Moody | Indian Arm | West Van Lab. | Gibsons    |
| Congener #        |               |                 |               |            |            |               | Howe Sound |
| 28                | 0.48          | 0.96            | pq            | pq         | 1.5        | 0.56          | pq         |
| 44                | pq            | pq              | pq            | pq         | 0.74       | 0.44          | pq         |
| 52                | pq            | pq              | pq            | 2.1        | 4.7        | pq            | pq         |
| 99                | 0.62          | 0.73            | pq            | pq         | 0.96       | pq            | pq         |
| 101               | 1.6           | 1.5             | pq            | 1.9        | 2.7        | 0.37          | pq         |
| 105               | 0.31          | 0.52            | pq            | pq         | 0.51       | pq            | pq         |
| 118               | 0.36          | 1.2             | 0.48          | 1.3        | 1.4        | 0.42          | pq         |
| 128               | 0.37          | 0.5             | pq            | pq         | 0.54       | 0.22          | pq         |
| 138/163/164       | 1.6           | 2.8             | 0.99          | 3.4        | 2.8        | 0.73          | pq         |
| 153               | 1.9           | 3.4             | 1.3           | б          | 2.4        | 0.95          | pq         |
| 170/190           | 0.63          | 1               | pq            | 1.1        | 0.65       | 0.37          | pq         |
| 187               | 1.6           | 3.2             | 1.2           | 4.2        | 3.8        | 0.49          | pq         |
| 195               | 0.83          | 0.67            | pq            | pq         | 0.65       | 0.19          | pq         |
| 206               | pq            | pq              | pq            | pq         | pq         | pq            | pq         |
| 209               | 1.4           | 0.97            | pq            | pq         | 0.48       | pq            | pq         |
| <b>Total PCBs</b> | 23            | 35              | 7.8           | 34         | 48         | 9.5           | þd         |
|                   |               |                 |               |            |            |               |            |

bd = below detection limits. Detection limits vary depending on the analyte and sample weight. If detection limit data is needed, please contact Carla Stehr at carla.m.stehr@noaa.gov.

CB Numbers refer to PCB congeners as identified by the IUPAC (International Union of Pure and Applied Chemistry) number.

gas chromatographic procedure, therefore we report their combined concentrations as "138/163/164". PCBs 153 and 132 are not resolved by our gas chromatographic procedure, therefore we report \*PCBs 101 and 90 are not resolved by our gas chromatographic procedure, therefore we report their combined concentrations as "101". PCBs 138,163, and 164 are not resolved by our their combined concentrations as "153". PBCs 170 and 190 are not resolved by our gas chromatographic methods, therefore we report their combined concentrations as "170/190".

The concentrations of analytes were calculated using CB103 as the surrogate standard.

The concentrations reported for "Total PCBs" is an estimate of the total PCB concentration, obtained by taking the sum of the concentrations of 17 selected congeners (CBs 18, 28, 44, 52, 95, 101, 105, 118, 128, 153, 170, 180, 187, 195, 206, and 209), and multiplying by 2. Each value represents the data from the analysis of one sample. Three grabs were made at each site. Equal amounts of sediment from each grab were combined into a single sample (composite) and analyzed.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography - size exclusion chromatography clean up, and analysis by gas chromatograph/electron capture detection.

Chlorinated pesticides in sediment from Vancouver Harbour (ng/g, dry weight). Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

| Site                  | B3-A        | B41-B           | T11-B          | T38        | T48        | T49           | T50        |
|-----------------------|-------------|-----------------|----------------|------------|------------|---------------|------------|
| Location              | Sulfur Dock | Port Moody IOCO | Londsdale Quay | Port Moody | Indian Arm | West Van. Lab | Gibsons    |
|                       |             |                 |                |            |            | H             | Howe Sound |
| cis- chlordane        | 0.17        | pq              | pq             | þq         | pq         | pq            | pq         |
| trans -chlordane      | pq          | pq              | pq             | pq         | 0.36       | pq            | pq         |
| heptachlor            | pq          | pq              | pq             | pq         | þq         | pq            | pq         |
| heptachlor epoxid     | pq          | pq              | pq             | pq         | þq         | pq            | pq         |
| oxychlordane          | pq          | pq              | pq             | pq         | þq         | pq            | pq         |
| trans -nonachlor      | 0.13        | pq              | pq             | þq         | þq         | pq            | pq         |
| <i>cis</i> -nonachlor | pq          | pq              | pq             | þq         | þq         | pq            | pq         |
| HCB                   | 0.21        | 0.44            | pq             | 0.51       | 2.5        | 0.17          | pq         |
| ү-НСН                 | 0.18        | 0.57            | þq             | pq         | pq         | pq            | pq         |
| aldrin                | pq          | pq              | pq             | pq         | pq         | þq            | pq         |
| dieldrin              | pq          | 0.49            | pq             | 0.77       | 0.32       | pq            | pq         |
| mirex                 | pq          | pq              | pq             | pq         | pq         | pq            | pq         |
| 0,p'-DDD              | pq          | pq              | pq             | pq         | þq         | pq            | pq         |
| o,p'-DDE              | pq          | pq              | bd             | pq         | pq         | pq            | pq         |
| o,p'-DDT              | pq          | pq              | þq             | pq         | pq         | pq            | pq         |
| p,p'-DDD              | 0.76        | 2               | 0.76           | 2          | 1.3        | 0.55          | pq         |
| p,p'-DDE              | 0.29        | 0.52            | þd             | þq         | 0.37       | 0.26          | pq         |
| p,p'-DDT              | pq          | pq              | pq             | pq         | pq         | pq            | pq         |
|                       |             |                 |                |            |            |               |            |

bd = below detection limits. Detection limits vary depending on the analyte and sample weight. If detection limit data is needed,

please contact Carla Stehr at carla.m.stehr@noaa.gov.

 $HCB = hexachlorobenzene; \gamma-HCH = gamma-hexachlorocyclohexane$ 

Each value represents the data from the analysis of one sample. Three grabs were made at each site.

Equal amounts of sediment from each grab were combined into a single sample (composite) and analyzed.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography - size exclusion chromatography clean up, and analysis by gas chromatograph/electron capture detection.

,

Quality assurance data for chlorinated hydrocarbon analyses of sediment (ng/g dry weight).

Investigators: Ms. Jennie Bolton and Ms. Carla Stehr

| Sample             | 100-1998  | 100-1999  | 100-2000     | 100-2006  | 100-2007  | 100-2008     |
|--------------------|-----------|-----------|--------------|-----------|-----------|--------------|
| Sample Type        | SRM 1941a | SRM 1941a | Method Blank | SRM 1941a | SRM 1941a | Method Blank |
| Sample wt (g)      | 2.81      | 2.16      | 10.35        | 2.07      | 2.45      | 10.43        |
| Dry wt (g)         | 49.70     | 49.73     | 36.83        | 49.97     | 50.19     | 48.45        |
| CB18               | NR        | NR        | bd           | NR        | NR        | bd           |
| CB28               | 8.4       | 9.7       | bd           | 8.4       | 8.3       | bd           |
| CB44               | 6.5       | 6.7       | 1            | 5.5       | 5.3       | bd           |
| CB52               | 10        | 12        | bd           | 11        | 10        | bd           |
| CB66               | 9.2       | 10        | bd           | 9.5       | 9.2       | bd           |
| CB101              | 17        | 19        | bd           | 17        | 17        | bd           |
| CB105              | 2         | 2.5       | bd           | 3.2       | 3.2       | bd           |
| CB118              | 8.3       | 9.5       | bd           | 8.1       | 8.6       | bd           |
| CB128              | 1.7       | 2         | bd           | 1.9       | 1.9       | bd           |
| CB138              | 14        | 16        | bd           | 16        | 15        | bd           |
| CB153              | 17        | 19        | bd           | 20        | 19        | bd           |
| CB170              | 4.2       | 4.6       | bd           | 4.3       | 4         | bd           |
| CB180              | NR        | NR        | bd           | NR        | NR        | bd           |
| CB187              | 13        | 13        | bd           | 14        | 14        | bd           |
| CB195              | 2.4       | 2.4       | bd           | 2.7       | 2.6       | bd           |
| CB206              | 4         | 4.3       | bd           | 4.6       | 4.6       | bd           |
| CB209              | 10        | 11        | bd           | 12        | 12        | bd           |
| PCB Est. total     | 260       | 280       | 2            | 280       | 270       | 0            |
| cis -chlordane     | 1.8       | 2.1       | bd           | 2.1       | 2         | bd           |
| trans -chlordane   | 2.3       | 2.3       | bd           | 2.4       | 2.3       | bd           |
| oxychlordane       | bd        | bd        | bd           | bd        | bd        | bd           |
| heptachlor         | bd        | bd        | bd           | bd        | bd        | bd           |
| heptachlor epoxide | bd        | bd        | bd           | bd        | bd        | bd           |
| cis -nonachlor     | 0.53      | 0.87      | bd           | bd        | 1.1       | bd           |
| trans -nonachlor   | 0.56      | 0.76      | bd           | 0.91      | 0.93      | bd           |
| hexachlorobenzene  | 71        | 75        | bd           | 74        | 72        | bd           |
| lindane (γ-HCH)    | 1.4       | 1.4       | bd           | 1.3       | 1.3       | bd           |
| aldrin             | bd        | bd        | 1.4          | bd        | bd        | 0.96         |
| dieldrin           | 2.1       | 2.1       | bd           | 2.1       | 2.1       | bd           |
| mirex              | bd        | bd        | 0.29         | bd        | bd        | bd           |
| o,p'-DDD           | bd        | bd        | bd           | bd        | bd        | bd           |
| o,p'-DDE           | 0.83      | 0.81      | bd           | bd        | bd        | bd           |
| o,p'-DDT           | bd        | bd        | bd           | bd        | bd        | bd           |
| p,p'-DDD           | 5.7       | 6.3       | bd           | 6.6       | 6.7       | bd           |
| p,p'-DDE           | 4.3       | 4.6       | bd           | 4.4       | 4.2       | bd           |
| p,p'-DDT           | bd        | bd        | bd           | bd        | bd        | bd           |

SRM = standard reference material

bd = below detection limits. Detection limits vary depending on the analyte and sample weight. If detection limit data is needed, please contact Carla Stehr at Carla.m.stehr@noaa.gov.

NR = the concentrations of these analytes could not be reported, due to an analytical interference.

#### Quality assurance data for chlorinated hydrocarbon analyses of sediment (ng/g dry weight).

Investigators: Ms. Jennie Bolton and Ms. Carla Stehr

CB Numbers refer to PCB congeners as identified by the IUPAC (International Union of Pure and Applied Chemistry) number.

lindane is the same as  $\gamma$ -HCH;  $\gamma$ -HCH =gamma-hexachlordane;

\*PCBs 101 and 90 are not resolved by our gas chromatographic procedure, therefore we report their combined concentrations as "101". PCBs 138,163, and 164 are not resolved by our gas chromatographic procedure, therefore we report their combined concentrations as "138". PCBs 153 and 132 are not resolved by our gas chromatographic procedure, therefore we report their combined concentrations as "153". PCBs 153 and 132 are not resolved by our gas chromatographic grocedure, therefore we report their combined concentrations as "153". PCBs 170 and 190 are not resolved by our gas chromatographic methods, therefore we report their combined concentrations as "150".

The concentrations of analytes were calculated using CB103 as the surrogate standard.

The concentrations reported for "PCBs Est. Total" is an estimate of the total PCB concentration, obtained by taking the sum of the concentrations of 17 selected congeners (CBs 18, 28, 44, 52, 95, 101, 105, 118, 128, 138, 153, 170, 180, 187, 195, 206, and 209), and multiplying by 2.

The sample weight used to calculate analyte concentrations for method and field blanks is the mean sample weight of all field samples (excluding field blanks) in the same sample set.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography – size exclusion chromatography clean up, and analysis by gas chromatograph/electron capture detection.

| Table 10                                                        |
|-----------------------------------------------------------------|
| Metals in sediment (dry weight).                                |
| Investigators: Dr. Alexander Tkalin and Dr. Tatiana Lishavskaya |

| Sample | Site         | Al    | Cu    | Co          | Cr   | Ni   | Cd  | Pb   | Zn  | Mn  | Fe   | Laboratory   |
|--------|--------------|-------|-------|-------------|------|------|-----|------|-----|-----|------|--------------|
|        |              | ppm   | ppm   | ppm         | ppm  | ppm  | ppm | ppm  | ppm | ppm | %    |              |
| 1B49   | B49          | 65000 | 180.0 | 13.0        | 57.5 | 38.0 | 0.3 | 27.5 | 138 | 500 | 4.4  | TINRO-Centre |
| 2B49   | B49          | 65000 | 167.5 | 13.0        | 62.5 | 21.0 | 0.3 | 27.5 | 140 | 500 | 4.4  | TINRO-Centre |
| 3B49   | B49          | 65000 | 170.0 | 13.0        | 65.0 | 43.0 | 0.4 | 27.5 | 138 | 500 | 4.3  | TINRO-Centre |
| 1B11B  | BIIB         | 65000 | 132.5 | 11.0        | 42.5 | 27.5 | 0.5 | 30.0 | 125 | 500 | 3.8  | TINRO-Centre |
| 2B11B  | BIIB         | 65000 | 125.0 | 12.5        | 47.5 | 29.0 | 0.5 | 32.5 | 130 | 520 | 3.9  | TINRO-Centre |
| 38118  | BUB          | 65000 | 112.5 | 12.0        | 47.5 | 24.0 | 0.4 | 25.0 | 120 | 510 | 3.7  | TINRO-Centre |
| 1838   | B 38         | 62500 | 127.5 | 12.5        | 55.0 | 30.0 | 0.8 | 62.5 | 105 | 450 | 4.1  | TINKO-Centre |
| 2038   | D 30<br>D 20 | 60000 | 127.5 | 12.0        | 57.5 | 27.0 | 0.0 | 70.0 | 1/0 | 430 | 4.1  | TINKO-Centre |
| 1B41B  | B41B         | 60000 | 105.0 | 11.5        | 65.0 | 29.5 | 0.0 | 70.0 | 165 | 420 | 4.2  | TINRO-Centre |
| 2B41B  | B41B         | 57500 | 105.0 | 95          | 65.0 | 30.0 | 1.2 | 67.5 | 165 | 450 | 3.7  | TINRO-Centre |
| 3B41B  | B41B         | 60000 | 105.0 | 10.0        | 75.0 | 30.0 | 1.2 | 75.0 | 165 | 450 | 4.0  | TINRO-Centre |
| 1B3A   | B3A          | 67500 | 400.0 | 13.0        | 50.0 | 30.0 | 1.2 | 77.5 | 375 | 560 | 3.8  | TINRO-Centre |
| 2B3A   | B3A          | 70000 | 300.0 | 12.0        | 52.5 | 31.0 | 1.1 | 85.0 | 420 | 575 | 3.8  | TINRO-Centre |
| 3B3A   | B3A          | 70000 | 300.0 | 12.0        | 50.0 | 21.5 | 1.2 | 65.0 | 425 | 625 | 3.8  | TINRO-Centre |
| 1B48   | B48          | 65000 | 100.0 | 9.0         | 45.0 | 19.5 | 0.5 | 30.0 | 100 | 625 | 3.6  | TINRO-Centre |
| 2B48   | B48          | 65000 | 95.0  | 9.0         | 47.5 | 19.5 | 0.6 | 30.0 | 130 | 525 | 3.7  | TINRO-Centre |
| 3B48   | B48          | 62500 | 135.0 | 10.0        | 50.0 | 20.0 | 0.6 | 35.0 | 130 | 576 | 3.7  | TINRO-Centre |
| 1B50   | B50          | 70000 | 10.0  | 7.5         | 25.0 | 11.5 | 0.2 | 4.0  | 33  | 450 | 2.4  | TINRO-Centre |
| 2B50   | B50          | 70000 | 12.5  | 7.5         | 25.0 | 11.0 | 0.2 | 4.0  | 40  | 425 | 2.2  | TINRO-Centre |
| 3B50   | B50          | 70000 | 10.0  | 7.5         | 25.0 | 11.5 | 0.2 | 4.0  | 33  | 425 | 2.3  | TINRO-Centre |
| 1B49   | B49          |       | 168.5 |             |      | 49.0 |     | 38.1 | 139 | 493 | 4.14 | PGI RAS      |
| 2B49   | B49          |       | 162.1 |             |      | 50.5 |     | 38.2 | 133 | 491 | 4.15 | PGI RAS      |
| 3B49   | B49          |       | 164.8 |             |      | 50.7 |     | 38.1 | 143 | 481 | 3.98 | PGI RAS      |
| 1B11B  | BIIB         |       | 116.7 |             |      | 40.1 |     | 33.1 | 133 | 502 | 3.48 | PGI RAS      |
| 28118  | BIIB         |       | 121.5 |             |      | 36.1 |     | 39.7 | 126 | 503 | 3.48 | PGI RAS      |
| 3B11B  | BIIB         |       | 110.7 |             |      | 31.1 |     | 39.7 | 129 | 488 | 3.31 | PGLRAS       |
| 1030   | D30<br>D20   |       | 110.9 |             |      | 45.2 |     | 66.1 | 150 | 432 | 3.99 | PGI KAS      |
| 2030   | D30<br>D38   |       | 110.2 |             |      | 40.1 |     | 60.4 | 159 | 431 | 2.97 |              |
| 1B41B  | B41B         |       | 107.4 |             |      | 38.8 |     | 66.2 | 156 | 403 | 3.64 | PGLRAS       |
| 2B41B  | B41B         |       | 95.5  |             |      | 36.4 |     | 69.4 | 152 | 386 | 3 47 | PGIRAS       |
| 3B41B  | B41B         |       | 97.3  |             |      | 38.2 |     | 69.7 | 156 | 388 | 3 49 | PGLRAS       |
| 1B3A   | B3A          |       | 550.1 |             |      | 46.5 |     | 83.0 | 432 | 529 | 3.82 | PGI RAS      |
| 2B3A   | B3A          |       | 533.5 |             |      | 41.1 |     | 92.8 | 398 | 511 | 3.60 | PGI RAS      |
| 3B3A   | B3A          |       | 533.5 |             |      | 41.1 |     | 92.0 | 432 | 529 | 3.82 | PGI RAS      |
| 1B48   | B48          |       | 92.7  |             |      | 30.6 |     | 34.9 | 123 | 534 | 3.49 | PGI RAS      |
| 2B48   | B48          |       | 87.6  |             |      | 29.5 |     | 34.8 | 126 | 519 | 3.32 | PGI RAS      |
| 3B48   | B48          |       | 106.6 |             |      | 33.0 |     | 42.9 | 129 | 497 | 3.14 | PGI RAS      |
| 1B50   | B50          |       | 11.3  |             |      | 22.9 |     | 6.6  | 40  | 459 | 2.49 | PGI RAS      |
| 2B50   | B50          |       | 11.9  |             |      | 22.5 |     | 6.6  | 40  | 397 | 2.15 | PGI RAS      |
| 3B50   | B50          |       | 10.9  |             |      | 19.5 |     | 13.2 | 40  | 408 | 2.15 | PGI RAS      |
| 1B49   | B49          |       | 179.0 | 16.0        | 2.1  | 39.0 |     |      | 131 | 520 | 3.7  | POI FEB RAS  |
| 2849   | B49          |       | 138.0 | 14.5        | 2.4  | 36.0 |     |      | 122 | 470 | 3.5  | POI FEB RAS  |
| 3849   | B49          |       | 154.0 | 12.0        | 2.6  | 38.0 |     |      | 111 | 483 | 2.6  | POI FEB RAS  |
| 1BI1B  | BIIB         |       | /6.0  | 11.5        | 2.2  | 32.0 |     |      | 91  | 3/9 | 2.1  | POI FEB RAS  |
| 2D11D  |              |       | 84.0  | 14.0        | 2.2  | 28.0 |     |      | 76  | 431 | 2.9  | POI FEB RAS  |
| 1838   | B38          |       | 100.0 | 12.0        | 2.0  | 20.0 |     |      | 122 | 202 | 1.9  | POIFEBRAS    |
| 2B38   | B38          |       | 73.0  | 12.0        | 17   | 30.0 |     |      | 104 | 340 | 2.4  | POLEEB RAS   |
| 3B38   | B38          |       | 105.0 | 11.5        | 2.9  | 34.0 |     |      | 123 | 379 | 2.5  | POI FEB RAS  |
| 1B41B  | B41B         |       | 74.0  | 10.0        | 3.4  | 31.0 |     |      | 114 | 340 | 2.1  | POI FEB RAS  |
| 2B41B  | B41B         |       | 74.0  | 10.0        | 2.2  | 31.0 |     |      | 110 | 366 | 2.1  | POI FEB RAS  |
| 3B41B  | B41B         |       | 72.0  | 9. <b>8</b> | 3.0  | 27.0 |     |      | 89  | 287 | 2.6  | POI FEB RAS  |
| 1B3A   | B3A          |       | 296.0 | 10.5        | 2.1  | 28.0 |     |      | 174 | 392 | 1.7  | POI FEB RAS  |
| 2B3A   | B3A          |       | 330.0 | 10.5        | 2.1  | 24.0 |     |      | 199 | 431 | 2.3  | POI FEB RAS  |
| 3B3A   | B3A          |       | 432.0 | 12.0        | 3.2  | 33.0 |     |      | 313 | 549 | 3.1  | POI FEB RAS  |
| 1B48   | B48          |       | 78.0  | 11.0        | 1.8  | 30.0 |     |      | 93  | 477 | 1.9  | POI FEB RAS  |
| 2B48   | B48          |       | 63.0  | 11.5        | 2.2  | 31.0 |     |      | 89  | 520 | 1.9  | POI FEB RAS  |
| 3B48   | B48          |       | 49.0  | 11.0        | 1.8  | 25.0 |     |      | 59  | 327 | 1.8  | POI FEB RAS  |
| 1B50   | B50          |       | 12.0  | 9.8         | 1.3  | 20.0 |     |      | 46  | 455 | 1.7  | POI FEB RAS  |
| 2B50   | B50          |       | 9.0   | 11.0        | 1.9  | 30.0 |     |      | 42  | 418 | 1.6  | POI FEB RAS  |
| 3B50   | B50          |       | 7.0   | 11.0        | 1.8  | 28.0 |     |      | 34  | 346 | 1.5  | POI FEB RAS  |

TINRO-Centre = Pacific Research Centre of Fisheries and Oceanography , Vladivostok, Russia PGI FEB RAS = Pacific Geographical Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia POI FEB RAS = Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia

Each value is an analysis of one sediment grab. Three sediment grabs were collected at each site.

| Table 11                                                                                                   |
|------------------------------------------------------------------------------------------------------------|
| PCB (chlorobiphenyl) congeners (IUPAC) in liver of English sole from Vancouver Harbour (ng/g, wet weight). |
| Investigators: Ms. Jennie Bolton and Ms. Carla Stehr                                                       |

| Site                |                 | TIIB        |             |             | T38                      |           |                                              | T48      |          |                          | T49         |                  |                    | T50                      |                    |
|---------------------|-----------------|-------------|-------------|-------------|--------------------------|-----------|----------------------------------------------|----------|----------|--------------------------|-------------|------------------|--------------------|--------------------------|--------------------|
| Location<br>Fish ID | LO<br>10046-050 | nsdale Quay | , 090-9500C | POI POI POI | rt Moody<br>30081-085 95 | 060-9800t | Inc<br>0106-110 990                          | lian Arm | 0116-120 | West Vi<br>990016-020 99 | ancouver Lé | ab<br>0026-030_9 | Gibso<br>90136-140 | ns, Howe S<br>990141-145 | ound<br>990146-150 |
| Composite #         | 1               | 2           | 3           | 1           | 2                        | 3         | 1                                            | 2        | 3        | 1                        | 2           | 3                | 1                  | 2                        | Э                  |
| Sample wt (g)       | 1.71            | 2.4         | 1.93        | 3.47        | 3.54                     | 2.53      | 2.13                                         | 2.36     | 2.21     | 2.56                     | 2.78        | 3.07             | 1.91               | 1.81                     | 1.6                |
| Congener #          | r<br>4          | 9E U        | r4          | CF 0        | 070                      | 0.61      | <u>,                                    </u> | 67 U     | LV ()    | 4                        | r<br>1      | 4                | 4                  | r<br>T                   | рч<br>Ч            |
| 18                  | <b>D</b> 0      | 0.94        | 0.91        | 0.54        | 0.59                     | 0.65      | 0.81                                         | 0.78     | 0.88     | pq                       | 0.58        | 0.53             | pq                 | pq                       | pq                 |
| 28                  | 1.8             | 1.6         | 1.5         | 0.98        | 1.6                      | 1.1       | 1.7                                          | 1.9      | 2.5      | 0.71                     | 0.78        | 0.7              | pq                 | -                        | pq                 |
| 31                  | 1.2             | 1.3         | 1.1         | 0.69        | 0.98                     | 0.79      | 1.1                                          | 1.2      | 1.5      | 0.61                     | 0.59        | 0.6              | 0.68               | 0.74                     | 0.79               |
| 33                  | 0.91            | 0.91        | 0.88        | 0.49        | 0.5                      | 0.49      | 0.79                                         | 0.69     | 0.8      | pq                       | 0.56        | 0.54             | pq                 | pq                       | pq                 |
| 44                  | 1.5             | 0.98        | 1.1         | 0.99        | 1.4                      | 0.99      | 1.6                                          | 1.7      | 2.1      | 0.56                     | 0.56        | 0.55             | pq                 | pq                       | pq                 |
| 49                  | 3.7             | 2.3         | 2.7         | 1.6         | 4.4                      | 2         | 2.9                                          | 4.4      | 6.7      | 0.65                     | 0.93        | 0.92             | 1.1                | 1.3                      | pq                 |
| 52                  | 5.3             | 3.6         | 4.3         | 2.6         | 6.8                      | 2.8       | 4.5                                          | 6.7      | 10       | 0.93                     | 1.4         | 1.4              | 1.4                | 1.6                      | 1.4                |
| 70                  | 9               | 4.1         | 4.4         | 2           | 5.9                      | 2.4       | 4.8                                          | 6.2      | 10       | 1.1                      | 1.6         | 1.7              | 1.3                | 1.5                      | 1.3                |
| 74                  | 4.5             | 2.5         | 2.7         | 1.6         | 4.8                      | 2         | 2.9                                          | 3.6      | 9.9      | 0.71                     | 0.88        | 0.93             | 1.1                | 1.2                      | 1.2                |
| 82                  | 1.2             | 0.72        | 0.85        | 0.76        | 1.4                      | 0.86      | 0.99                                         | 1.2      | 1.8      | pq                       | 0.32        | 0.29             | pq                 | pq                       | pq                 |
| 87                  | 12              | 6.4         | 7.2         | 5.2         | 14                       | 6.5       | 7.3                                          | 9.7      | 18       | 1.8                      | 2.3         | 2.6              | 7.7                | 2.2                      | 3.4                |
| 95                  | 7.5             | 5           | 5.9         | 5.6         | 12                       | 5.4       | 9.9                                          | 9.9      | 16       | 1.6                      | 2.2         | 2.5              | 1.4                | 1.8                      | 1.3                |
| 66                  | 24              | 13          | 13          | 9.6         | 26                       | 12        | 12                                           | 18       | 32       | ŝ                        | 3.7         | 4.2              | 1.6                | 3.1                      | 2.2                |
| 101                 | 44              | 22          | 25          | 18          | 43                       | 24        | 24                                           | 31       | 52       | 5.9                      | 7.4         | 8.6              | 3.5                | 4.8                      | 3.3                |
| 105                 | 14              | 6.4         | 7.1         | 4.5         | 2.9                      | 5.9       | 7.2                                          | 9.6      | 16       | 1.9                      | 2.3         | 2.5              | 2.5                | 1.5                      | 1.2                |
| 110                 | 22              | 13          | 15          | 11          | 28                       | 14        | 17                                           | 22       | 38       | 4.1                      | 5.3         | 9                | 2.6                | 3.6                      | 2.5                |
| 118                 | 46              | 21          | 23          | 16          | 42                       | 20        | 22                                           | 29       | 53       | 5.6                      | 9.9         | 7.6              | 3.5                | 4.7                      | 3.5                |
| 128                 | 14              | 6.9         | 7.2         | 4.4         | 11                       | 5.3       | 5.2                                          | 6.3      | 10       | 2.1                      | 2.2         | 2.1              | 1.8                | 2.2                      | 2.1                |
| 138                 | 130             | 57          | 54          | 48          | 100                      | 56        | 47                                           | 54       | 110      | 19                       | 19          | 20               | 7.7                | 11                       | 7.4                |
| 149                 | 47              | 22          | 24          | 18          | 48                       | 25        | 23                                           | 30       | 52       | 8.3                      | 6           | 10               | 3.3                | 4.7                      | 5                  |
| 151                 | 18              | 9.6         | 9.7         | 7.7         | 19                       | 9.8       | 6.9                                          | 8.7      | 16       | 2.8                      | 3.1         | 3.3              | 1.8                | 2.1                      | 1.7                |
| 153                 | 150             | 69          | 99          | 09          | 140                      | 75        | 55                                           | 69       | 130      | 24                       | 24          | 26               | 9.6                | 15                       | 9.6                |
| 156                 | 8               | 4.2         | 4.3         | 1.1         | 1.6                      | 3.8       | 3.7                                          | 4        | 7.4      | 1.2                      | 1.2         | 1.4              | pq                 | 1.5                      | 1.5                |
| 158                 | 12              | 5.7         | 5.6         | 3.8         | 9.8                      | 4.5       | 3.9                                          | 4.6      | 10       | 1.5                      | 1.7         | 1.8              | 0.66               | 0.87                     | 0.73               |
| 170                 | 42              | 19          | 16          | 12          | 30                       | 14        | 12                                           | 12       | 26       | 6.4                      | 5.9         | 6.3              | 1.7                | 2.3                      | 1.6                |
| 171                 | 10              | 5.7         | 4.2         | 3.1         | 7                        | 3.7       | 3.2                                          | 3.2      | 6.7      | 1.6                      | 1.5         | 1.6              | 1.5                | 1.7                      | 1.8                |
| 177                 | 21              | Ш           | 9.2         | 7.2         | 16                       | 8.3       | 6.9                                          | 7.2      | 16       | 3.9                      | 3.8         | 3.8              | 1.9                | 2.3                      | 2.1                |
| 180                 | 83              | 32          | 33          | 34          | 67                       | 42        | 27                                           | 27       | 56       | 14                       | 12          | 13               | 4.2                | 5.6                      | 4.5                |
| 183                 | 29              | 15          | 12          | 9.8         | 21                       | 12        | 7.5                                          | 8.8      | 19       | 4.1                      | 4.1         | 4.1              | 1.9                | 2.3                      | 2                  |
| 187                 | 65              | 28          | 25          | 23          | 47                       | 27        | 18                                           | 26       | 44       | 11                       | П           | 11               | 3.7                | 5                        | 3.8                |
| 191                 | 2.5             | 0.81        | 0.61        | 0.99        | 1.4                      | 1.3       | 1.4                                          | 1.3      | 1.7      | pq                       | pq          | 0.24             | pq                 | pq                       | pq                 |

Table 11 PCB (chlorobiphenyl) congeners (IUPAC) in liver of English sole from Vancouver Harbour (ng/g, wet weight). Investigators: Ms. Jennie Bolton and Ms. Carla Stehr

| Site          |            | TIIB          |           |              | T38         |               |             | T48         |           |              | T49           |          |            | T50        |      |
|---------------|------------|---------------|-----------|--------------|-------------|---------------|-------------|-------------|-----------|--------------|---------------|----------|------------|------------|------|
| Location      | Lo         | nsdale Quay   |           | Pc           | irt Moody   |               | ľ           | dian Arm    |           | West V       | ancouver La   | dı       | Gibso      | ns, Howe   | Soun |
| Fish ID       | 990046-050 | 990051-055 99 | 90056-060 | 5 080-920066 | 9 280-18006 | 56 060-980060 | 0106-110 95 | 0106-110 95 | 90116-120 | 990016-020 9 | 90021-025 990 | 0026-030 | 990136-140 | 990141-145 | 666  |
| Composite #   | 1          | 2             | ŝ         | 1            | 7           | ŝ             | -           | 2           | б         | 1            | 2             | ŝ        | 1          | 2          |      |
| Sample wt (g) | 1.71       | 2.4           | 1.93      | 3.47         | 3.54        | 2.53          | 2.13        | 2.36        | 2.21      | 2.56         | 2.78          | 3.07     | 1.91       | 1.81       |      |
| 194           | 21         | 12            | 7.1       | 6.7          | 13          | 7.3           | 5.8         | 6.1         | 13        | 3.9          | 3.6           | 3.7      | 2          | 2.3        |      |
| 195           | 6.5        | 3.3           | 1.8       | 2.2          | 4.2         | 2.5           | 2.3         | 2.2         | 4.3       | 1.1          | 0.88          | 0.91     | pq         | 1.5        |      |
| 199           | 19         | 11            | 7.2       | 7.2          | 14          | 8.1           | 6.1         | 6.4         | 13        | 4.7          | 4             | 4        | 1.9        | 2.4        |      |
| 205           | 2.2        | 0.61          | 0.39      | 0.91         | 1.2         | 1.2           | 1.4         | 1.2         | 1.5       | pq           | pq            | þq       | pq         | pq         |      |
| 206           | 5.4        | 3.4           | 1.8       | 2.3          | 3.6         | 2.6           | 2.4         | 2.7         | 3.7       | 1.6          | 1.3           | 1.4      | 1.8        | 2.1        |      |
| 208           | 2.2        | 0.53          | 0.34      | 1.1          | 1.4         | 1.4           | 1.4         | 1.4         | 1.7       | 0.33         | 0.23          | 0.3      | pq         | pq         |      |
| 209           | 1.9        | pq            | pq        | 0.93         | 1.1         | 1.3           | pq          | pq          | 1.6       | pq           | pq            | pq       | pq         | pq         |      |
| Total PCBs    | 1200       | 560           | 550       | 470          | 1000        | 570           | 480         | 580         | 1100      | 190          | 190           | 210      | 86         | 120        |      |

bd = below detection limits. Detection limits vary depending on the analyte and sample weight. If detection limit data is needed, please contact Carla Stehr at Carla m stehr@noaa.gov.

CB Numbers refer to PCB congeners by IUPAC (International Union of Pure and Applied Chemistry) number.

The concentrations of analytes were calculated using CB103 as the surrogate standard.

The concentrations reported for "Total PCBs" is an estimate of the total PCB concentration, obtained by taking the sum of the concentrations of 17 selected congeners (CBs 18, 28, 44, 52, 95, 101, 105, 118, 128, 133, 170, 180, 187, 195, 206 and 209), and multiplying by 2.

Each value represents the data from the analysis of one sample. Each sample is a composite made by combining equal amounts of liver tissue from five fish. The individual fish contributing to each composite are indicated in the column labeled "Fish ID". For instance, the first composite for Site 711B, includes tissue from the five fish with ID numbers 990045, 990047, 990048, 990049 and 990050.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography – size exclusion chromatography clean up, and analysis by gas chromatograph/mass spectrometry using scan mode.

| Table 12                                                                                   |
|--------------------------------------------------------------------------------------------|
| Chlorinated pesticides in liver of English sole from Vancouver Harbour (ng/g, wet weight). |
| Investigators: Ms. Jennie Bolton and Ms. Carla Stehr                                       |
|                                                                                            |

| Site               |            | T11-B      |            |            | T38        |            |            | T48        |            |            | T49         |            |             | T50         |           |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|-------------|-------------|-----------|
| Location           | Γ          | nsdale Qua | y          | д,         | ort Moody  |            | I          | ndian Arm  |            | West       | Vancouver ] | Lab        | Gibsor      | 1, Howe So  | pun       |
| Fish ID            | 990046-050 | 990051-055 | 990056-060 | 990076-080 | 990081-085 | 060-980066 | 011-901066 | 990106-110 | 990116-120 | 990016-020 | 990021-025  | 990026-030 | 90136-140 9 | 90141-145 5 | 90146-150 |
| Composite          | 1          | 2          | З          | 1          | 2          | Э          | 1          | 2          | Э          | 1          | 2           | ю          | 1           | 2           | e         |
| Sample Wt. (g)     | 1.71       | 2.40       | 1.93       | 3.47       | 3.54       | 2.53       | 2.13       | 2.36       | 2.21       | 2.56       | 2.78        | 3.07       | 1.91        | 1.81        | 1.60      |
| α-нсн              | 0.94       | pq         | pq         | 0.78       | 0.78       | 0.86       | pq         | 0.71       | pq         | pq         | pq          | pq         | pq          | þq          | pq        |
| р-нсн              | 4.5        | 4.8        | 3.9        | 1.8        | 1.7        | 1.9        | 2.8        | ŝ          | 2.6        | 3.8        | ŝ           | 4.1        | 2.9         | 2.9         | 3.1       |
| lindane (γ-HCH)    | pq          | pq         | pq          | pq          | pq        |
| oxychlordane       | pq         | þq          | pq         | pq          | pq          | pq        |
| cis -chlordane     | 2.9        | pq         | pq         | 1.3        | 2.4        | 1.8        | pq         | 2          | pq         | pq         | pq          | pq         | pq          | pq          | pq        |
| trans -chlordane   | þq         | þq         | pq         | pq         | 1.5        | pq         | þq         | pq         | pq         | pq         | pq          | pq         | pq          | þq          | pq        |
| cis-nonachlor      | 3.2        | pq         | pq         | 1.2        | 2.4        | 7          | pq         | pq         | 2.3        | pq         | pq          | pq         | pq          | pq          | pq        |
| trans-nonachlor    | 4.4        | 1.7        | 2          | 2.7        | 4.6        | 2.3        | pq         | 4.2        | 2.5        | pq         | pq          | 0.86       | pq          | pq          | pq        |
| aldrin             | pq         | pq         | pq         | pq         | þq         | pq         | pq         | pq         | pq         | pq         | pq          | pq         | pq          | pq          | pq        |
| dieldrin           | þq         | 4          | pq         | pq         | pq         | pq         | pq         | pq         | þq         | pq         | pq          | pq         | 3.1         | pq          | pq        |
| endosulfan II      | pq          | pq         | pq          | pq          | pq        |
| endosulfan I       | pq          | pq         | pq          | pq          | pq        |
| endosulfan sulfate | pq          | pq         | pq          | pq          | pq        |
| hexachlorobenzene  | -          | 1          | 1          | 0.74       | 0.83       | 0.66       | 1.1        | 1.2        | 1.3        | 0.58       | 0.61        | 0.56       | þq          | 0.66        | pq        |
| heptachlor         | pq         | pq         | pq         | þq         | pq          | þq         | þq          | pq          | pq        |
| heptachlor epoxide | pq         | pq         | pq         | þq         | pq          | pq         | pq          | pq          | pq        |
| mirex              | 2.2        | 0.94       | 0.78       | 0.84       | 1.5        | 1          | 1          | 0.99       | 1.4        | 0.71       | 0.56        | 0.65       | pq          | 1.1         | pq        |
| 0,p'-DDD           | 2.6        | 1.8        | 2.8        | 1.1        | 2.1        | 1.4        | 1.6        | 1.8        | 2.7        | þq         | 0.68        | 0.78       | pq          | 0.93        | pq        |
| o,p'-DDE           | 1.6        | 0.66       | þq         | 0.84       | 0.81       | 0.7        | pq         | 0.75       | 0.99       | pq         | pq          | pq         | pq          | þq          | pq        |
| 0,p'-DDT           | 3.7        | 4.3        | 3.4        | 0.9        | 2.4        | 0.83       | 1.9        | 2.5        | 4.5        | pq         | pq          | 1          | pq          | pq          | pq        |
| p,p'-DDD           | 16         | 11         | 17         | 5          | 19         | 6.5        | 6.7        | 10         | 19         | 1.9        | 2.3         | 3.7        | 1.6         | 1.9         | 1.9       |
| p,p'-DDE           | 73         | 27         | 29         | 17         | 73         | 23         | 18         | 23         | 48         | 11         | 13          | 19         | 9.1         | 14          | 8.2       |
| p,p'-DDT           | 11         | 13         | 12         | 2.2        | þq         | 2.4        | 3.9        | 7.9        | 13         | 1.8        | 2.1         | 3.2        | pq          | pq          | þq        |

bd = below detection limits. Detection limits vary depending on the analyte and sample weight. If detection limit data is needed, please contact Carla Stehr at Carla m. stehr@noaa gov.

 $\alpha \cdot HCH = alpha-hexachlorocyclohexane; \beta \cdot HCH = beta-hexachlorocyclohexane; \gamma \cdot HCH = gamma-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindane is the same as \gamma \cdot HCH = alpha-hexachlorocyclohexane; lindan$ 

Each value represents the data from the analysis of one sample. Each sample is a composite made by combining equal amounts of liver tissue from five fish.

For instance, the first composite for Site T11B, includes tissue from the five fish with ID numbers 990046, 990047, 990048, 990049 and 990050.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography - size exclusion chromatography clean up. and analysis by gas chromatograph/mass spectrometry using scan mode.

Quality assurance data for chlorinated hydrocarbon analyses of liver in English sole (ng/g wet weight).

Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

| Sample           | 112-44       | 112-53       | 112-43    | 112-52    |
|------------------|--------------|--------------|-----------|-----------|
| SampleType       | Method Blank | Method Blank | SRM 1974a | SRM 1974a |
| Sample wt (g)    | 2.33         | 2.55         | 4.79      | 4.72      |
| CB17             | bd           | bd           | 2.9       | 3         |
| CB18             | bd           | bd           | 3.2       | 3.5       |
| CB28             | bd           | 0.62         | 9.6       | 10        |
| CB31             | 0.53         | 0.5          | 7         | 7.4       |
| CB33             | bd           | bd           | 1.5       | 1.6       |
| CB44             | bd           | bd           | 8.2       | 9.3       |
| CB49             | bd           | bd           | 10        | 11        |
| CB52             | bd           | bd           | 14        | 14        |
| CB70             | bd           | bd           | 13        | 14        |
| CB74             | bd           | bd           | 8.3       | 9.2       |
| CB82             | bd           | bd           | 1.8       | 2.2       |
| CB87             | bd           | bd           | 6.7       | 7.8       |
| CB95             | bd           | bd           | 9.7       | 9.9       |
| CB99             | bd           | bd           | 8.3       | 9.8       |
| CB101            | 0.9          | bd           | 16        | 15        |
| CB105            | bd           | bd           | 6.1       | 5.7       |
| CB110            | bd           | 0.53         | 15        | 15        |
| CB118            | bd           | 0.53         | 13        | 15        |
| CB128            | bd           | bd           | 2.2       | 2.7       |
| CB138            | bd           | bd           | 14        | 16        |
| CB149            | bd           | bd           | 8.8       | 11        |
| CB151c           | bd           | bd           | 2.1       | 2.8       |
| CB153            | bd           | bd           | 18        | 20        |
| CB156            | bd           | bd           | 0.96      | 0.95      |
| CB158            | bd           | bd           | 1.2       | 1.8       |
| CB170            | bd           | bd           | 1.3       | 0.52      |
| CB171            | bd           | bd           | 0.9       | 0.76      |
| CB177            | bd           | bd           | 1.4       | 1.7       |
| CB180            | bd           | bd           | 1.4       | 1.7       |
| CB183            | bd           | bd           | 1.7       | 2         |
| CB187            | bd           | bd           | 3.2       | 4.2       |
| CB191            | bd           | bd           | bd        | bd        |
| CB194            | bd           | bd           | bd        | bd        |
| CB195t           | bd           | bd           | bd        | bd        |
| CB199            | bd           | bd           | bd        | bd        |
| CB205            | bd           | bd           | bd        | bd        |
| CB206            | bd           | bd           | bd        | bd        |
| CB208            | bd           | bd           | bd        | bd        |
| CB209            | bd           | bd           | bd        | bd        |
| PCB Est. total   | 3.7          | 2.3          | 240       | 260       |
| aldrin           | bd           | bd           | bd        | bd        |
| cis -chlordane   | bd           | bd           | 1.8       | 2.2       |
| trans -chlordane | bd           | bd           | 1.4       | 1.8       |
| α-HCH            | bd           | bd           | 0.52      | 0.85      |
| р–нсн            | 2.2          | 1.8          | 7.7       | 8.7       |
| lindane (γ-HCH)  | bd           | bd           | bd        | bd        |

Quality assurance data for chlorinated hydrocarbon analyses of liver in English sole (ng/g wet weight).

Investigators: Ms. Jennie Bolton, Ms. Carla Stehr

| Sample             | 112-44       | 112-53       | 112-43    | 112-52    |
|--------------------|--------------|--------------|-----------|-----------|
| SampleType         | Method Blank | Method Blank | SRM 1974a | SRM 1974a |
| cis -nonachlor     | bd           | bd           | 0.98      | 0.89      |
| trans -nonachlor   | bd           | bd           | 1.7       | 2.2       |
| oxychlordane       | bd           | bd           | bd        | bd        |
| dieldrin           | bd           | bd           | 0.98      | bd        |
| endosulfan I       | bd           | bd           | bd        | 4.3       |
| endosulfan II      | bd           | bd           | 14        | bd        |
| enfosulfan sulfate | bd           | bd           | bd        | bd        |
| hexachlorobenzene  | bd           | bd           | bd        | bd        |
| heptachlor         | bd           | bd           | bd        | bd        |
| heptachlor epoxide | bd           | bd           | bd        | bd        |
| mirex              | bd           | bd           | 0.4       | 0.27      |
| o,p'-DDD           | bd           | bd           | 2.1       | 2.8       |
| o,p'-DDE           | bd           | bd           | 0.39      | 0.43      |
| o,p'-DDT           | bd           | bd           | bd        | bd        |
| p,p'-DDD           | bd           | bd           | 5.3       | 6.4       |
| p,p'-DDT           | bd           | bd           | bd        | bd        |
| p,p'-DDE           | bd           | bd           | 6.1       | 6.8       |
|                    |              |              |           |           |

SRM = standard reference material

bd = below detection limits. Detection limits vary depending on the analyte and sample weight. If below detection limit data is needed, please contact Carla Stehr at Carla.m.stehr@noaa.gov.

 $\alpha$ -HCH = alpha-hexachlorocyclohexane;  $\beta$ -HCH = beta-hexachlorocyclohexane;  $\gamma$ -HCH = gamma-hexachlorocyclohexane; lindane is the same as  $\gamma$ -HCH.

CB Numbers refer to PCB congeners by IUPAC (International Union of Pure and Applied Chemistry) number.

The concentrations of analytes were calculated using CB103 as the surrogate standard.

The concentrations reported for "PCBs Est. Total" is an estimate of the total PCB concentration, obtained by taking the sum of the concentrations of 17 selected congeners (CBs 18, 28, 44, 52, 95, 101, 105, 118, 128, 138, 153, 170, 180, 187, 195, 206 and 209), and multiplying by 2.

The sample weight used to calculate analyte concentrations for method and field blanks is the mean sample weight of all field samples (excluding field blanks) in the same sample set.

Methods are published by Sloan et al. 1993, NOS/ORCA/CMBAD Tech memo 71 Vol III. Methods include extraction with methylene chloride, high performance liquid chromatography – size exclusion chromatography clean up, and analysis by gas chromatograph/mass spectrometry using scan mode.

| Fish Id | 990041-45 9 | 90046-50 99 | 0026-60 99 | 0073-75 99 | 90076-80 99 | 0086-90 9901 | 066 011-90 | 111-115 990 | 116-120 990 | 011-15 99 | 0016-20 99( | 021-25 990 | 0026-30 9901 | 36-140 99 | 141-145 |
|---------|-------------|-------------|------------|------------|-------------|--------------|------------|-------------|-------------|-----------|-------------|------------|--------------|-----------|---------|
| Site    | TIIB        | TIIB        | TIIB       | T38        | T38         | T38          | T48        | T48         | T48         | T49       | T49         | T49        | T49          | T50       | T50     |
| Nap     | 19.26       | 9.04        | 5.05       | 10.16      | 2.18        | 1.38         | 2.92       | 2.18        | 1.89        | 6.31      | 0.49        | 27.28      | 14.09        | 3.64      | 4.59    |
| 1Mnap   | 1.36        | 0.64        | 0.45       | 0.56       | 0.18        | 0.13         | 0.22       | 0.24        | 0.08        | 0.25      | 0.04        | 06.0       | 0.63         | 0.00      | 0.42    |
| 2Mnap   | 1.09        | 0.72        | 0.53       | 0.27       | 0.15        | 0.16         | 0.22       | 0.12        | 0.12        | 0.29      | 0.04        | 1.14       | 0.51         | 0.00      | 0.27    |
| Acenap  | 1.35        | 0.40        | 0.24       | 0.57       | 0.13        | 0.09         | 0.08       | 0.10        | 0.12        | 0.43      | 0.02        | 0.80       | 0.50         | 0.00      | 0.11    |
| Bip     | 0.45        | 0.16        | 0.10       | 0.22       | 0.06        | 0.07         | 0.04       | 0.00        | 0.07        | 0.20      | 0.01        | 0.09       | 0.12         | 0.01      | 0.06    |
| Acenapt | 0.36        | 0.26        | 0.24       | 0.65       | 0.09        | 0.06         | 0.00       | 0.12        | 0.05        | 0.52      | 0.00        | 0.21       | 0.00         | 0.00      | 0.29    |
| Flure   | 1.12        | 0.46        | 0.27       | 0.45       | 0.17        | 0.17         | 0.15       | 0.17        | 0.07        | 0.41      | 0.02        | 0.00       | 0.42         | 0.00      | 0.16    |
| Dibenz  | 1.05        | 0.58        | 0.43       | 0.54       | 0.23        | 0.16         | 0.17       | 0.18        | 0.12        | 0.17      | 0.01        | 0.38       | 0.52         | 0.31      | 0.35    |
| Phen    | 6.27        | 4.45        | 4.20       | 3.44       | 1.42        | 1.12         | 1.41       | 1.16        | 0.88        | 1.72      | 0.15        | 4.05       | 2.76         | 0.00      | 3.02    |
| Ant     | 1.00        | 0.45        | 0.33       | 0.84       | 0.11        | 0.19         | 0.06       | 0.10        | 0.12        | 0.37      | 0.03        | 0.70       | 0.59         | 2.42      | 0.45    |
| Flura   | 0.81        | 0.65        | 0.60       | 0.20       | 0.14        | 0.13         | 0.33       | 0.13        | 0.09        | 0.21      | 0.02        | 0.50       | 5.00         | 0.00      | 0.38    |
| Pyr     | 1.47        | 0.79        | 0.75       | 0.64       | 0.25        | 0.20         | 0.32       | 0.16        | 0.20        | 0.51      | 0.01        | 2.34       | 1.01         | 0.00      | 0.61    |
| Bat     | 0.50        | 0.13        | 0.10       | 0.48       | 0.00        | 0.04         | 0.14       | 0.08        | 0.09        | 0.17      | 0.00        | 0.28       | 0.49         | 0.00      | 0.24    |
| Chr     | 0.12        | 00.0        | 0.00       | 0.02       | 0.00        | 0.02         | 0.02       | 0.01        | 0.04        | 0.17      | 0.02        | 0.54       | 1.07         | 0.00      | 0.15    |
| Bbf     | 13.14       | 0.00        | 0.63       | 1.46       | 0.57        | 0.00         | 0.89       | 0.22        | 0.58        | 0.00      | 0.04        | 0.00       | 1.40         | 0.00      | 0.00    |
| Bkf     | 14.71       | 0.00        | 0.16       | 0.00       | 0.45        | 0.00         | 0.10       | 0.47        | 0.85        | 0.00      | 0.01        | 0.23       | 0.00         | 0.00      | 0.00    |
| Bap     | 4.97        | 0.00        | 0.53       | 2.26       | 0.70        | 0.19         | 0.10       | 0.30        | 0.51        | 0.68      | 0.03        | 09.0       | 1.36         | 0.00      | 0.39    |
| Inp     | 0.00        | 0.00        | 0.01       | 0.00       | 0.06        | 0.00         | 0.00       | 0.00        | 0.00        | 0.00      | 00.0        | 0.00       | 0.00         | 0.00      | 0.00    |
| Dba     | 1.69        | 0.64        | 0.13       | 0.40       | 0.06        | 0.00         | 0.00       | 0.00        | 0.16        | 0.33      | 0.00        | 0.45       | 0.49         | 0.00      | 0.00    |
| Bpe     | 0.00        | 0.00        | 0.00       | 00.0       | 0.00        | 0.00         | 0.00       | 0.00        | 0.00        | 0.00      | 0.00        | 0.00       | 0.00         | 0.00      | 0.00    |
|         |             |             |            |            |             |              |            |             |             |           |             |            |              |           |         |

Polycyclic aromatic hydrocarbons in liver of English sole (ng/kg wet weight). Investigator: Dr. Seiichi Uno

Table 14

Nap = Naphthalene, IMnap = 1-Methylnaphthalene, 2Mnap = 2-Methylnaphthalene, Bip = Biphenyl; Acenap = Acenaphthylene; Acenaphthene; Dibenz = Dibenzothlophene; Phen= Phenanthrene; Ant = Anthracene; Flura = Fluoranthene; Flure = Fluorene; Pyr = Pyrene; Bat = 1,2-Benzo[a]anthracene; Chr = Chrysene; Bdf = Benzo[b]fluoranthene; Bkf = Benzo[k] fluoranthene; Bap = Benzo[a]pyrene, Inp = Indeno[1,2,3-cd]pyrene; Dba = Dibenz[a,h]anthracene; Bpe = Benzo[k], I]perylene

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography Mass Spectometry.

Each value represents the analysis of one sample. Each sample is a composite made by combining equal mounts of liver tissue from five fish. For instance, the first composite for site T11B is composed of liver tissue from fish with ID numbers 990041, 990042, 990043, 990044, and 990045.

| Fish ID | 990034-36 | 990037-39 | 990040 | 990069-71 | 990066-68 | 990072 | 990091-93 | 990094-96 | 66-760066 | 990001-3 | 9-700066 | 990010 | 990129-131 | 990132-134 |
|---------|-----------|-----------|--------|-----------|-----------|--------|-----------|-----------|-----------|----------|----------|--------|------------|------------|
| Site    | TIIB      | TIIB      | TIIB   | T38       | T38       | T38    | T48       | T48       | T48       | T49      | T49      | T49    | T50        | T50        |
| Nap     | 12.29     | 3.20      | 11.50  | 6.96      | 9.85      | 14.47  | 8.92      | 5.47      | 6.70      | 2.83     | 9.88     | 16.26  | 3.81       | 10.71      |
| 1 Mnap  | 0.73      | 0.61      | 1.73   | 0.58      | 0.85      | 1.03   | 11.29     | 2.34      | 3.34      | 5.05     | 1.28     | 6.28   | 0.98       | 0.71       |
| 2Mnap   | 1.07      | 0.85      | 1.86   | 0.37      | 0.70      | 0.81   | 7.43      | 3.11      | 4.22      | 6.70     | 1.68     | 7.60   | 0.81       | 0.59       |
| Acenap  | 0.86      | 0.51      | 0.70   | 0.25      | 0.34      | 0.42   | 0.34      | 2.00      | 2.65      | 4.30     | 1.16     | 5.50   | 0.42       | 0.32       |
| Bip     | 0.41      | 0.00      | 0.13   | 0.05      | 0.06      | 0.14   | 3.65      | 0.08      | 0.09      | 0.11     | 0.09     | 0.29   | 0.06       | 0.12       |
| Acenapt | 0.88      | 0.14      | 0.61   | 0.18      | 0.41      | 0.63   | 1.10      | 1.00      | 1.43      | 0.04     | 0.69     | 2.84   | 0.54       | 0.38       |
| Flure   | 0.73      | 0.45      | 0.99   | 0.19      | 0.38      | 0.60   | 0.84      | 0.03      | 0.37      | 0.00     | 0.32     | 0.91   | 0.50       | 0.76       |
| Dibenz  | 0.07      | 0.32      | 0.88   | 0.11      | 0.30      | 0.51   | 4.47      | 0.03      | 0.28      | 0.53     | 0.23     | 0.71   | 0.91       | 0.50       |
| Phen    | 3.43      | 2.03      | 4.75   | 0.79      | 1.54      | 2.48   | 0.25      | 1.55      | 1.39      | 2.20     | 1.08     | 3.42   | 2.58       | 2.78       |
| Ant     | 0.01      | 0.85      | 0.10   | 0.05      | 0.14      | 0.22   | 0.44      | 1.42      | 0.11      | 0.11     | 0.07     | 0.18   | 0.38       | 0.15       |
| Flura   | 0.04      | 0.00      | 0.35   | 0.27      | 0.13      | 0.23   | 0.81      | 0.02      | 0.24      | 0.60     | 0.17     | 0.64   | 0.32       | 0.19       |
| Pyr     | 0.00      | 0.27      | 0.66   | 0.41      | 0.25      | 0.42   | 0.06      | 0.46      | 0.44      | 1.21     | 0.35     | 1.26   | 0.63       | 0.51       |
| Bat     | 0.08      | 0.05      | 0.08   | 0.00      | 0.08      | 0.14   | 0.03      | 0.05      | 0.17      | 0.00     | 0.04     | 0.14   | 0.17       | 0.08       |
| Chr     | 0.26      | 0.00      | 0.06   | 0.06      | 0.04      | 0.05   | 0.00      | 0.01      | 0.34      | 0.25     | 0.66     | 3.56   | 0.13       | 0.22       |
| Bbf     | 0.02      | 0.00      | 0.04   | 0.00      | 0.00      | 0.00   | 0.00      | 00.0      | 0.00      | 0.02     | 0.05     | 0.07   | 0.06       | 0.02       |
| Bkf     | 0.01      | 0.00      | 0.01   | 0.00      | 0.00      | 0.00   | 0.00      | 0.00      | 0.00      | 0.02     | 0.01     | 0.04   | 0.07       | 0.00       |
| Bap     | 0.00      | 0.00      | 0.00   | 0.00      | 0.00      | 0.00   | 0.00      | 0.00      | 0.00      | 0.00     | 0.01     | 0.00   | 0.00       | 0.00       |
| Inp     | 0.00      | 0.00      | 0.00   | 0.00      | 00.0      | 0.00   | 0.00      | 0.00      | 0.00      | 0.00     | 0.02     | 0.06   | 0.03       | 0.00       |
| Dba     | 0.00      | 0.00      | 0.00   | 0.00      | 0.00      | 0.00   | 0.00      | 00.0      | 0.00      | 0.00     | 0.03     | 0.03   | 0.00       | 0.00       |
| Bpe     | 0.00      | 0.00      | 0.00   | 0.00      | 0.00      | 0.03   |           | 0.00      | 0.00      | 0.00     | 0.04     | 0.09   | 0.00       | 0.00       |

Nap = Naphthalene, 1Mnap = 1-Methylnaphthalene, 2Mnap = 2-Methylnaphthalene, Bip = Biphenyl; Acenap = Acenaphthylene, Acenaphthene; Dibenz = Dibenzothlophene, Phen= Phenanthrene; Ant = Anthracene; Flura = Fluoranthene; Flure = Fluorene; Pyr = Pyrene; Bat = 1,2-Benzo[a]anthracene; Chr = Chrysene; Bdf = Benzo[b]fluoranthene; Bkf = Benzo[k] fluoranthene; Bap = Benzo[a]pyrene; Inp = Indeno[1,2,3-cd]pyrene; Dba = Dibenz[a,h]anthracen; Bpe = Benzo[g,h,1]perylene

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

Each value represents the analysis of one sample. Each sample is either an individual fish, or a composite made by combining equal amounts of muscle tissue from two or more fish. For instance, the first composite for site T11B is composed of muscle tissue from fish with ID numbers 990043, 990035 and 990036.

Table 15

Polycyclic aromatic hydrocarbons in muscle of English sole (ng/kg wet weight).

Investigator: Dr. Seiichi Uno

| unlyte           any total the state of the stat | ish ID<br>ite  | 990038,41-42, 44-45<br>T11B | 990056-60<br>T11B | 990068-70<br>T38 | 990073-77 9<br>T38 | 990079, 82, 84<br>T3 <b>8</b> | 990087-89<br>T3 <b>8</b> | 990091-95<br>T48 | 990101-105<br>T48 | 990106-110<br>T48 | 990111-115<br>T48 | 990006, 14, 15, 02<br>T49 | 990128-130, 132-137<br>T50 | 990146-150<br>T50 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|-------------------|------------------|--------------------|-------------------------------|--------------------------|------------------|-------------------|-------------------|-------------------|---------------------------|----------------------------|-------------------|
| Map         112         2.01         1.02         0.01         1.03         0.03         1.03         0.03         1.03         0.04         1.03         0.04         1.03         0.04         1.03         0.04         1.03         0.04         1.03         0.04         1.03         0.01         0.05         1.04         0.05         1.04         0.05         1.04         0.05         1.04         0.05         1.04         0.05         1.04         0.05         1.04         0.05         1.04         0.01         0.05         1.04         0.05         0.04         0.01         0.05         0.04         0.01         0.06         0.04         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <th0< th=""><th>Analyte<br/>Jan</th><th>13 07</th><th>37 71</th><th>17 30</th><th>13 57</th><th>97 21</th><th>737</th><th>640</th><th>8 70</th><th>13.05</th><th>72 27</th><th>1 31</th><th>00 1/6</th><th>\$ 00</th></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyte<br>Jan | 13 07                       | 37 71             | 17 30            | 13 57              | 97 21                         | 737                      | 640              | 8 70              | 13.05             | 72 27             | 1 31                      | 00 1/6                     | \$ 00             |
| Minap $1.12$ $2.00$ $1.20$ $1.10$ $0.00$ $1.20$ $1.10$ $0.00$ $1.20$ $1.10$ $0.00$ $1.20$ $1.20$ $1.10$ $0.00$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ $1.20$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mnon           | 2001                        | 7 60              | 1 20             | 1 12               | 110                           | 75.1                     | 2 50             | 0.60              | 1 22              | 12.64             | 10.1                      | 1 24                       | 0.45              |
| Minap $0.69$ $1.66$ $1.47$ $0.91$ $1.00$ $0.55$ $4.86$ $0.42$ $1.32$ $3.29$ $1.04$ Accuration $0.51$ $1.38$ $0.89$ $0.52$ $0.51$ $0.11$ $0.017$ $0.014$ $0.011$ $0.77$ $0.014$ $0.11$ $0.077$ $0.011$ $0.077$ $0.011$ $0.077$ $0.011$ $0.077$ $0.011$ $0.077$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.017$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | winap          | 1.12                        | 7.00              | 1.40             | C1.1               | 1.10                          | 0.00                     | 60.0             | 0.00              | cc.1              | 70.07             | 70.7                      | 10.1                       | 0.4.0             |
| Acenap $0.51$ $1.38$ $0.89$ $0.52$ $0.54$ $0.31$ $3.47$ $0.31$ $1.10$ $23.42$ $1.84$ $0.56$ Nemapt $0.12$ $0.36$ $0.24$ $0.12$ $0.36$ $0.24$ $0.12$ $0.36$ $0.24$ $0.12$ $0.77$ $0.07$ $0.11$ $0.07$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ <th>(Mnap</th> <th>0.69</th> <th>1.66</th> <th>1.47</th> <th>0.91</th> <th>1.00</th> <th>0.55</th> <th>4.86</th> <th>0.42</th> <th>1.30</th> <th>33.24</th> <th>3.29</th> <th>1.04</th> <th>0.27</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Mnap          | 0.69                        | 1.66              | 1.47             | 0.91               | 1.00                          | 0.55                     | 4.86             | 0.42              | 1.30              | 33.24             | 3.29                      | 1.04                       | 0.27              |
| <b>3ip</b> $0.12$ $0.36$ $0.24$ $0.12$ $0.17$ $0.13$ $0.11$ $0.08$ $0.12$ $0.77$ $0.01$ $0.11$ Acenapt $0.28$ $1.21$ $1.36$ $0.67$ $0.76$ $0.37$ $1.64$ $0.23$ $0.80$ $1077$ $0.07$ $0.91$ Aree $0.74$ $2.69$ $1.80$ $0.52$ $1.18$ $0.83$ $0.62$ $0.52$ $1.64$ $0.23$ $1.64$ $0.21$ Aree $0.74$ $2.69$ $1.80$ $0.52$ $1.18$ $0.83$ $0.62$ $0.52$ $1.80$ $0.77$ $0.07$ $0.91$ Aree $0.23$ $1.91$ $1.42$ $0.51$ $0.90$ $0.61$ $0.45$ $0.34$ $1.29$ $2.91$ $0.07$ $0.91$ Arei $0.20$ $0.65$ $1.91$ $1.42$ $0.51$ $0.90$ $0.61$ $0.45$ $0.34$ $1.29$ $2.91$ $0.07$ $0.91$ Arei $0.20$ $0.65$ $1.42$ $0.51$ $0.31$ $4.27$ $0.44$ $0.11$ $0.76$ $0.74$ $0.74$ Arei $0.20$ $0.66$ $0.14$ $0.74$ $0.34$ $1.29$ $2.21$ $0.76$ $0.74$ $0.76$ $0.71$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ <t< th=""><th>Acenap</th><th>0.51</th><th>1.38</th><th>0.89</th><th>0.52</th><th>0.54</th><th>0.31</th><th>3.47</th><th>0.31</th><th>1.10</th><th>23.42</th><th>1.84</th><th>0.56</th><th>0.22</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acenap         | 0.51                        | 1.38              | 0.89             | 0.52               | 0.54                          | 0.31                     | 3.47             | 0.31              | 1.10              | 23.42             | 1.84                      | 0.56                       | 0.22              |
| Acenapt $0.28$ $1.21$ $1.36$ $0.67$ $0.76$ $0.37$ $1.64$ $0.23$ $0.07$ $0.07$ $0.07$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3ip            | 0.12                        | 0.36              | 0.24             | 0.12               | 0.17                          | 0.13                     | 0.11             | 0.08              | 0.12              | 0.79              | 0.14                      | 0.11                       | 0.00              |
| Hure $0.74$ $2.69$ $1.80$ $0.52$ $1.18$ $0.83$ $0.62$ $0.52$ $1.62$ $3.93$ $0.65$ $1.82$ Dibenz $0.51$ $1.91$ $1.42$ $0.51$ $0.90$ $0.61$ $0.45$ $0.34$ $1.29$ $2.91$ $0.00$ $1.64$ Phen $3.28$ $10.60$ $7.62$ $3.04$ $4.87$ $3.38$ $2.21$ $1.80$ $8.24$ $13.86$ $0.00$ $9.00$ Ant $0.20$ $0.62$ $2.26$ $0.24$ $0.49$ $0.14$ $1.34$ $0.11$ $0.76$ $0.51$ $0.00$ $9.07$ Ant $0.20$ $0.62$ $2.27$ $0.17$ $0.37$ $0.42$ $0.31$ $4.27$ $0.46$ $0.82$ $1.386$ $0.07$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ But $0.00$ $0.26$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.76$ $0.71$ $0.74$ Chr $0.02$ $0.00$ $0.00$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ <th< th=""><th>Acenapt</th><th>0.28</th><th>1.21</th><th>1.36</th><th>0.67</th><th>0.76</th><th>0.37</th><th>1.64</th><th>0.23</th><th>0.80</th><th>10.77</th><th>0.07</th><th>0.91</th><th>0.21</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acenapt        | 0.28                        | 1.21              | 1.36             | 0.67               | 0.76                          | 0.37                     | 1.64             | 0.23              | 0.80              | 10.77             | 0.07                      | 0.91                       | 0.21              |
| Dibenz $0.51$ $1.91$ $1.42$ $0.51$ $0.90$ $0.61$ $0.45$ $0.34$ $1.29$ $2.91$ $0.00$ $1.64$ Phen $3.28$ $10.60$ $7.62$ $3.04$ $4.87$ $3.38$ $2.21$ $1.80$ $8.24$ $13.86$ $0.00$ $9.00$ Ant $0.20$ $0.622$ $2.26$ $0.24$ $0.49$ $0.14$ $1.34$ $0.11$ $0.76$ $0.51$ $0.00$ $9.00$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $0.74$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $0.74$ But $0.00$ $0.26$ $0.00$ $0.10$ $0.00$ $0.01$ $0.01$ $0.76$ $0.71$ $0.74$ But $0.00$ $0.26$ $0.00$ $0.10$ $0.00$ $0.01$ $0.01$ $0.17$ $0.21$ $0.01$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.01$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ <th>Flure</th> <th>0.74</th> <th>2.69</th> <th>1.80</th> <th>0.52</th> <th>1.18</th> <th>0.83</th> <th>0.62</th> <th>0.52</th> <th>1.62</th> <th>3.93</th> <th>0.65</th> <th>1.82</th> <th>0.39</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flure          | 0.74                        | 2.69              | 1.80             | 0.52               | 1.18                          | 0.83                     | 0.62             | 0.52              | 1.62              | 3.93              | 0.65                      | 1.82                       | 0.39              |
| Phen $3.28$ $10.60$ $7.62$ $3.04$ $4.87$ $3.38$ $2.21$ $1.80$ $8.24$ $13.86$ $0.00$ $9.00$ Aut $0.20$ $0.62$ $2.26$ $0.24$ $0.49$ $0.14$ $1.34$ $0.11$ $0.76$ $0.51$ $0.54$ $0.74$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $0.31$ $4.27$ $0.46$ $0.83$ $2.13$ $0.74$ $0.74$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $0.74$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $0.88$ $0.70$ $0.91$ $0.74$ $0.17$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.74$ $0.77$ $0.76$ $0.51$ $0.74$ $0.74$ $0.74$ $0.71$ $0.74$ $0.71$ $0.74$ $0.71$ $0.74$ $0.71$ $0.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibenz         | 0.51                        | 1.91              | 1.42             | 0.51               | 0.00                          | 0.61                     | 0.45             | 0.34              | 1.29              | 2.91              | 0.00                      | 1.64                       | 0.35              |
| Ant $0.20$ $0.62$ $2.26$ $0.24$ $0.49$ $0.14$ $1.34$ $0.11$ $0.76$ $0.51$ $0.54$ $0.74$ Flura $0.99$ $2.27$ $0.17$ $0.37$ $0.42$ $0.31$ $4.27$ $0.46$ $0.83$ $2.13$ $0.57$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $0.21$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $0.17$ Bat $0.00$ $0.26$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.17$ $0.17$ $0.17$ Bur $0.00$ $0.26$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.17$ $0.17$ Bur $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.01$ $0.01$ Bur $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bur $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bur $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bur $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bur $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ <th< th=""><th>Phen</th><th>3.28</th><th>10.60</th><th>7.62</th><th>3.04</th><th>4.87</th><th>3.38</th><th>2.21</th><th>1.80</th><th>8.24</th><th>13.86</th><th>0.00</th><th>9.00</th><th>3.28</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phen           | 3.28                        | 10.60             | 7.62             | 3.04               | 4.87                          | 3.38                     | 2.21             | 1.80              | 8.24              | 13.86             | 0.00                      | 9.00                       | 3.28              |
| Hura $0.99$ $2.27$ $0.17$ $0.37$ $0.42$ $0.31$ $4.27$ $0.46$ $0.83$ $2.13$ $0.57$ Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $2.21$ But $0.00$ $0.26$ $0.05$ $0.00$ $0.10$ $0.01$ $0.01$ $0.17$ $0.17$ $0.17$ $0.13$ Chr $0.02$ $0.45$ $0.06$ $0.00$ $0.10$ $0.01$ $0.11$ $0.11$ $0.11$ $0.11$ But $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.14$ $0.11$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.01$ $0.01$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.01$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ But $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ant            | 0.20                        | 0.62              | 2.26             | 0.24               | 0.49                          | 0.14                     | 1.34             | 0.11              | 0.76              | 0.51              | 0.54                      | 0.74                       | 0.55              |
| Pyr $1.78$ $5.09$ $0.41$ $0.73$ $1.23$ $0.88$ $0.70$ $0.91$ $1.02$ $1.75$ $0.17$ $2.21$ Bat $0.00$ $0.26$ $0.06$ $0.00$ $0.10$ $0.17$ $0.19$ $0.17$ $0.19$ $0.13$ Chr $0.02$ $0.45$ $0.06$ $0.00$ $0.01$ $0.01$ $0.12$ $0.17$ $0.19$ $0.11$ Bhf $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.14$ $0.14$ Bhf $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ $0.01$ Bhf $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bhf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bhf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bhf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bh $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bhf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bhf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bhf $0.00$ $0.00$ $0.00$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flura          | 0.99                        | 2.27              | 0.17             | 0.37               | 0.42                          | 0.31                     | 4.27             | 0.42              | 0.46              | 0.83              | 2.13                      | 0.57                       | 0.40              |
| Bat $0.00$ $0.26$ $0.05$ $0.00$ $0.10$ $0.10$ $0.17$ $0.19$ $0.13$ Chr $0.02$ $0.45$ $0.06$ $0.00$ $0.00$ $0.04$ $0.19$ $0.13$ $0.14$ $0.19$ $0.11$ Bf $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.01$ Bkf $0.02$ $0.01$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bkf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bkf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ Bkf $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ </th <th>Pyr</th> <th>1.78</th> <th>5.09</th> <th>0.41</th> <th>0.73</th> <th>1.23</th> <th>0.88</th> <th>0.70</th> <th>0.91</th> <th>1.02</th> <th>1.75</th> <th>0.17</th> <th>2.21</th> <th>0.58</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pyr            | 1.78                        | 5.09              | 0.41             | 0.73               | 1.23                          | 0.88                     | 0.70             | 0.91              | 1.02              | 1.75              | 0.17                      | 2.21                       | 0.58              |
| Chr $0.02$ $0.45$ $0.06$ $0.00$ $0.27$ $0.00$ $0.04$ $0.13$ $0.14$ $0.44$ $0.11$ Bbf $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bat            | 0.00                        | 0.26              | 0.05             | 0.00               | 0.10                          | 0.03                     | 0.06             | 0.00              | 0.10              | 0.17              | 0.19                      | 0.13                       | 0.11              |
| Bbf $0.02$ $0.13$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ <th>Chr</th> <th>0.02</th> <th>0.45</th> <th>0.06</th> <th>0.00</th> <th>0.27</th> <th>0.00</th> <th>0.04</th> <th>0.19</th> <th>0.13</th> <th>0.14</th> <th>0.44</th> <th>0.11</th> <th>0.04</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chr            | 0.02                        | 0.45              | 0.06             | 0.00               | 0.27                          | 0.00                     | 0.04             | 0.19              | 0.13              | 0.14              | 0.44                      | 0.11                       | 0.04              |
| Bkf         0.01         0.06         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bbf            | 0.02                        | 0.13              | 00.0             | 0.00               | 0.03                          | 0.00                     | 0.02             | 00.0              | 0.00              | 0.00              | 1.02                      | 0.00                       | 0.65              |
| Bap         0.00         0.00         0.00         0.00         0.00         0.00         1.53         0.00           Inp         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.00         0.01         0.01         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bkf            | 0.01                        | 0.06              | 0.00             | 0.00               | 0.00                          | 0.00                     | 00.0             | 00.0              | 0.00              | 0.00              | 0.00                      | 0.00                       | 00.0              |
| Inp         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.00         0.01         0.00         0.00         0.00         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bap            | 0.00                        | 0.00              | 0.00             | 0.00               | 0.00                          | 0.00                     | 00.0             | 00.0              | 0.00              | 0.00              | 1.53                      | 0.00                       | 0.44              |
| Dba         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | duj            | 0.00                        | 0.00              | 00.0             | 0.00               | 0.00                          | 0.00                     | 00.00            | 00.0              | 0.00              | 0.00              | 0.01                      | 0.00                       | 0.00              |
| Bpe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dba            | 0.00                        | 0.00              | 0.00             | 0.00               | 0.00                          | 0.00                     | 00.0             | 00.0              | 0.00              | 0.00              | 0.01                      | 0.00                       | 0.15              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bpe            | 0.00                        | 0.00              | 00.00            | 0.00               | 0.00                          | 0.00                     | 00.00            | 00.0              | 0.00              | 0.00              | 0.00                      | 0.00                       | 0.00              |

Polycyclic aromatic hydrocarbons in ovaries of English sole (ng/kg wet weight)

Investigator: Dr. Seiichi Uno

Table 16

Nap = Naphthalene, 1Mnap = 1-Methylnaphthalene, 2Mnap = 2-Methylnaphthalene, Bip = Biphenyl, Acenap = Acenaphthylene, Acenapt = Acenaphthene, Dibenz = Dibenzothlophene, Phen= Phenanthrene, Ant = Anthracene, Flura = Fluoranthene, Flure = Fluorene , Pyr = Pyrene, Bat = 1,2-BenzofaJanthracene, Chr = Chrysene, Bdf = Benzo[b]fluoranthene , Bkf = Benzo[k] fluoranthene, Bap = Benzo[a]pyrene, Inp = Indeno[1,2,3-cd]pyrene, Dba = Dibenz[a,h]anthracene, Bpe = Benzo[g,h,1]perylene

The method used includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

two or more fish. For instance, the first composite for site T11B is composed of muscle tissue from fish with ID numbers 990038, 990041, 990042, 990045 and 990045. Each value represents the analysis of one sample. Each sample is a composite made by combining equal amounts of ovary tissue from

**Polycyclic aromatic hydrocarbons in testis of English sole (ng/kg wet weight).** Investigator: Dr. Seiichi Uno

| Site    | T49       | T11B      | T38       | T48       | T50       |
|---------|-----------|-----------|-----------|-----------|-----------|
| Fish ID | all males |
| Nap     | 7.3       | 159.2     | 11.8      | 57.1      | 32.7      |
| 1Mnap   | 12.6      | 57.7      | 4.8       | 12.5      | 8.3       |
| 2Mnap   | 18.0      | 63.3      | 4.9       | 10.6      | 6.5       |
| Acenap  | 10.1      | 32.0      | 3.1       | 4.8       | 4.0       |
| Bip     | 0.6       | 4.2       | 0.3       | 1.1       | 0.7       |
| Acenapt | 4.0       | 11.9      | 1.2       | 4.0       | 2.9       |
| Flure   | 1.9       | 23.0      | 4.5       | 7.4       | 8.4       |
| Dibenz  | 4.3       | 76.5      | 18.8      | 24.6      | 32.4      |
| Phen    | 1.3       | 4.2       | 0.0       | 3.6       | 1.7       |
| Ant     | 2.2       | 25.9      | 3.3       | 5.5       | 9.1       |
| Flura   | 4.1       | 42.9      | 7.4       | 13.8      | 21.3      |
| Pyr     | 4.3       | 20.6      | 0.7       | 1.7       | 1.7       |
| Bat     | 6.5       | 8.1       | 0.8       | 1.3       | 1.6       |
| Chr     | 1.1       | 0.0       | 0.0       | 0.0       | 0.2       |
| Bbf     | 0.9       | 0.0       | 0.0       | 0.2       | 0.6       |
| Bkf     | 0.9       | 0.0       | 0.0       | 0.0       | 0.0       |
| Bap     | 1.0       | 2.2       | 0.0       | 0.0       | 0.0       |
| Inp     | 0.9       | 0.0       | 0.0       | 0.0       | 0.0       |
| Dba     | 1.0       | 0.0       | 0.0       | 0.0       | 0.0       |
| Bpe     | 1.0       | 0.0       | 0.0       | 0.0       | 0.0       |

Nap = Naphthalene; 1Mnap = 1-Methylnaphthalene; 2Mnap = 2-Methylnaphthalene;

Bip = Biphenyl; Acenap = Acenaphthylene; Acenapt = Acenaphthene; Dibenz = Dibenzothlophene;

Phen= Phenanthrene; Ant = Anthracene; Flura = Fluoranthene; Flure = Fluorene; Pyr = Pyrene;

Bat = 1,2-Benzo[a]anthracene; Chr = Chrysene; Bdf = Benzo[b]fluoranthene; Bkf = Benzo[k]fluoranthene;

Bap = Benzo[a] pyrene; Inp = Indeno[1,2,3-cd] pyrene; Dba = Dibenz[a,h] anthracene; Bpe = Benzo[g,h,l] perylene

The method used includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

Each value represents one analysis. Each analysis is a composite of equal amounts of tissue from all males sampled at each site.

201000 3

| Fish 1D    | 990076-80 | 990026-30 | 61-110066 | 990041-45 | 990046-50 | 990051-55 | 990056-60 | 990073-75 | 6 06-980066 | 6 28-18006 | 990116-120 | 990111-115 | 990106-110 99 | 0103-105 99 | 90136-140 9 | 90141-145 | 90135 |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|------------|------------|------------|---------------|-------------|-------------|-----------|-------|
| Site       | T38       | T49       | T49       | TIIB      | TIIB      | TIIB      | TIIB      | T38       | T38         | T38        | T48        | T48        | T48           | T48         | T50         | T50       | T50   |
| Congener # |           |           |           |           |           |           |           |           |             |            |            |            |               |             |             |           |       |
| 17         | pu        | pu        | pu        | pu        | pu        | 851       | pu        | pu        | pu          | pu         | 561        | pu         | pu            | pu          | pu          | pu        | pu    |
| 18         | pu        | pu        | pu        | pu        | pu        | 2303      | pu        | pu        | pu          | pu         | 1100       | pu         | pu            | 224         | pu          | pu        | pu    |
| 22         | pu        | pu        | pu        | pu        | 4461      | pu        | 3458      | pu        | pu          | pu         | pu         | pu         | 317           | 0           | pu          | pu        | pu    |
| 28         | 543       | pu        | 74        | 362       | 2325      | 384       | 1605      | 753       | pu          | pu         | 1134       | 698        | 255           | 0           | pu          | pu        | pu    |
| 31         | 317       | pu        | 16        | 960       | 4264      | 1351      | 4174      | pu        | pu          | pu         | 928        | 676        | 326           | 1111        | pu          | pu        | pu    |
| 32         | pu        | pu        | 89        | 665       | pu        | pu        | pu        | pu        | pu          | pu         | pu         | pu         | pu            | 155         | pu          | pu        | pu    |
| 33         | 440       | pu        | pu        | 357       | 1551      | pu        | 2818      | pu        | pu          | pu         | pu         | pu         | 66            | 248         | pu          | pu        | pu    |
| 41         | 767       | 3315      | 26        | 670       | 974       | 1161      | 1333      | 209       | 639         | 638        | 1261       | 496        | 251           | 312         | pu          | pu        | pu    |
| 42         | pu        | pu        | pu        | pu        | 2428      | pu        | pu        | pu        | pu          | pu         | 721        | 488        | 323           | pu          | pu          | 1139      | 936   |
| 47         | 753       | 840       | 193       | 192       | 2328      | 835       | 1326      | 808       | 60          | 785        | 892        | 750        | 387           | 763         | Ъп          | 1005      | pu    |
| 48         | 221       | 710       | pu        | 299       | 2752      | 931       | 1567      | 957       | 106         | 165        | 1055       | 887        | 120           | pu          | pu          | pu        | pu    |
| 49         | 646       | 1058      | 155       | 643       | 3705      | 1517      | 2101      | 1492      | 333         | 944        | 1321       | 1235       | 378           | 1074        | 1491        | 1162      | pu    |
| 52         | 1022      | 1112      | 115       | 812       | 4086      | 2255      | pu        | 1401      | 753         | 1168       | 1809       | 2036       | 702           | 1154        | 831         | 867       | 533   |
| 56         | 504       | 654       | 231       | 2003      | pu        | pu        | pu        | pu        | pu          | 367        | 20         | 472        | pu            | pu          | 475         | 496       | 305   |
| 59         | 883       | pu        | Ы         | pu        | 837       | pu        | pu        | pu        | pu          | pu         | 410        | 213        | 145           | pu          | pu          | pu        | pu    |
| 60         | 288       | 496       | Ъ         | 1146      | 4924      | pu        | 1651      | 833       | pu          | 838        | 22         | 448        | pu            | 1137        | 2024        | 1389      | pu    |
| 63         | 1008      | pu        | pu        | pu        | 5184      | pu        | pu        | pu        | pu          | pu         | pu         | pu         | pu            | pu          | pu          | pu        | pu    |
| 64         | 189       | 589       | 24        | 130       | pu        | 233       | 565       | 522       | 333         | 194        | 522        | 523        | 148           | 275         | 1629        | 2076      | pu    |
| <b>6</b> 6 | 477       | 2619      | 551       | 1879      | pu        | 3346      | 5009      | 2325      | 1263        | 2041       | 2994       | 2333       | 914           | 4926        | 2714        | 1274      | pu    |
| 69         | pu        | pu        | pu        | pu        | pu        | pu        | 2726      | pu        | 8860        | 2835       | pu         | pu         | pu            | pu          | pu          | pu        | pu    |
| 70         | 2286      | 2126      | 336       | 1810      | 8204      | 2712      | 3559      | 2615      | 1318        | 1943       | 2867       | 1669       | 1123          | 3127        | pu          | pu        | pu    |
| 74         | 1756      | 2387      | 291       | 467       | 9035      | 2557      | 4171      | pu        | 1575        | 1698       | pu         | 2750       | 973           | pu          | pu          | pu        | pu    |
| 84         | 2257      | 3146      | 103       | 2683      | 12662     | 2955      | 4990      | pu        | 2592        | 3804       | 5293       | 4046       | 2087          | 649         | 784         | 1336      | 3094  |
| 85         | 759       | 578       | 381       | 1288      | 6281      | 2264      | 2821      | 3014      | 729         | 1551       | 1660       | 1303       | 658           | 1900        | 4015        | 2962      | pu    |
| 87         | 1369      | 1840      | 506       | 1602      | 7478      | 1714      | 3120      | 4222      | 1240        | 2553       | 3171       | 2250       | 1017          | 3226        | 740         | 1755      | pu    |
| 92         | 501       | 1310      | 446       | 736       | 3449      | 853       | 473       | 2886      | 638         | 1010       | 1280       | 1463       | 661           | 2091        | pu          | 1422      | 257   |
| 95         | 986       | 1512      | 218       | 738       | pu        | 1039      | 1643      | 2082      | 832         | 1177       | 1702       | 1572       | 657           | 1785        | 731         | 896       | 3976  |
| 97         | 569       | 171       | 142       | 520       | 2146      | 431       | 897       | 1177      | 426         | 607        | 1037       | 747        | 357           | 1134        | 1801        | 3906      | 842   |
| 98         | pu        | pu        | pu        | pu        | 2967      | pu        | pu        | pu        | pu          | pu         | pu         | pu         | pu            | pu          | pu          | pu        | pu    |
| 66         | 3948      | 4427      | 1376      | 4947      | 23796     | 5061      | 8320      | 12111     | 4163        | 7100       | 8566       | 6195       | 3016          | 10833       | 633         | 855       | pu    |
| 101/90     | 8094      | 9293      | 2395      | 9107      | 41725     | 9724      | 14484     | 19393     | 7788        | 12938      | 16765      | 11935      | 5714          | 17482       | 1610        | 2834      | 6296  |
| 105        | 1028      | 1576      | 631       | 957       | 5344      | 1251      | 1812      | 2144      | 600         | 1416       | 1515       | 2596       | 504           | 1597        | 2333        | 3117      | 908   |
| 110        | 5391      | 6830      | 1672      | 5624      | 25434     | 6860      | 8620      | 15505     | 4253        | 7923       | 10623      | 7661       | 3940          | 11143       | pu          | P         | pu    |
| 118        | 6850      | 7865      | 2732      | 8575      | 40651     | 10234     | 11165     | 18400     | 5313        | 11663      | 13746      | pu         | 4148          | 15191       | pu          | pu        | pu    |
| 123        | pu        | 480       | pu        | 144       | 792       | 109       | 226       | pu        | pu          | pu         | 280        | 2407       | pu            | pu          | р           | Ъ.        | pu '  |
| 124        | pu        | 785       | pu        | pu        | pu        | 355       | pu        | pu        | pu          | pu         | 233        | pu         | pu            | pu          | Pu          | pu        | pu    |
| 127        | pu        | 7402      | pu        | 1268      | 6958      | 3420      | 4976      | pu        | pu          | pu         | 4204       | 2790       | 166           | pu          | pu          | pu        | pu    |
| 128        | 146       | 1353      | 472       | 166       | 7163      | 970       | pu        | 2734      | 154         | 118        | pu         | pu         | pu            | 1313        | 492         | 668       | pu    |
| 130        | pu        | pu        | 295       | 921       | 5334      | 1130      | 1882      | 1277      | 1754        | 3505       | 1042       | 576        | 816           | 2059        | pu          | 1549      | pu    |
| 132        | pu        | 1575      | pu        | 2081      | 161425    | 1930      | 1095      | pu        | 731         | 1651       | 3013       | 1574       | 435           | pu          | pu          | 1830      | pu    |
| 134        | 677       | pu        | pu        | 300       | pu        | pu        | pu        | pu        | pu          | 1930       | 401        | 340        | pu            | pu          | pu          | 692       | pu    |
| 135        | 280       | 1477      | 485       | 1023      | 5428      | 1016      | 2299      | 2456      | 571         | 465        | 1556       | 1040       | 577           | 1674        | pu          | pu        | pu    |
| 136        | 1185      | 368       | 102       | 291       | 1304      | 343       | 731       | 846       | 1142        | 1623       | 482        | 416        | 222           | 559         | 5708        | 6891      | 16527 |
| 137        | 340       | 637       | 309       | 595       | 3883      | 705       | 1443      | 924       | 221         | 439        | 728        | 619        | 367           | 1398        | ри          | 1739      | 312   |
| 138        | 487       | 18234     | 10699     | 21507     | 113128    | 21497     | 24284     | 50892     | 463         | 788        | 27392      | 16770      | 8885          | 40295       | 876         | 3833      | 3026  |
| 141        | 19972     | 2689      | 1137      | 2656      | 12630     | 2389      | 3219      | 4677      | 13849       | 28887      | 2853       | 1661       | 1159          | 3365        | 1558        | 1673      | 748   |
| 146        | 2811      | 3413      | 1655      | 3409      | pu        | 3483      | 4182      | 7343      | 1803        | 3628       | 3292       | 2686       | 1149          | pu          | 1228        | 3176      | pu    |

Table 18 PCB congeners (IUPAC) (ng/kg wet weight) in liver of English sole. Investigator: Dr. Seiichi Uno

| Fish ID    | 60076-80 | 990026-30 5 | 5 21-11006 | 390041-45 5 | 90046-50 9 | 90051-55 9 | 90056-60 9 | 90073-75 9 | 90086-90 9 | 90081-85 99 | 90116-120 9 | 90111-115 99 | 0106-110 99            | 0103-105 99 | 0136-140 99 | 0141-145 9 | 90135                  |
|------------|----------|-------------|------------|-------------|------------|------------|------------|------------|------------|-------------|-------------|--------------|------------------------|-------------|-------------|------------|------------------------|
| Site       | T38      | T49         | T49        | TIIB        | TIIB       | TIIB       | TIIB       | T38        | T38        | T38         | T48         | T48          | T48                    | T48         | T50         | T50        | T50                    |
| Congener # |          |             |            |             |            |            |            |            |            |             |             |              |                        |             |             |            |                        |
| 149        | 3312     | 4180        | 1572       | 3305        | 17649      | 3697       | 5128       | 9396       | 2677       | 5174        | 5126        | 3904         | 1745                   | 6773        | 7031        | 7495       | 15156                  |
| 151        | 3712     | 3952        | 1328       | 3099        | 17543      | 4631       | 5833       | 9315       | 2683       | 4692        | 4120        | 2927         | 1348                   | 4894        | pu          | 686        | $\mathbf{p}\mathbf{u}$ |
| 153        | 27279    | 25310       | 11826      | 27955       | 14376      | 38918      | 32532      | 50462      | 18204      | 41183       | 25294       | 22011        | 9942                   | 32973       | pu          | pu         | 2290                   |
| 156        | 1631     | 1054        | 682        | 1635        | 6267       | 2143       | 1887       | 2972       | 705        | 2025        | 2052        | 872          | 566                    | 2966        | ри          | pu         | pu                     |
| 158        | 952      | 1505        | 493        | 1261        | 7662       | 1515       | 1781       | 3247       | 1010       | 1786        | 1747        | 1060         | 634                    | 2470        | pu          | pu         | pu                     |
| 170/190    | 8679     | 8926        | 1428       | 7707        | 43549      | 8439       | 7018       | pu         | 4213       | 9238        | 8227        | 1095         | pu                     | pu          | pu          | pu         | pu                     |
| 171        | 2348     | 1061        | 934        | 1222        | 9470       | 1258       | 3910       | 2809       | 628        | 2484        | pu          | pu           | pu                     | 2126        | pu          | 333        | pu                     |
| 172        | 1062     | 2797        | 1981       | 855         | 6718       | 1167       | 1321       | pu         | 665        | 1707        | 1961        | 1328         | 480                    | pu          | pu          | pu         | pu                     |
| 174        | 2228     | 4189        | pu         | 2417        | 13881      | 2624       | 3319       | 6224       | 1616       | 4004        | 1239        | 428          | pu                     | 5471        | 547         | 693        | pu                     |
| 175        | 168      | pu          | pu         | pu          | 790        | 347        | 307        | pu         | pu         | pu          | 3086        | 2253         | 1067                   | pu          | 1262        | 1663       | pu                     |
| 176        | 360      | 1417        | 268        | 570         | 1739       | 1051       | 1050       | 1198       | 261        | 461         | 346         | pu           | pu                     | 667         | pu          | pu         | pu                     |
| 177        | 3036     | 2587        | 2192       | 2614        | 14610      | 2685       | 3477       | 5854       | 1468       | 4012        | 579         | 315          | 262                    | 4080        | 1024        | 734        | pu                     |
| 178        | 1188     | 2218        | 871        | 1068        | 8054       | 1644       | 2099       | 3465       | 986        | 1554        | 3389        | 1916         | 804                    | 1072        | pu          | 3473       | 4139                   |
| 179        | 1624     | 1711        | 855        | 1539        | 6678       | 1720       | 1962       | 4188       | 1099       | 2198        | 1346        | 1154         | 595                    | 2071        | 978         | 2054       | pu                     |
| 180        | 17679    | 17005       | 6075       | 22705       | 109497     | 20041      | 18022      | 35147      | 13222      | 23305       | 1418        | 1265         | 537                    | 33643       | 1147        | pu         | pu                     |
| 183        | 3949     | 4196        | 2339       | 4355        | 23204      | 5618       | 3667       | 7871       | 2519       | 4612        | 21071       | 14182        | 8049                   | 5905        | 1405        | 1174       | 5713                   |
| 185        | 193      | pu          | pu         | 541         | 3281       | 558        | pu         | pu         | 457        | 651         | 4551        | 2369         | 1355                   | pu          | pu          | 623        | pu                     |
| 187        | 4024     | 4055        | 3265       | 4002        | 22765      | 4889       | 4325       | 8816       | 2550       | 5555        | 637         | 466          | 222                    | 6534        | pu          | pu         | pu                     |
| 191        | pu       | 220         | pu         | 66          | pu         | pu         | pu         | pu         | pu         | pu          | 4543        | 2901         | 1475                   | pu          | pu          | pu         | pu                     |
| 194        | 316      | 2204        | *          | 2706        | 965        | 2583       | 1088       | *          | 153        | 306         | 484         | 170          | 157                    | *           | pu          | pu         | рц                     |
| 195        | 888      | pu          | *          | 849         | 18639      | 1346       | pu         | *          | pu         | pu          | 1122        | 1942         | 413                    | *           | pu          | pu         | pu                     |
| 197        | 98       | 247         | *          | 146         | 413        | 56         | pu         | *          | 55         | 145         | 95          | pu           | $\mathbf{p}\mathbf{n}$ | *           | pu          | 4534       | pu                     |
| 199        | 2998     | 4242        | *          | 3602        | 4734       | 4806       | 4294       | *          | 2120       | 3092        | 3540        | 434          | 1718                   | *           | 622         | pu         | pu                     |
| 200        | 249      | 564         | *          | pu          | 869        | 658        | pu         | *          | pu         | pu          | 993         | pu           | 452                    | •           | pu          | pu         | pu                     |
| 201        | 405      | 0           | *          | 371         | 1492       | 349        | 638        | *          | 180        | 357         | 326         | 5111         | pu                     | *           | pu          | pu         | 2170                   |
| 203/196    | 1596     | 5673        | *          | 3408        | 7324       | 4570       | 2135       | *          | 1134       | 1750        | 1849        | 524          | 664                    | *           | pu          | 1035       | pu                     |
| 205        | 775      | pu          | *          | pu          | 5735       | pu         | pu         | *          | 527        | 475         | pu          | pu           | pu                     | *           | pu          | pu         | pu                     |
| Total PCBs | 160499   | 193618      | 64040      | 182391      | 914941     | 217483     | 244544     | 314962     | 123663     | 229157      | 227593      | 154947       | 76306                  | 243845      | 45687       | 75342      | 67227                  |

nd = not detected IUPAC = International Union of Pure and Applied Chemistry. \*= not analyzed.

Each value represents one analysis. Each analysis contains tissue cither from an individual fish, or equal amounts of tissue from several fish. The Fish ID label indicates which fish are included in each analysis. For instance, 990076-80 indicates that five fish with the ID numbers 990076, 990077, 990078, 990079 and 990080, were combined into one composite sample.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Sumples were analyzed by Gas Chromatography Mass Spectometry.

| Fish ID    | 990031-35 | 990036-39 | 990040 | 990062,63,65 |      | 12-690066 | 990072 | 990087-90 | 6-700066 | 990010 | 6-160066 | 90094-96 | 90126-131 | 90132-134 |
|------------|-----------|-----------|--------|--------------|------|-----------|--------|-----------|----------|--------|----------|----------|-----------|-----------|
| Site       | TIIB      | TIIB      | T11B   | T38          | T38  | T38       | T38    | T38       | T49      | T49    | T48      | T48      | T50       | T50       |
| Congener # |           |           |        |              |      |           |        |           |          |        |          |          |           |           |
| 17         | pu        | pu        | pu     | 241          | 38   | 619       | pu     | 198       | 413      | pu     | 9        | pu       | pu        | pu        |
| 18         | pu        | pu        | pu     | 0            | 135  | 468       | pu     | 685       | 143      | pu     | 98       | pu       | pu        | pu        |
| 22         | pu        | pu        | pu     | pu           | pu   | pu        | pu     | pu        | pu       | 108    | pu       | pu       | pu        | pu        |
| 28         | 451       | 983       | 1443   | pu           | 99   | 268       | 519    | 687       | 15       | pu     | 9        | 275      | 16        | 11        |
| 31         | 131       | 1420      | 1536   | pu           | 255  | 009       | 904    | 350       | 86       | 215    | 301      | 479      | 41        | 85        |
| 32         | pu        | pu        | pu     | pu           | 141  | pu        | pu     | 356       | 186      | 193    | 31       | pu       | pu        | pu        |
| 33         | 467       | 1001      | 1275   | pu           | pu   | 179       | 438    | 314       | 281      | pu     | 118      | 232      | 10        | 47        |
| 41         | 88        | 624       | 288    | pu           | 171  | 301       | 489    | 653       | 31       | 111    | 43       | 153      | 2         | 30        |
| 42         | 466       | pu        | 1077   | pu           | 154  | 596       | 347    | pu        | 61       | 109    | 1        | 103      | 17        | pu        |
| 47         | 135       | 821       | LLL    | pu           | 153  | pu        | 544    | pu        | 96       | 101    | pu       | 142      | ŝ         | 20        |
| 48         | 159       | 695       | 657    | pu           | 84   | 280       | 572    | 185       | 81       | 264    | 89       | 168      | 6         | pu        |
| 49         | 517       | 858       | 1452   | 77           | 96   | 329       | 577    | 398       | 62       | 23     | 1936     | 205      | 31        | 10        |
| 52         | 490       | 769       | 1630   | 54           | 167  | 398       | 874    | 297       | 73       | 39     | 101      | 223      | 14        | pu        |
| 56         | 60        | pu        | 35     | pu           | 91   | 294       | 201    | pu        | 4        | 10     | pu       | 59       | 4         | 19        |
| 59         | pu        | pu        | pu     | pu           | 61   | 285       | 109    | pu        | pu       | pu     | 349      | pu       | 4         | pu        |
| 60         | 104       | 0         | 20     | pu           | 52   | 168       | 115    | pu        | 2        | 1      | 33       | 33       | 14        | 11        |
| 63         | pu        | pu        | pu     | pu           | pu   | pu        | pu     | pu        | pu       | pu     | pu       | pu       | pu        | pu        |
| 64         | 157       | 385       | 824    | pu           | 61   | 155       | 260    | 92        | 21       | 400    | 30       | 101      | ŝ         | 11        |
| 99         | 1074      | 1124      | 3438   | 159          | 460  | 1023      | 1825   | 574       | 148      | 6      | 285      | 50       | 42        | 47        |
| 69         | pu        | pu        | pu     | pu           | pu   | pu        | pu     | pu        | pu       | pu     | pu       | pu       | pu        | pu        |
| 70         | 793       | 994       | 2203   | 121          | 235  | 742       | 1097   | 398       | 114      | 52     | 242      | 389      | 31        | 25        |
| 74         | 714       | 1456      | 1819   | pu           | 287  | 829       | 1450   | 621       | 128      | 127    | 192      | 366      | 33        | 56        |
| 84         | pu        | 1234      | 2653   | pu           | 531  | 1284      | 3087   | 952       | 261      | 248    | pu       | 470      | pu        | 44        |
| 85         | 1040      | 1104      | 1580   | pu           | 312  | 709       | 1422   | 439       | 157      | 208    | pu       | 284      | 30        | 22        |
| 87         | 1111      | 891       | 1978   | 205          | 366  | 698       | 1997   | 484       | 210      | 204    | 185      | 395      | 26        | 38        |
| 92         | pu        | 530       | 1091   | pu           | 163  | 579       | 895    | 294       | 165      | 67     | 0        | 210      | pu        | 17        |
| 95         | 308       | 444       | 1203   | 100          | 182  | 460       | 1106   | 226       | 108      | 92     | 104      | 179      | 15        | 21        |
| 97         | 291       | 198       | 606    | 70           | 131  | 316       | 589    | 235       | 74       | 78     | 84       | 105      | 6         | 12        |
| 98         | pu        | pu        | pu     | pu           | pu   | pu        | pu     | pu        | pu       | pu     | pu       | pu       | pu        | pu        |
| 66         | 2722      | 2769      | 3745   | 476          | 1060 | 2450      | 5134   | 1233      | 572      | 651    | 647      | 1050     | <i>LL</i> | 64        |
| 101/90     | 5233      | 4455      | 9644   | 772          | 1711 | 4228      | 10259  | 2415      | 1091     | 1027   | 1046     | 1561     | 125       | 101       |
| 105        | 956       | 789       | 1266   | 129          | 204  | pu        | 1348   | 321       | 154      | 134    | 188      | 303      | 18        | 22        |
| 110        | 3373      | 3500      | 6235   | 620          | 1309 | 3081      | 7668   | 1771      | 1034     | 862    | 854      | 1340     | 100       | 101       |

Table 19 PCB congeners (IUPAC) (ng/kg wet weight) in English sole muscle. Investigator: Dr. Seiichi Uno

| Fish ID    | 990031-35 | 990036-39 | 990040 | 990062.63.65 | 90066-68  | 990069-71 | 00072                  | 990087-90 | 00002-0 | 990010 | 9 20-190096 | 90094-96 | 90126-131 | 990132-134 |
|------------|-----------|-----------|--------|--------------|-----------|-----------|------------------------|-----------|---------|--------|-------------|----------|-----------|------------|
| Site       | TIIB      | TIIB      | T11B   | T38          | T38       | T38       | T38                    | T38       | T49     | T49    | T48         | T48      | T50       | T50        |
| Congener # |           |           |        |              |           |           |                        |           |         |        |             |          |           |            |
| 118        | 5456      | 4364      | 8142   | 718          | 1967      | 3820      | 8745                   | 2010      | 1205    | 1030   | 987         | 1825     | 157       | 98         |
| 123        | pu        | pu        | 375    | pu           | pu        | 86        | 150                    | 25        | 25      | 28     | pu          | 32       | pu        | 2          |
| 124        | pu        | pu        | 1671   | pu           | pu        | pu        | pu                     | pu        | pu      | pu     | pu          | pu       | pu        | pu         |
| 127        | pu        | pu        | pu     | pu           | 511       | 1122      | 2751                   | pu        | pu      | pu     | pu          | 522      | pu        | 61         |
| 128        | 787       | 557       | 1093   | 131          | <i>LT</i> | pu        | 1867                   | 268       | 136     | 121    | 133         | 193      | 18        | 23         |
| 130        | pu        | 1163      | 781    | pu           | 166       | 402       | 988                    | 438       | 143     | 162    | pu          | 154      | pu        | 34         |
| 132        | pu        | pu        | pu     | pu           | 262       | 176       | 1182                   | 173       | 836     | 119    | pu          | 154      | pu        | 6          |
| 134        | pu        | 854       | 1472   | pu           | pu        | pu        | 323                    | 274       | pu      | pu     | pu          | pu       | 20        | pu         |
| 135        | pu        | 066       | 1001   | 57           | 218       | 871       | 1319                   | 518       | 155     | 93     | pu          | 148      | 14        | pu         |
| 136        | 189       | 154       | 287    | 45           | 55        | 190       | 356                    | pu        | 33      | 30     | pu          | 38       | 59        | 5          |
| 137        | 729       | 562       | 395    | 96           | 130       | 459       | 673                    | 265       | 52      | 63     | pu          | 79       | pu        | 13         |
| 138        | 12254     | 10355     | 14877  | 1971         | 4229      | 8927      | 28059                  | 5682      | 2600    | 1601   | 2108        | 2888     | 53        | 254        |
| 141        | 1516      | 2010      | 2233   | 196          | 617       | 1199      | 3856                   | 838       | 350     | 198    | 220         | 341      | pu        | 31         |
| 146        | 1904      | 1510      | 2831   | 352          | 678       | 1246      | 4388                   | 1038      | 354     | 222    | 311         | 416      | 128       | 34         |
| 149        | 2002      | 1797      | 3451   | 333          | 577       | 1753      | 4517                   | 1068      | 459     | 260    | 306         | 481      | pu        | 40         |
| 151        | 1400      | 2030      | 2690   | 354          | 603       | 1691      | 4289                   | 1364      | 431     | 239    | 238         | pu       | 45        | 38         |
| 153        | 13878     | 12811     | 16110  | 2445         | 6385      | 11661     | 40438                  | 7651      | 9972    | 1698   | 2053        | 3976     | 319       | 338        |
| 156        | 1032      | 3439      | 3956   | 130          | 382       | 432       | 3024                   | 555       | 500     | 339    | 207         | 338      | 19        | 26         |
| 158        | 884       | 1024      | 1209   | 138          | 270       | 574       | 1759                   | 496       | 231     | 133    | 127         | 260      | 69        | 16         |
| 170/190    | 4785      | 3113      | 3964   | 386          | 1119      | 2667      | 7995                   | 2083      | 1043    | 404    | 591         | 685      | 66        | 50         |
| 171        | 663       | 526       | 906    | pu           | pu        | pu        | $\mathbf{p}\mathbf{u}$ | pu        | 115     | 60     | 142         | 146      | pu        | 15         |
| 172        | pu        | 696       | 700    | 129          | 196       | 594       | 1131                   | pu        | 109     | 51     | pu          | 103      | pu        | pu         |
| 174        | 1910      | 1528      | 2446   | 529          | 385       | 1158      | 2833                   | 1080      | 242     | 233    | 539         | 372      | 40        | 28         |
| 175        | pu        | 334       | 340    | pu           | pu        | 80        | 120                    | 117       | 59      | 26     | pu          | pu       | pu        | pu         |
| 176        | pu        | 313       | 630    | pu           | 120       | 164       | 525                    | 244       | 31      | 37     | <i>1</i> 9  | 90       | 30        | pu         |
| 177        | 1767      | 1215      | 1820   | 343          | 519       | 1104      | 2876                   | 776       | 216     | 132    | 246         | 369      | 38        | 21         |
| 178        | pu        | 656       | 733    | 335          | 216       | 541       | 1330                   | 637       | 148     | 64     | pu          | 119      | 84        | pu         |
| 179        | 711       | 667       | 1435   | 283          | 280       | 604       | 2076                   | 484       | 177     | 128    | 154         | 171      | pu        | pu         |
| 180        | 11752     | 9055      | 9274   | 2765         | 2265      | 6262      | 26777                  | 5519      | 1696    | 897    | 1444        | 1724     | 242       | 133        |
| 183        | 2294      | 1774      | 2855   | 567          | 329       | 1671      | 4950                   | 843       | 473     | 222    | 275         | 269      | 253       | 33         |
| 185        | pu        | 445       | 408    | pu           | 131       | 162       | 674                    | 588       | 67      | 37     | pu          | 83       | 52        | 40         |
| 187        | 2376      | 2611      | 2532   | 601          | 605       | 1728      | 5765                   | 1237      | 504     | 243    | 267         | 440      | 21        | pu         |
| 191        | pu        | pu        | 150    | pu           | pu        | pu        | pu                     | pu        | 25      | 16     | pu          | pu       | *         | 81         |

Table 19 PCB congeners (IUPAC) (ng/kg wet weight) in English sole muscle. Investigator: Dr. Seiichi Uno
| Table 19                                                         |
|------------------------------------------------------------------|
| PCB congeners (IUPAC) (ng/kg wet weight) in English sole muscle. |
| Investigator: Dr. Seiichi Uno                                    |

| Fish ID    | 990031-35 | 990036-39 | 990040 | 990062,63,65 | 990066-68 | 990069-71 | 990072 | 06-780066 | 6-700066 | 990010 | 90091-93 | 990094-96 | 990126-131 | 990132-134 |
|------------|-----------|-----------|--------|--------------|-----------|-----------|--------|-----------|----------|--------|----------|-----------|------------|------------|
| Site       | T11B      | TIIB      | TIIB   | T38          | T38       | T38       | T38    | T38       | T49      | T49    | T48      | T48       | T50        | T50        |
| Congener # |           |           |        |              |           |           |        |           |          |        |          |           |            |            |
| 194        | pu        | pu        | pu     | *            | 066       | 3118      | 3497   | 531       | pu       | pu     | *        | 2186      | *          | pu         |
| 195        | pu        | pu        | pu     | *            | 183       | pu        | 965    | pu        | pu       | pu     | *        | pu        | *          | pu         |
| 197        | pu        | pu        | pu     | *            | 29        | pu        | 136    | pu        | 14       | pu     | *        | pu        | *          | pu         |
| 199        | pu        | 3190      | 2966   | *            | 629       | 1550      | 4095   | 629       | pu       | 261    | *        | 328       | *          | 49         |
| 200        | pu        | pu        | pu     | *            | pu        | pu        | 271    | pu        | 34       | pu     | *        | pu        | *          | pu         |
| 201        | pu        | pu        | 424    | *            | 158       | pu        | 466    | 148       | 78       | 36     | *        | pu        | *          | pu         |
| 203/196    | pu        | 1233      | 1999   | *            | 313       | 642       | 2167   | 1124      | 718      | 135    | *        | 187       | *          | 26         |
| 205        | pu        | pu        | pu     | *            | pu        | pu        | 149    | pu        | pu       | pu     | *        | pu        | pu         | pu         |
| Total PCBs | 89129     | 98295     | 144633 | 15924        | 34269     | 78590     | 221310 | 52882     | 29016    | 14652  | 17399    | 27996     | 2430       | 2312       |

nd = not detected IUPAC = International Union of Pure and Applied Chemistry.

\*= not analyzed.

Each value represents one analysis. Each analysis contains tissue either from an individual fish, or equal amounts of tissue from several fish. The Fish ID label indicates which fish are included in each analysis. For instance, 990031-35 indicates that five fish with the ID numbers 990031, 990032, 990033, 990035, were combined into one composite sample. Fish ID number 990062, 63, 65 indicates that three fish with ID numbers 99062, 99063, and 99065 are included in this composite sample.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

| FishID     | 990033-37 | 990038,41,42,44,45 | 990056-60 | 990073-77 | 990068-70 | 990079, 82, 84 | 990061-63, 65-66 | 56-160066 | 990101-105 | 990106-110 | 6111-115 | 990006. 14. 15. 02 | 990026-30 | 990138, 141, 143 | 990128-130 |
|------------|-----------|--------------------|-----------|-----------|-----------|----------------|------------------|-----------|------------|------------|----------|--------------------|-----------|------------------|------------|
| Site       | TIIB      | T11B               | T11B      | T38       | T38       | T38            | T38              | T48       | T48        | T48        | T48      | T49                | T49       | T50              |            |
| Congener # |           |                    |           |           |           |                |                  |           |            |            |          |                    |           |                  |            |
| 17         | pu        | 131                | pu        | pu        | pu        | 26             | pu               | 965       | pu         | 106        | pu       | 75                 | 40        | pu               |            |
| 18         | pu        | 193                | pu        | pu        | pu        | 217            | 130              | 523       | pu         | 113        | pu       | 75                 | 74        | pu               |            |
| 22         | pu        | pu                 | 65        | pu        | pu        | 76             | pu               | pu        | pu         | pu         | pu       | pu                 | pu        | pu               |            |
| 28         | 339       | 101                | 64        | 178       | 159       | 168            | 80               | 949       | 139        | 175        | 348      | 508                | 332       | pu               |            |
| 31         | 82        | 479                | 71        | 161       | 331       | 180            | 12               | 1214      | 326        | 194        | 815      | 144                | 400       | pu               |            |
| 32         | pu        | pu                 | 40        | pu        | pu        | 140            | pu               | pu        | pu         | pu         | pu       | 139                | 55        | pu               |            |
| 33         | 304       | 284                | 59        | 101       | pu        | 123            | 48               | 419       | 100        | 206        | pu       | 1762               | pu        | pu               |            |
| 41         | 26        | 235                | 629       | 276       | pu        | 203            | 28               | 686       | 293        | 256        | 250      | 73                 | 206       | pu               |            |
| 42         | pu        | pu                 | 166       | pu        | pu        | 98             | pu               | pu        | pu         | pu         | pu       | pu                 | pu        | pu               |            |
| 47         | 47        | 89                 | 402       | 159       | <i>LT</i> | 160            | 27               | 647       | 133        | 294        | 732      | 103                | 479       | pu               |            |
| 48         | 40        | 289                | 233       | 134       | 16        | 135            | 32               | 764       | 187        | 300        | 334      | 121                | 132       | pu               |            |
| 49         | 153       | 135                | 508       | 119       | 145       | 181            | 45               | 1085      | 139        | 306        | 468      | 336                | 288       | pu               |            |
| 52         | 202       | pu                 | 422       | 227       | 131       | 201            | 54               | 1423      | 164        | 325        | 347      | pu                 | 140       | pu               |            |
| 56         | pu        | 148                | 347       | pu        | pu        | 84             | pu               | 689       | pu         | pu         | 411      | pu                 | pu        | pu               |            |
| 59         | pu        | pu                 | 40        | pu        | pu        | 10             | pu               | pu        | pu         | pu         | pu       | pu                 | pu        | 14               |            |
| 60         | pu        | 85                 | 198       | pu        | pu        | 48             | 6                | 394       | pu         | pu         | 323      | pu                 | pu        | pu               |            |
| 63         | pu        | 300                | pu        | pu        | pu        | 38             | 16               | pu        | 129        | pu         | 0        | pu                 | pu        | 17               |            |
| 64         | 22        | 142                | 70        | 64        | pu        | 74             | pu               | 621       | 137        | 400        | 343      | 54                 | 110       | pu               |            |
| 99         | 372       | 121                | 289       | 493       | 251       | 353            | 160              | 3562      | pu         | 413        | 171      | 335                | 380       | 27               |            |
| 69         | pu        | 105                | pu        | pu        | pu        | pu             | pu               | pu        | pu         | pu         | pu       | pu                 | pu        | pu               |            |
| 70         | 215       | 598                | 849       | 425       | 302       | 268            | 74               | 2543      | 69         | 438        | 550      | 119                | 271       | pu               |            |
| 74         | pu        | 303                | 352       | 408       | 249       | 370            | pu               | 2798      | 220        | 463        | 421      | pu                 | 475       | pu               |            |
| 84         | pu        | pu                 | 470       | 902       | pu        | 465            | pu               | 3596      | 168        | 525        | 763      | pu                 | pu        | 27               |            |
| 85         | 263       | 1694               | 297       | 408       | 141       | 229            | 139              | 2090      | 305        | 531        | 1325     | 183                | pu        | 33               |            |
| 87         | 283       | 1678               | 236       | 569       | 273       | 397            | 101              | 3011      | 530        | 544        | 395      | 156                | 142       | 29               |            |
| 92         | pu        | 1478               | pu        | 327       | pu        | 157            | 42               | 6615      | pu         | pu         | 0        | 0                  | 0         | 12               |            |
| 95         | <i>LT</i> | 985                | 234       | 250       | 151       | 161            | 59               | 1472      | pu         | 575        | 415      | 55                 | 113       | 17               |            |
| 97         | 45        | 246                | 155       | 209       | 119       | 106            | 48               | 1524      | 158        | 594        | 0        | 46                 | 0         | 28               |            |
| 98         | pu        | pu                 | pu        | pu        | pu        | pu             | pu               | 1077      | 166        | 606        | 314      | pu                 | pu        | pu               |            |
| 66         | 922       | 3958               | 676       | 1265      | 658       | 917            | 257              | pu        | nd         | 619        | 322      | 266                | 279       | 27               |            |
| 101/90     | 1258      | 2025               | 1058      | 2395      | 1012      | 1664           | 370              | 11581     | 126        | 631        | 191      | 558                | 632       | 105              |            |
| 105        | 148       | 2138               | 148       | 398       | 119       | 237            | 99               | 1757      | 129        | 656        | 958      | 67                 | 117       | 20               |            |
| 110        | 917       | 1958               | 550       | 1896      | 818       | 1302           | 363              | pu        | pu         | pu         | 1631     | 459                | 0         | 38               |            |
| 118        | 1357      | 3985               | 750       | 2322      | 956       | 1743           | 402              | 10829     | 77         | 688        | 284      | 543                | 477       | 106              |            |
| 123        | pu        | 215                | pu        | 24        | pu        | 12             | pu               | 12578     | 383        | 738        | 1467     | pu                 | pu        | pu               |            |
| 124        | pu        | pu                 | pu        | pu        | pu        | pu             | pu               | 55        | pu         | nd         | pu       | pu                 | pu        | pu               |            |

Table 20 PCB congeners (IUPAC) (ng/kg wet weight) in English sole ovaries. Investigator: Dr. Seiichi Uno

| FishID     | 990033-37 | 990038,41,42,44,45 | 990056-60 | 990073-77 | 990068-70 | 990079, 82, 84 | 990061-63, 65-66 | 56-160066 | 990101-105 | 990106-110 | 990111-115 | 990006, 14, 15, 02 | 990026-30 | 990138, 141, 143 | 990128-130, 132, |
|------------|-----------|--------------------|-----------|-----------|-----------|----------------|------------------|-----------|------------|------------|------------|--------------------|-----------|------------------|------------------|
| Site       | TIIB      | T11B               | TIIB      | T38       | T38       | T38            | T38              | T48       | T48        | T48        | T48        | T49                | T49       | T50              |                  |
| Congener # | ,         |                    |           |           |           |                |                  |           |            |            |            |                    |           |                  |                  |
| 127        | pu        | 2931               | pu        | nd        | pu        | pu             | pu               | 2094      | 653        | pu         | pu         | pu                 | nd        | pu               |                  |
| 128        | 234       | 1150               | 231       | 350       | 179       | 194            | 103              | 1221      | pu         | pu         | pu         | 211                | pu        | 24               |                  |
| 130        | pu        | 2652               | pu        | 404       | 92        | 281            | pu               | 360       | pu         | pu         | 1634       | pu                 | 281       | 46               |                  |
| 132        | pu        | 758                | 117       | 403       | 167       | 199            | pu               | 1193      | 114        | 813        | 376        | pu                 | 63        | pu               |                  |
| 134        | pu        | nd                 | pu        | pu        | pu        | 13             | pu               | pu        | 587        | 825        | 377        | pu                 | pu        | pu               |                  |
| 135        | 162       | pu                 | 209       | 301       | 123       | 179            | 43               | 1372      | pu         | 844        | 233        | 116                | pu        | pu               |                  |
| 136        | 42        | pu                 | 16        | 128       | pu        | 59             | 17               | 399       | pu         | pu         | pu         | pu                 | pu        | 9                |                  |
| 137        | 166       | 3837               | 546       | 289       | 104       | 99             | 35               | 892       | 654        | 856        | pu         | 756                | pu        | pu               |                  |
| 138        | 3804      | 1837               | 1714      | 5554      | 2468      | 3959           | 849              | 27444     | 150        | 863        | pu         | 1849               | 1117      | 193              | 13               |
| 141        | 359       | 2084               | 345       | 969       | 327       | 473            | 85               | 3285      | 151        | 881        | 3414       | . 192              | 260       | pu               | 1                |
| 146        | 859       | 4019               | 367       | 666       | 484       | 546            | 151              | 3070      | 93         | 913        | 858        | 373                | 241       | 59               | ŝ                |
| 149        | 448       | 819                | 278       | 925       | 432       | 634            | 148              | 4735      | pu         | 931        | 724        | 313                | 312       | 40               | 5                |
| 151        | 461       | pu                 | 339       | 1001      | 673       | 716            | 167              | 4397      | 1366       | 944        | 643        | 267                | 439       | 44               | 5                |
| 153        | 3918      | 2587               | 2069      | 6634      | 2878      | 5070           | 789              | 30147     | 343        | 956        | 539        | 1818               | 1253      | 255              | 18               |
| 156        | 423       | 1217               | 122       | 473       | 223       | 261            | 48               | 1876      | 289        | 975        | 4000       | 237                | pu        | 26               |                  |
| 158        | 292       | 7237               | 148       | 354       | 132       | 257            | 85               | 1886      | 257        | 988        | 511        | 125                | pu        | 14               | 1                |
| 170/190    | 1620      | 5993               | 555       | 1185      | 589       | pu             | 247              | 7176      | 436        | 563        | 1136       | 806                | 542       | 50               | 4                |
| 171        | 282       | pu                 | pu        | 221       | 114       | 112            | 56               | 1163      | 215        | 1069       | 324        | 228                | pu        | pu               | 11               |
| 172        | pu        | 3135               | 302       | 345       | 371       | 138            | pu               | 865       | 1600       | pu         | pu         | pu                 | pu        | pu               | I                |
| 174        | 764       | 315                | 069       | 651       | 440       | 500            | 154              | 3378      | 204        | 1088       | 293        | 818                | pu        | 92               | 32               |
| 175        | pu        | pu                 | pu        | 40        | 87        | pu             | pu               | 170       | 130        | pu         | pu         | pu                 | pu        | pu               | 7                |
| 176        | pu        | pu                 | 69        | 89        | pu        | pu             | pu               | 432       | 117        | pu         | 458        | pu                 | pu        | pu               |                  |
| 177        | 475       | 5384               | 293       | 658       | 318       | pu             | 105              | 2739      | 183        | 1106       | 1093       | 271                | pu        | 25               | 19               |
| 178        | 291       | 1893               | 199       | 406       | pu        | pu             | 40               | 1293      | 437        | pu         | 715        | 216                | pu        | 107              |                  |
| 179        | 208       | pu                 | 175       | 319       | 248       | pu             | 66               | 1473      | pu         | 1119       | 233        | 165                | pu        | pu               |                  |
| 180        | 3113      | 565                | 133       | 4590      | 1989      | pu             | 655              | 15821     | 286        | 1125       | 2166       | 1610               | 917       | 213              | 11               |
| 183        | 585       | 3080               | 227       | 773       | 441       | pu             | 136              | 3531      | 93         | 1144       | 450        | 296                | pu        | 299              | 4                |
| 185        | pu        | 8815               | 1117      | 78        | 122       | pu             | pu               | 1076      | 867        | pu         | pu         | pu                 | pu        | pu               | 1                |
| 187        | 821       | 223                | 276       | 985       | 459       | pu             | 145              | 4589      | 180        | 1169       | 809        | 506                | 327       | 57               | 4                |
| 191        | 22        | 43                 | 0         | pu        | pu        | pu             | pu               | pu        | 324        | 1213       | pu         | pu                 | pu        | 10               |                  |
| 194        | *         | 6254               | pu        | pu        | pu        | *              | *                | 1759      | 332        | *          | pu         | *                  | *         | *                | 5                |
| 195        | *         | pu                 | 236       | 337       | 317       | *              | *                | 837       | pu         | *          | pu         | *                  | *         | *                | [                |
| 197        | *         | pu                 | pu        | 162       | pu        | *              | *                | 154       | pu         | *          | pu         | *                  | *         | *                |                  |
| 199        | *         | 3066               | 349       | 730       | 723       | *              | *                | 3841      | 455        | *          | 830        | *                  | *         | *                | ŝ                |
| 200        | *         | 333                | pu        | pu        | pu        | *              | *                | 296       | pu         | *          | pu         | *                  | *         | *                |                  |
| 201        | *         | 1830               | 148       | 49        | pu        | *              | *                | 521       | pu         | *          | pu         | *                  | *         | *                |                  |

Table 20 PCB congeners (IUPAC) (ng/kg wet weight) in English sole ovaries. Investigator: Dr. Seiichi Uno

103

•

| Table 20                                                          |
|-------------------------------------------------------------------|
| PCB congeners (IUPAC) (ng/kg wet weight) in English sole ovaries. |
| Investigator: Dr. Seiichi Uno                                     |

| FishID     | 990033-37 | 990038,41,42,44,45 | 990056-60 | 990073-77 | 990068-70 | 990079, 82, 84 | 990061-63, 65-66 | 36-160066 | 990101-105 | 011-901066 | 990111-115 9 | 90006, 14, 15, 02 | 990026-30 | 990138, 141, 143 | 990128-130, 132, 137 |
|------------|-----------|--------------------|-----------|-----------|-----------|----------------|------------------|-----------|------------|------------|--------------|-------------------|-----------|------------------|----------------------|
| Site       | TIIB      | TIIB               | TIIB      | T38       | T38       | T38            | T38              | T48       | T48        | T48        | T48          | T49               | T49       | T50              | T50                  |
| Congener # |           |                    |           |           |           |                |                  |           |            |            |              |                   |           |                  |                      |
| 203/196    | *         | pu                 | pu        | 415       | 196       | *              | *                | 1794      | 146        | *          | 1001         | *                 | *         | *                | 137                  |
| 205        | *         | pu                 | pu        | pu        | pu        | *              | *                | 215       | pu         | *          | 366          | *                 | *         | *                | pu                   |
| Total PC   | 26424     | 96153              | 20723     | 44346     | 20677     | 24201          | 6681             | 212960    | 14740      | 31075      | 36851        | 17381             | 10897     | 2059             | 13013                |
|            |           |                    |           |           |           |                |                  |           |            |            |              |                   |           |                  |                      |

nd = not detected IUPAC = International Union of Pure and Applied Chemistry. \*= not analyzed.

Each value represents one analysis. Each analysis contains tissue either from an individual fish, or equal amounts of tissue from several fish. The Fish ID label indicates which fish are included in each analysis. For instance, 990033-37 indicates that five fish with the ID numbers 990033, 990034, 990035, 990037, were combined into one composite sample. Fish ID number 990038, 41-42,44-45 indicates that three fish with ID numbers 99038, 99041, 99042, 99044, and 99045 are included in this composite sample.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography Mass Spectometry.

.

#### PCB congeners (IUPAC) in English sole testis (ng/kg wet weight).

Investigator: Dr. Seiichi Uno

| Site       | T11B | T38 | T48 | T49 | T50 |
|------------|------|-----|-----|-----|-----|
| Congener # |      |     |     |     |     |
| 17         | nd   | nd  | nd  | nd  | nd  |
| 18         | nd   | nd  | nd  | nd  | nd  |
| 22         | nd   | nd  | nd  | nd  | nd  |
| 28         | nd   | 208 | nd  | nd  | nd  |
| 31         | nd   | nd  | nd  | nd  | nd  |
| 32         | nd   | nd  | nd  | nd  | nd  |
| 33         | nd   | 104 | nd  | nd  | nd  |
| 41         | nd   | nd  | nd  | nd  | nd  |
| 42         | nd   | nd  | nd  | nd  | nd  |
| 47         | nd   | 78  | nd  | nd  | nd  |
| 48         | nd   | 136 | nd  | nd  | nd  |
| 49         | 103  | 99  | nd  | nd  | nd  |
| 52         | nd   | 91  | nd  | nd  | nd  |
| 56         | nd   | 60  | nd  | nd  | nd  |
| 59         | nd   | nd  | nd  | nd  | nd  |
| 60         | nd   | 51  | nd  | nd  | nd  |
| 63         | 67   | nd  | nd  | nd  | nd  |
| 64         | nd   | nd  | nd  | nd  | nd  |
| 66         | nd   | nd  | nd  | nd  | nd  |
| 69         | nd   | nd  | nd  | nd  | nd  |
| 70         | 140  | 190 | nd  | nd  | nd  |
| 74         | nd   | 257 | nd  | nd  | nd  |
| 84         | nd   | 109 | nd  | nd  | nd  |
| 85         | nd   | 205 | nd  | nd  | nd  |
| 87         | nd   | 221 | nd  | nd  | nd  |
| 92         | nd   | 142 | nd  | nd  | nd  |
| 95         | 84   | 82  | nd  | nd  | nd  |
| 97         | nd   | 74  | nd  | nd  | nd  |
| 98         | nd   | nd  | nd  | nd  | nd  |
| 99         | 1491 | 526 | 175 | 175 | nd  |
| 101/90     | 344  | nd  | 228 | 228 | nd  |
| 105        | 112  | 140 | 147 | 147 | nd  |
| 110        | 1391 | 691 | nd  | nd  | nd  |
| 118        | 362  | 948 | 260 | 260 | nd  |
| 123        | nd   | nd  | nd  | nd  | nd  |
| 124        | nd   | nd  | nd  | nd  | nd  |
| 127        | nd   | nd  | nd  | nd  | nd  |

## PCB congeners (IUPAC) in English sole testis (ng/kg wet weight). Investigator: Dr. Seiichi Uno

| Site       | T11B | T38  | T48 | T49 | T50  |
|------------|------|------|-----|-----|------|
| Congener # |      |      |     |     |      |
| 128        | nd   | 111  | nd  | nd  | nd   |
| 130        | nd   | nd   | nd  | nd  | nd   |
| 132        | nd   | nd   | nd  | nd  | nd   |
| 134        | nd   | 130  | nd  | nd  | nd   |
| 135        | nd   | 147  | nd  | nd  | nd   |
| 136        | nd   | nd   | nd  | nd  | nd   |
| 137        | nd   | nd   | nd  | nd  | nd   |
| 138        | 7832 | 2623 | 587 | 587 | nd   |
| 141        | nd   | 0    | nd  | nd  | nd   |
| 146        | nd   | 331  | nd  | nd  | nd   |
| 149        | 381  | 468  | 111 | 111 | nd   |
| 151        | 213  | 334  | nd  | nd  | 707  |
| 153        | 8922 | 2515 | 715 | 715 | nd   |
| 156        | nd   | 364  | nd  | nd  | 3513 |
| 158        | 125  | 308  | 80  | 80  | 5708 |
| 170/190    | 297  | nd   | 297 | 358 | nd   |
| 171        | nd   | nd   | nd  | nd  | nd   |
| 172        | 4918 | 601  | nd  | nd  | nd   |
| 174        | nd   | 138  | nd  | nd  | nd   |
| 175        | nd   | 64   | nd  | nd  | nd   |
| 176        | nd   | 143  | nd  | nd  | nd   |
| 177        | nd   | 238  | nd  | nd  | nd   |
| 178        | nd   | 482  | nd  | nd  | nd   |
| 179        | nd   | nd   | nd  | nd  | nd   |
| 180        | 2370 | 1783 | 766 | 766 | nd   |
| 183        | 259  | 413  | nd  | nd  | nd   |
| 185        | 4750 | nd   | 211 | nd  | nd   |
| 187        | nd   | 464  | nd  | 211 | nd   |
| 191        | nd   | 216  | nd  | nd  | nd   |
| 194        | *    | *    | *   | *   | *    |
| 195        | *    | *    | *   | *   | *    |
| 197        | *    | *    | *   | *   | *    |
| 199        | *    | *    | *   | *   | *    |
| 200        | *    | *    | *   | *   | *    |
| 201        | *    | *    | *   | *   | *    |
| 203/196    | *    | *    | *   | *   | *    |
| 205        | *    | *    | *   | *   | *    |

#### Table 21 PCB congeners (IUPAC) in English sole testis (ng/kg wet weight). Investigator: Dr. Seiichi Uno

| Site       | T11B  | T38   | T48  | T49  | T50  |
|------------|-------|-------|------|------|------|
| Congener # |       |       |      |      |      |
| Total PCBs | 34162 | 16068 | 3577 | 3639 | 9928 |

nd = not detected \*= not analyzed

IUPAC = International Union of Pure and Applied Chemistry

Each value represents one analysis. Each analysis is a composite of equal amounts of tissue from all males sampled at each site.

The method used includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

**Organochlorine pesticides in liver of English sole (ng/kg wet weight).** Investigator: Dr. Seiichi Uno

| ,p'-DDT             | 3528      | 2539      | 7770      | 4128      | pu        | 4838      | 939       | 3977      | 8214      | 4056      | 3981      | 2143      | 1581       | 1448       | 827        | 650        | 4502       | 949        |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|--|
| ,p'-DDT             | 1202      | 563       | 5153      | 2519      | pu        | 2374      | pu        | 4206      | 300       | 1607      | 2309      | 1038      | 1570       | pu         | 81         | 563        | pu         | 262        |  |
| , ddd-'q            | 2490      | 459       | 825       | 1999      | 25703     | 2673      | 742       | 3299      | 281       | 4362      | 2859      | 925       | 951        | 565        | 1872       | 475        | 19802      | pu         |  |
| p'-DDD p            | 380       | 222       | 670       | 899       | pu        | 2329      | 711       | 1516      | 576       | 1531      | 2261      | 376       | pu         | 136        | pu         | 500        | 1089       | 374        |  |
| ,p'-DDE o           | 12551     | 308       | 2683      | 3843      | 82780     | 4898      | 3150      | 3176      | 39        | 1691      | 4772      | 1112      | 765        | 866        | 5241       | 250        | pu         | 4716       |  |
| ,p'-DDE p           | 242       | pu        | 748       | 410       | pu        | 523       | pu        | 744       | pu        | pu        | pu        | pu        | 200        | pu         | pu         | 459        | pu         | 1682       |  |
| leptachlorEIB o     | pu         | pu         | pu         | pu         | pu         | pu         |  |
| Heptachlor <b>H</b> | 122       | 30        | pu        | 175       | pu        | 1618      | pu        | 1475      | pu        | pu        | 410       | pu        | pu         | 354        | 290        | pu         | pu         | 1754       |  |
| унсн                | 546       | 561       | 1069      | 727       | pu        | 6372      | 1010      | 5235      | 355       | 1838      | 1789      | 1682      | 2476       | 1994       | 1798       | 1117       | 4504       | pu         |  |
| рнсн                | 474       | 775       | 872       | 669       | pu        | 5784      | 736       | 4565      | 480       | 913       | 2417      | 1392      | 2296       | 1584       | 1190       | 1288       | 3340       | pu         |  |
| αHCH                | 349       | 490       | 403       | pu        | pu        | pu        | 483       | 2435      | 143       | 1097      | 1753      | 1180      | pu         | 1621       | 1084       | 632        | pu         | 1370       |  |
| HCB                 | pu         | 349        | pu         | 252        | pu         | pu         |  |
| Site                | T49       | T49       | T49       | T49       | T11B      | T11B      | T11B      | T11B      | T38       | T38       | T38       | T38       | T48        | T48        | T48        | T50        | T50        | T50        |  |
| FishID              | 990011-15 | 990016-20 | 990021-25 | 990026-30 | 990041-45 | 990046-50 | 990051-55 | 990056-60 | 990068-70 | 990073-75 | 990081-85 | 06-980066 | 990106-109 | 990111-115 | 990116-120 | 990136-140 | 990141-145 | 990146-150 |  |

nd = not detected.

HCB = Hexachlorobenzene; or-HCH = alpha- hexachlorocyclohexane; β-HCH = beta- hexachlorocyclohexane; γ-HCH = gamma- hexachlorocyclohexane; HeptachlorEIB = heptachlor epoxide Isomer B. Each value is a single analysis. Each analysis contains equal weight of liver from five fish. The Fish ID number indicates which fish were included in the composite sample. For instance, Fish ID 990011-15 indicates that tissue from fish number 990011, 990012, 990013, 990014 and 990015 are included in this sample.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

#### Table 23 Organochlorine pesticides in muscle of English sole (ng/kg wet weight). Investigator: Dr. Seiichi Uno

990010 990001-3 990040 990034-36 990037-39 990072 990066-68 990062, 63, 65 990097-99 990094-96 Fish ID T49 T49 T11B Site T11B T11B T38 T38 T38 T48 T48 HCB 154 286 nd 76 444 0 88 αΗCH 653 59 115 416 151 128 nd βΗCΗ 978 1005 nd 676 783 385 696 γΗCΗ 1177 1642.43 606 392 nd nd 791 Heptachlor 152 53 nd nd nd nd nd HeptachlorEIB 34 nd 13 nd nd nd nd o,p'-DDE 37 nd 37 nd 10 nd nd 37 44 107 288 p,p'-DDE 161 481 11 27 381 241 224 116 nd o,p'-DDD 36 nd 56 34 17 384 156 46 64 38 p,p'-DDD 70 36 102 31 22 61 40 134 37 nd o,p'-DDT 162 nd 118 40 20 nd 64 nd nd nd p,p'-DDT 151 28 206 86 21 26077 7860 38 117 nd

#### nd = not detected.

 $HCB = Hexachlorobenzene; \ \alpha - HCH = alpha-hexachlorocyclohexane; \ \beta - HCH = beta-hexachlorocyclohexane; \ \beta - HCH = beta-h$ 

y-HCH = gamma hexachlorocyclohexane; heptachlor EIB =heptachlor Epoxide Isomer B

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

Each value represents the analysis of one sample. Each sample is either an individual fish, or a composite made by combining equal amounts of muscle tissue from two or more fish. For instance, the first sample at site T-49 is composed of an individual fish with ID number 990010. The second sample at site T49 is a composite sample containing muscle tissue from fish with ID numbers 990001, 990002 and 990003.

| Table 24 | , |
|----------|---|
| -        |   |

# Organochlorine pesticides in ovary of English sole (ng/kg wet weight). Investigator: Dr Seiichi Uno

| Fish ID            | 990002,6,14,15 | 990026-30 | 990033-37 | 990038,41-42,44-45 | 990056-60 | 990061-63,65-66 | 990068-70 | 990073-77 | 990079,82,84 | 990087-89 | \$6-160066 | 990096-100 | 990106-110 | 990111-115 | 990126-128 | 990128-130,132-137 |
|--------------------|----------------|-----------|-----------|--------------------|-----------|-----------------|-----------|-----------|--------------|-----------|------------|------------|------------|------------|------------|--------------------|
| Site               | T49            | T49       | TIIB      | TIIB               | TIIB      | T38             | T38       | T38       | T38          | T38       | T48        | T48        | T48        | T48        | T50        | T50                |
| HCB                |                | 2612      | pu        | pu                 | 2415      |                 | pu        | 153       | 140          | 81        | 179        |            | 10231      | 277        |            | 4859               |
| αHCH               |                | pu        | pu        | pu                 | 177       |                 | 1497      | 300       | 942          | 661       | 519        |            | 8264       | 1617       |            | 10103              |
| рнсн               |                | 4855      | pu        | pu                 | 1930      |                 | 2454      | 1025      | 1363         | 1152      | 482        |            | 0          | 1598       |            | pu                 |
| үнсн               |                | 1404      | 707       | 463                | 3185      |                 | 3570      | 1043      | 1659         | 1188      | 611        |            | 606        | 2294       |            | pu                 |
| Heptachlor         |                | pu        | pu        | pu                 | pu        |                 | pu        | pu        | pu           | 43        | pu         |            | pu         | pu         |            | pu                 |
| HeptachlorEIB      |                | pu        | pu        | pu                 | 59        |                 | pu        | pu        | pu           | pu        | pu         |            | pu         | pu         |            | pu                 |
| o,p'-DDE           | pu             | 161       | 2287      | pu                 | 25377     | 39              | 83        | pu        | pu           | 20        | 38         | pu         | 48         | 159        | pu         | pu                 |
| p,p'-DDE           | 81             | 419       | 15627     | 2702               | 11425     | 635             | 148       | 272       | 375          | 108       | 264        | pu         | 222        | 81         | pu         | 303                |
| 0,p'-DDD           | pu             | 114       | 4192      | 3396               | 8575      | 106             | 70        | 67        | 24           | pu        | 24         | 1877       | 28         | pu         | 19         | 103                |
| p,p'-DDD           | pu             | 191       | 5717      | 4105               | 10424     | 221             | 93        | 210       | 72           | 35        | 84         | 3969       | 115        | pu         | 18         | pu                 |
| 0,p'-DDT           | pu             | 152       | 2287      | 28313              | 34826     | 546             | 233       | 57        | 261          | pu        | 55         | 818        | 135        | 90         | pu         | pu                 |
| p,p'-DDT           | 18             | 267       | 6479      | 22186              | 53006     | 88              | 219       | 175       | 94           | 24        | 29         | 3343       | 377        | 144        | pu         | pu                 |
| nd = not detected. |                |           |           |                    |           |                 |           |           |              |           |            |            |            |            |            |                    |

 $HCB = Hexachlorobenzene; \alpha - HCH = alpha-hexachlorocyclohexane; \beta - HCH = beta-hexachlorocyclohexane;$ 

 $\gamma$ -HCH = gamma -hexachlorocyclohexane; heptachlor EIB =heptachlor Epoxide Isomer B

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry. Each value represents the analysis of one sample. Each sample is a composite made by combining equal amounts of ovary tissue from two or more fish. For instance, the first sample at site T-49 is composed of ovary tissue from fish with ID numbers 990002, 990006, 900011 and 990015.

#### Table 25 DDT and its derivatives in testis of English sole (ng/kg wet weight). Investigator: Dr. Seiichi Uno

Fish ID Site o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT All Males T48 29 158 84 70 nd nd 850 All Males T11B nd 2681 447 nd 291 All Males T38 750 nd 50 153 nd 161 All Males T48 0 1858 0 426 0 350 All Males T50 0 41076 0 0 0 0

nd = not detected.

Each value represents one analysis. Each analysis is a composite of equal amounts of tissue from all males sampled at each site.

The method used includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

#### Metals in muscle of English sole (dry weight).

Investigators: Dr. Alexander Tkalin and Tatiana Lishavskaya

| Fish ID | Site | Al  | Cu   | Co    | Cr    | Ni     | Cd   | Pb   | Zn   | Mn   | Fe   | Laboratory   |
|---------|------|-----|------|-------|-------|--------|------|------|------|------|------|--------------|
|         |      | %   | ppm  | ppm   | ppm   | ppm    | ppm  | ppm  | ppm  | ppm  | %    |              |
| 990002  | T49  | 5.8 | 1.76 | < 0.1 | < 0.2 | 0.08   | 0.01 | 0.19 | 16.1 | 0.69 | 12.2 | TINRO-Centre |
| 990005  | T49  | 6.0 | 1.40 | < 0.1 | < 0.2 | < 0.05 | 0.01 | 0.24 | 15.8 | 0.66 | 58.5 | TINRO-Centre |
| 990006  | T49  | 6.7 | 1.09 | <0.1  | < 0.2 | < 0.05 | 0.02 | 0.20 | 16.8 | 0.22 | 14.1 | TINRO-Centre |
| 990008  | T49  | 6.2 | 1.35 | < 0.1 | < 0.2 | 0.54   | 0.01 | 0.23 | 15.8 | 0.54 | 20.8 | TINRO-Centre |
| 990009  | T49  | 6.3 | 1.50 | < 0.1 | < 0.2 | 0.90   | 0.03 | 0.30 | 15.0 | 0.45 | 15.0 | TINRO-Centre |
| 990033  | T11B | 6.5 | 0.94 | < 0.1 | < 0.2 | < 0.05 | 0.05 | 0.47 | 17.3 | 0.28 | 11.3 | TINRO-Centre |
| 990034  | T11B | 6.4 | 1.12 | < 0.1 | < 0.2 | 0.38   | 0.01 | 0.80 | 17.6 | 0.40 | 13.6 | TINRO-Centre |
| 990035  | T11B | 5.9 | 1.23 | < 0.1 | < 0.2 | < 0.05 | 0.03 | 0.68 | 19.8 | 0.82 | 23.2 | TINRO-Centre |
| 990036  | T11B | 7.2 | 1.66 | < 0.1 | < 0.2 | < 0.05 | 0.01 | 0.61 | 14.0 | 0.44 | 10.5 | TINRO-Centre |
| 990041  | T11B | 5.8 | 1.00 | < 0.1 | < 0.2 | < 0.05 | 0.02 | 0.56 | 16.2 | 0.56 | 38.1 | TINRO-Centre |
| 990068  | T38  | 6.3 | 1.27 | < 0.1 | < 0.2 | < 0.05 | 0.05 | 0.26 | 22.7 | 0.32 | 27.5 | TINRO-Centre |
| 990069  | T38  | 6.5 | 1.22 | <0.1  | < 0.2 | < 0.05 | 0.03 | 0.23 | 25.8 | 0.28 | 18.8 | TINRO-Centre |
| 990070  | T38  | 6.8 | 0.79 | < 0.1 | < 0.2 | < 0.05 | 0.01 | 0.36 | 20.4 | 0.29 | 17.2 | TINRO-Centre |
| 990071  | T38  | 7.2 | 1.50 | < 0.1 | < 0.2 | 0.42   | 0.01 | 0.47 | 24.7 | 0.19 | 13.3 | TINRO-Centre |
| 990072  | T38  | 7.2 | 1.27 | < 0.1 | < 0.2 | < 0.05 | 0.01 | 0.58 | 24.8 | 0.23 | 19.6 | TINRO-Centre |
| 990091  | T48  | 7.3 | 1.25 | < 0.1 | < 0.2 | 0.38   | 0.03 | 0.21 | 18.8 | 0.28 | 18.1 | TINRO-Centre |
| 990092  | T48  | 6.2 | 3.02 | < 0.1 | < 0.2 | < 0.05 | 0.04 | 0.21 | 16.7 | 0.21 | 15.6 | TINRO-Centre |
| 990093  | T48  | 7.5 | 1.23 | < 0.1 | < 0.2 | < 0.05 | 0.10 | 0.88 | 17.2 | 0.24 | 14.8 | TINRO-Centre |
| 990094  | T48  | 7.4 | 1.14 | < 0.1 | < 0.2 | < 0.05 | 0.02 | 0.75 | 17.0 | 0.28 | 13.6 | TINRO-Centre |
| 990096  | T48  | 7.2 | 0.95 | < 0.1 | < 0.2 | < 0.05 | 0.02 | 0.53 | 15.8 | 0.32 | 12.7 | TINRO-Centre |
| 990121  | T50  | 6.8 | 1.41 | < 0.1 | < 0.2 | < 0.05 | 0.02 | 0.35 | 22.6 | 0.35 | 17.0 | TINRO-Centre |
| 990122  | T50  | 6.5 | 1.84 | <0.1  | < 0.2 | < 0.05 | 0.07 | 0.26 | 21.6 | 0.26 | 26.7 | TINRO-Centre |
| 990123  | Т50  | 5.9 | 1.44 | < 0.1 | < 0.2 | < 0.05 | 0.01 | 0.51 | 16.4 | 0.30 | 17.0 | TINRO-Centre |
| 990124  | T50  | 6.4 | 1.13 | <0.1  | < 0.2 | < 0.05 | 0.02 | 0.39 | 19.8 | 0.14 | 17.0 | TINRO-Centre |
| 990125  | T50  | 6.3 | 1.42 | < 0.1 | < 0.2 | < 0.05 | 0.01 | 0.51 | 21.3 | 0.20 | 12.7 | TINRO-Centre |

TINRO-Centre = Pacific Research Centre of Fisheries and Oceanography, Vladivostok, Russia

Five fish from each site were indivdiually analyzed for metals.

| Table 27                                                         |
|------------------------------------------------------------------|
| Polycyclic aromatic hydrocarbons in bivalves (ng/kg wet weight). |
| Investigator: Dr. Seiichi Uno                                    |

| Site                     | 12                  | 12            | I4                  | I4          | 14               | 14                  | 16                  | 16            | 16             |
|--------------------------|---------------------|---------------|---------------------|-------------|------------------|---------------------|---------------------|---------------|----------------|
| Species                  | Pacific Little Neck | Butter Clam ] | Pacific Little Neck | Butter Clam | Nuttall's Cockle | Pacific Little Neck | Pacific Little Nech | k Butter Clam | Pacific Oyster |
| Analyte                  |                     |               |                     |             |                  |                     |                     |               |                |
| Naphthalene              | 2.32                | 2.94          | 2.26                | 1.39        | 2.84             | 2.51                | 2.07                | 2.33          | 4.40           |
| 1-Methynaphthalene       | 4.27                | 4.53          | 4.47                | 1.93        | 8.46             | 6.39                | 2.86                | 4.27          | 9.64           |
| 2-Methynaphthalene       | 5.53                | 4.51          | 5.84                | 2.73        | 10.95            | 9.60                | 3.92                | 5.70          | 12.73          |
| Biphenyl                 | 4.24                | 4.87          | 4.36                | 2.40        | 5.63             | 4.29                | 3.02                | 4.66          | 8.65           |
| Acenaphthylene           | 0.36                | 0.82          | 0.30                | 0.19        | 0.32             | 0.28                | 0.27                | 0.48          | 2.02           |
| Dimethylnaphthalene      | 0.22                | 0.56          | 0.14                | 0.11        | 0.77             | 0.16                | 0.45                | 0.13          | 2.44           |
| Acenaphthene             | 2.50                | 3.04          | 1.95                | 1.81        | 2.54             | 2.45                | 1.52                | 2.32          | 6.01           |
| Fluorene                 | 1.77                | 2.07          | 1.26                | 0.79        | 1.62             | 1.79                | 0.97                | 1.73          | 3.20           |
| Dibenzothiophene         | 1.53                | 2.21          | 1.16                | 1.08        | 1.63             | 1.60                | 0.96                | 1.29          | 3.98           |
| Phenanthrene             | 9.86                | 8.92          | 7.74                | 5.63        | 12.80            | 14.74               | 5.58                | 10.47         | 31.71          |
| Anthracene               | 1.41                | 1.49          | 0.75                | 0.63        | 1.14             | 2.35                | 0.71                | 0.83          | 7.95           |
| Dimethyldibenzothiophene | 0.31                | 1.14          | 0.18                | 0.14        | 0.66             | 0.43                | 0.73                | 1.05          | 0.00           |
| Fluoranthene             | 15.53               | 9.23          | 14.50               | 6.92        | 25.31            | 22.89               | 12.23               | 13.13         | 107.00         |
| Pyrene                   | 13.18               | 8.08          | 11.00               | 7.16        | 18.78            | 16.52               | 7.62                | 11.10         | 80.09          |
| 1,2-Benzoanthracene      | 2.18                | 1.34          | 1.22                | 1.78        | 8.29             | 7.77                | 0.82                | 0.93          | 14.15          |
| Chrysene                 | 3.80                | 17.06         | 2.94                | 2.30        | 12.23            | 13.10               | 1.78                | 2.66          | 38.61          |
| Benzo(b)fluorancene      | 1.39                | 1.95          | 0.41                | 1.17        | 4.46             | 2.59                | 0.97                | 1.40          | 19.44          |
| Benzo(k)fluorancene      | 0.85                | 1.26          | 0.41                | 1.08        | 3.86             | 1.48                | 0.54                | 0.83          | 12.14          |
| Benzo(a)pyrene           | 0.15                | 0.90          | 0.10                | 0.93        | 2.58             | 0.28                | 0.43                | 0.24          | 1.23           |
| Indeno(1,2,3-cd)pyrene   | 0.03                | 0.08          | 0.06                | 0.00        | 0.31             | 0.09                | 0.31                | 0.14          | 0.14           |
| Dibenz(a,h)anthracene    | 0.04                | 0.06          | 0.08                | 0.71        | 0.37             | 0.09                | 0.13                | 0.15          | 0.27           |
| Benzo(g,h,I)perylene     | 0.05                | 0.02          | 0.10                | 0.26        | 1.21             | 0.12                | 0.91                | 0.19          | 0.89           |
|                          |                     |               |                     |             |                  |                     |                     |               |                |

The analysis method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

One composite sample was analyzed for each species, at each site. Tissue from 3 to 15 animals of the same species were combined for each composite sample.

#### Polycyclic aromatic hydrocarbons in Mytilus trossulus (ng/kg wet weight).

Investigator: Dr. Seiichi Uno

| Site                     | I1    | I2    | I3A   | I3B   | I3C   | I4    | I5B  | I6    | I7    |
|--------------------------|-------|-------|-------|-------|-------|-------|------|-------|-------|
| Analyte                  |       |       |       |       |       |       |      |       |       |
| Naphthalene              | 2.84  | 3.30  | 4.12  | 2.84  | 4.60  | 3.89  | 3.18 | 4.30  | 2.92  |
| 1-Methynaphthalene       | 6.27  | 6.82  | 6.66  | 8.10  | 8.95  | 13.38 | 9.03 | 8.01  | 7.33  |
| 2-Methynaphthalene       | 6.45  | 6.74  | 6.49  | 8.01  | 8.86  | 10.83 | 9.60 | 8.12  | 7.49  |
| Biphenyl                 | 3.25  | 3.62  | 3.37  | 4.22  | 4.51  | 4.72  | 4.64 | 3.93  | 3.69  |
| Acenaphthylene           | 0.40  | 0.38  | 0.60  | 0.52  | 0.43  | 1.51  | 0.23 | 0.85  | 0.44  |
| Dimethylnaphthalene      | 0.13  | 0.17  | 0.00  | 0.08  | 1.69  | 0.53  | 0.12 | 0.26  | 0.34  |
| Acenaphthene             | 1.78  | 2.22  | 2.13  | 2.43  | 3.63  | 3.55  | 1.99 | 3.37  | 2.63  |
| Fluorene                 | 1.34  | 1.26  | 1.29  | 1.42  | 1.58  | 1.58  | 1.64 | 1.42  | 1.39  |
| Dibenzothiophene         | 1.21  | 1.48  | 1.76  | 1.68  | 1.89  | 2.74  | 0.53 | 3.38  | 1.31  |
| Phenanthrene             | 12.67 | 13.17 | 16.69 | 11.18 | 19.13 | 34.56 | 2.48 | 44.51 | 13.95 |
| Anthracene               | 1.27  | 1.22  | 2.03  | 1.03  | 1.94  | 3.20  | 0.21 | 2.79  | 1.16  |
| Dimethyldibenzothiophene | 1.09  | 0.14  | 0.63  | 0.56  | 0.51  | 1.98  | 0.24 | 2.28  | 0.49  |
| Fluoranthene             | 30.90 | 24.22 | 35.99 | 12.63 | 32.92 | 80.52 | 4.75 | 55.89 | 42.23 |
| Pyrene                   | 15.15 | 13.69 | 23.39 | 9.65  | 18.97 | 46.02 | 2.86 | 29.81 | 19.73 |
| 1,2-Benzoanthracene      | 3.97  | 3.34  | 6.75  | 1.49  | 3.07  | 8.18  | 0.58 | 3.67  | 2.79  |
| Chrysene                 | 9.11  | 7.35  | 16.59 | 3.69  | 9.05  | 19.17 | 2.34 | 10.65 | 8.68  |
| Benzo(b)fluorancene      | 1.40  | 1.58  | 6.76  | 1.27  | 3.34  | 6.72  | 0.37 | 2.41  | 1.93  |
| Benzo(k)fluorancene      | 2.28  | 2.15  | 2.19  | 2.42  | 2.69  | 2.70  | 2.80 | 2.43  | 2.38  |
| Benzo(a)pyrene           | 0.21  | 0.19  | 0.20  | 0.22  | 0.24  | 0.24  | 0.25 | 0.22  | 0.22  |
| Indeno(1,2,3-cd)pyrene   | 0.00  | 0.00  | 0.02  | 0.00  | 0.00  | 0.37  | 0.02 | 0.05  | 0.08  |
| Dibenz(a,h)anthracene    | 0.00  | 0.33  | 0.86  | 1.68  | 2.72  | 3.55  | 4.56 | 4.52  | 4.99  |
| Benzo(g,h,I)perylene     | 0.00  | 0.57  | 0.95  | 0.97  | 1.08  | 1.74  | 0.11 | 1.71  | 1.55  |

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas

Chromatography /Mass Spectometry.

One composite sample was analyzed at each site. Tissue from 15 mussels were combined for each composite sample.

**PCB congeners (IUPAC) in bivalves (ng/kg wet weight) at site I4.** Investigator: Dr. Seiichi Uno

| Species    | Pacific Littleneck | Nuttall's Cockle | Butter Clam |
|------------|--------------------|------------------|-------------|
| Congener # |                    |                  |             |
| 16         | 0.00               | 0.00             | 0.00        |
| 17         | 61.69              | 111.03           | 200.13      |
| 18         | 132.92             | 385.82           | 695.44      |
| 28         | 121.60             | 0.00             | 0.00        |
| 31         | 185.01             | 0.00             | 0.00        |
| 33         | 94.23              | 0.00             | 0.00        |
| 40         | 0.00               | 0.00             | 144.25      |
| 41         | 29.51              | 35.27            | 125.60      |
| 42         | 0.00               | 63.50            | 154.85      |
| 44         | 159.22             | 226.08           | 134.46      |
| 45         | 0.00               | 391.59           | 0.00        |
| 47         | 65.74              | 58.58            | 97.33       |
| 48         | 114.87             | 102.36           | 79.50       |
| 49         | 94.92              | 66.92            | 134.77      |
| 52         | 138.31             | 120.57           | 192.15      |
| 53         | 0.00               | 0.00             | 637.97      |
| 59         | 0.00               | 13.64            | 97.33       |
| 60         | 41.36              | 61.84            | 410.93      |
| 64         | 49.31              | 58.94            | 25.40       |
| 66         | 212.90             | 365.23           | 69.31       |
| 70         | 223.85             | 220.69           | 24.30       |
| 74         | 301.27             | 191.54           | 469.89      |
| 82         | 63.35              | 85.29            | 197.12      |
| 84         | 80.62              | 129.18           | 39.22       |
| 85         | 85.61              | 119.05           | 195.84      |
| 87         | 117.63             | 144.77           | 159.32      |
| 92         | 82.58              | 104.67           | 288.19      |
| 95         | 103.84             | 124.45           | 159.25      |
| 97         | 41.74              | 61.75            | 73.88       |
| 99         | 189.97             | 324.76           | 96.26       |
| 101/90     | 799.29             | 572.23           | 831.53      |
| 105        | 45.80              | 112.49           | 30.06       |
| 110        | 455.86             | 726.92           | 116.50      |
| 118        | 340.39             | 566.66           | 476.15      |
| 128        | 49.75              | 87.48            | 49.50       |
| 130        | 26.99              | 0.00             | 0.00        |
| 132        | 45.84              | 33.41            | 0.00        |

**PCB congeners (IUPAC) in bivalves (ng/kg wet weight) at site I4.** Investigator: Dr. Seiichi Uno

| Species    | Pacific Littleneck | Nuttall's Cockle | Butter Clam   |
|------------|--------------------|------------------|---------------|
| Congener # |                    |                  |               |
| 16         | 0.00               | 0.00             | 0.00          |
| 135        | 58.41              | 64.08            | 357.39        |
| 136        | 20.07              | 15.84            | 249.83        |
| 138        | 734.27             | 740.72           | 13.24         |
| 146        | 97.05              | 78.89            | 22.09         |
| 149        | 155.86             | 198.87           | 17.89         |
| 151        | 116.80             | 107.61           | 21.50         |
| 153        | 611.49             | 552.63           | 1 <b>6.89</b> |
| 156        | 69.56              | 60.64            | 63.52         |
| 158        | 71.04              | 78.96            | 33.47         |
| 167        | 17.52              | 0.00             | 0.00          |
| 171        | 0.00               | 44.23            | 27.00         |
| 174        | 79.23              | 79.53            | 35.31         |
| 176        | 122.18             | 0.00             | 329.53        |
| 177        | 0.00               | 73.16            | 28.91         |
| 178        | 0.00               | 189.89           | 0.00          |
| 179        | 0.00               | 0.00             | 0.00          |
| 180        | 336.61             | 152.76           | 6.37          |
| 183        | 515.65             | 791.34           | 9.00          |
| 185        | 0.00               | 57.77            | 0.00          |
| 187        | 77.44              | 0.00             | 59.51         |
| 170/190    | 123.50             | 147.04           | 979.87        |

IUPAC = International Union of Pure and Applied Chemistry.

Each value represents one analysis. Each analysis contains tissue from 3 to 15 individuals of the same species.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

#### Table 30 PCB congeners (IUAPC) in *Mytilus trossulus* (ng/kg wet weight).

Investigator: Dr. Seiichi Uno

| Site       | I1     | I2    | I3A    | I3B    | I3C    | I4     | 15    | I6     | Ι7    |
|------------|--------|-------|--------|--------|--------|--------|-------|--------|-------|
| Congener # |        |       |        |        |        |        |       |        |       |
| 16         | 0.00   | 0.00  | 0.00   | 0.00   | 0.00   | 75.83  | 0.00  | 0.00   | 0.00  |
| 17         | 1.88   | 0.00  | 1.90   | 7.00   | 10.80  | 13.29  | 0.00  | 17.40  | 4.45  |
| 18         | 4.56   | 0.00  | 4.20   | 13.80  | 30.70  | 33.41  | 0.00  | 17.82  | 5.83  |
| 28         | 69.44  | 0.00  | 107.50 | 84.58  | 108.87 | 246.66 | 0.00  | 137.25 | 40.65 |
| 31         | 4.92   | 0.00  | 7.10   | 4.00   | 6.73   | 13.73  | 0.00  | 15.23  | 2.14  |
| 32         | 0.00   | 0.00  | 0.00   | 0.00   | 0.00   | 16.30  | 37.35 | 31.60  | 25.04 |
| 33         | 10.97  | 0.00  | 12.53  | 13.49  | 23.03  | 26.43  | 3.27  | 27.22  | 9.77  |
| 41         | 8.74   | 8.81  | 11.26  | 15.91  | 18.58  | 30.96  | 2.23  | 24.68  | 7.40  |
| 42         | 2.50   | 0.00  | 0.00   | 5.60   | 0.00   | 2.64   | 0.00  | 5.36   | 0.00  |
| 44         | 37.23  | 41.40 | 70.37  | 37.10  | 69.52  | 5.30   | 9.41  | 84.15  | 19.11 |
| 45         | 0.00   | 0.00  | 0.00   | 2.80   | 3.20   | 2.67   | 1.90  | 6.77   | 2.26  |
| 47         | 2.68   | 4.05  | 9.93   | 4.70   | 2.83   | 16.12  | 0.00  | 6.40   | 2.04  |
| 48         | 3.35   | 0.67  | 4.50   | 0.00   | 2.20   | 14.11  | 0.00  | 6.18   | 3.00  |
| 49         | 6.21   | 4.10  | 10.34  | 5.60   | 9.86   | 20.40  | 2.61  | 15.83  | 3.30  |
| 52         | 53.29  | 37.12 | 126.27 | 72.70  | 87.54  | 381.59 | 12.59 | 149.90 | 31.68 |
| 59         | 0.00   | 0.00  | 4.50   | 1.27   | 5.30   | 6.14   | 0.00  | 2.62   | 0.00  |
| 60         | 4.39   | 2.10  | 6.29   | 6.34   | 6.51   | 17.52  | 15.09 | 12.14  | 6.35  |
| 64         | 5.49   | 1.69  | 5.74   | 5.08   | 4.20   | 4.60   | 1.85  | 9.78   | 0.76  |
| 66         | 50.21  | 34.85 | 137.27 | 74.84  | 83.75  | 297.62 | 0.00  | 187.79 | 24.57 |
| 70         | 9.31   | 6.48  | 21.83  | 13.56  | 16.96  | 56.27  | 5.77  | 27.47  | 8.03  |
| 74         | 111.64 | 83.29 | 222.69 | 130.78 | 118.61 | 460.99 | 37.38 | 536.88 | 56.28 |
| 84         | 3.87   | 0.00  | 9.50   | 6.60   | 5.30   | 27.22  | 0.00  | 9.30   | 0.00  |
| 85         | 3.75   | 2.90  | 10.33  | 6.45   | 5.87   | 23.21  | 0.00  | 8.07   | 1.60  |
| 87         | 33.18  | 28.10 | 119.67 | 41.27  | 64.27  | 295.21 | 10.87 | 88.54  | 6.10  |
| 91         | 0.77   | 0.00  | 3.14   | 0.00   | 0.00   | 5.83   | 0.00  | 3.49   | 0.00  |
| 92         | 3.69   | 3.26  | 12.27  | 5.20   | 6.15   | 21.98  | 0.00  | 10.33  | 0.00  |
| 95         | 9.26   | 6.36  | 38.21  | 18.78  | 18.93  | 79.39  | 0.00  | 33.11  | 3.89  |
| 97         | 4.43   | 4.20  | 17.79  | 10.57  | 7.54   | 38.79  | 0.00  | 15.17  | 1.92  |
| 99         | 63.95  | 56.78 | 258.38 | 127.25 | 125.00 | 469.33 | 0.00  | 220.48 | 37.17 |
| 101/90     | 17.41  | 16.48 | 87.39  | 39.94  | 39.71  | 150.73 | 2.40  | 68.34  | 7.57  |
| 105        | 5.07   | 6.25  | 21.32  | 12.33  | 9.64   | 39.42  | 0.00  | 19.97  | 3.29  |
| 110        | 88.94  | 58.15 | 327.28 | 160.00 | 161.38 | 727.85 | 19.61 | 307.28 | 29.86 |
| 118        | 17.13  | 15.50 | 72.85  | 35.53  | 34.77  | 130.90 | 3.48  | 60.73  | 8.68  |
| 128        | 4.76   | 3.40  | 22.25  | 9.75   | 9.85   | 34.00  | 0.00  | 17.95  | 1.40  |

### Table 30**PCB congeners (IUAPC) in** Mytilus trossulus (ng/kg wet weight).

Investigator: Dr. Seiichi Uno

|         | Site  | I1     | I2     | I3A     | I3B    | I3C    | I4      | 15    | I6     | I7    |
|---------|-------|--------|--------|---------|--------|--------|---------|-------|--------|-------|
| Congen  | ner # |        |        |         |        |        |         |       |        |       |
| 135     |       | 3.22   | 2.47   | 23.12   | 9.48   | 8.00   | 21.79   | 0.00  | 13.86  | 0.00  |
| 136     |       | 2.02   | 0.88   | 11.39   | 4.66   | 3.78   | 12.76   | 0.00  | 2.86   | 0.70  |
| 138     |       | 204.68 | 212.04 | 1209.08 | 520.96 | 417.03 | 1250.18 | 15.59 | 837.17 | 92.48 |
| 141     |       | 0.00   | 0.00   | 8.34    | 0.00   | 0.00   | 7.10    | 0.00  | 3.49   | 0.00  |
| 146     |       | 26.03  | 31.41  | 187.35  | 80.36  | 60.23  | 182.97  | 0.00  | 124.61 | 12.30 |
| 149     |       | 14.10  | 13.03  | 95.47   | 38.73  | 31.64  | 90.95   | 1.83  | 54.86  | 4.77  |
| 151     |       | 5.76   | 6.06   | 41.03   | 16.69  | 12.30  | 33.00   | 0.00  | 22.93  | 2.20  |
| 153     |       | 205.62 | 215.31 | 1327.79 | 550.00 | 435.84 | 1219.04 | 9.59  | 895.87 | 86.37 |
| 156     |       | 0.00   | 3.40   | 13.22   | 7.42   | 4.70   | 15.28   | 0.00  | 7.01   | 1.20  |
| 158     |       | 3.03   | 2.80   | 12.99   | 6.00   | 4.60   | 15.64   | 0.00  | 8.80   | 0.00  |
| 167     |       | 0.00   | 0.00   | 7.84    | 4.23   | 2.20   | 8.28    | 0.00  | 3.38   | 0.00  |
| 190/170 | )     | 2.95   | 3.50   | 22.77   | 6.14   | 4.90   | 6.95    | 1.05  | 14.14  | 0.00  |
| 171     |       | 0.65   | 1.30   | 9.45    | 4.34   | 4.05   | 5.41    | 0.00  | 4.47   | 0.00  |
| 176     |       | 0.00   | 1.20   | 5.09    | 1.46   | 0.00   | 3.60    | 0.00  | 2.72   | 0.00  |
| 177     |       | 31.36  | 15.00  | 91.74   | 62.89  | 48.03  | 84.34   | 0.00  | 99.79  | 8.00  |
| 178     |       | 2.56   | 2.20   | 9.13    | 3.68   | 2.80   | 4.22    | 0.00  | 5.21   | 0.00  |
| 179     |       | 18.80  | 21.16  | 117.73  | 46.19  | 38.76  | 69.01   | 0.00  | 62.91  | 0.00  |
| 180     |       | 31.46  | 23.94  | 191.18  | 59.52  | 44.40  | 105.26  | 0.00  | 108.19 | 7.70  |
| 183     |       | 4.25   | 5.06   | 27.52   | 10.89  | 7.58   | 14.43   | 0.00  | 16.58  | 1.42  |
| 187     |       | 69.09  | 71.69  | 398.96  | 163.95 | 138.94 | 248.75  | 0.00  | 288.92 | 29.49 |
| 193     |       | 0.00   | 0.00   | 3.27    | 1.40   | 0.00   | 0.00    | 0.00  | 1.80   | 0.00  |

IUPAC = International Union of Pure and Applied Chemistry.

Each value represents one analysis. Each analysis contains tissue from 15 mussels.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

#### Table 31 PCB congeners (IUPAC) in Pacific Oyster from site I6 (ng/kg wet weight). Investigator: Dr. Seiichi Uno

#### Congener #

| 16/32  | 748.29  |
|--------|---------|
| 17     | 20.92   |
| 18     | 129.57  |
| 22     | 783.47  |
| 25     | 193.49  |
| 26     | 4554.82 |
| 28     | 98.16   |
| 31     | 38.39   |
| 33     | 108.85  |
| 37     | 0.00    |
| 40     | 236.24  |
| 41     | 225.78  |
| 42     | 0.00    |
| 44     | 0.00    |
| 45     | 174.36  |
| 46     | 0.00    |
| 47     | 48.23   |
| 48     | 0.00    |
| 49     | 28.77   |
| 51     | 0.00    |
| 52     | 334.18  |
| 53     | 0.00    |
| 59     | 19.57   |
| 60/56  | 28.02   |
| 64     | 49.69   |
| 66     | 2326.49 |
| 70     | 38.28   |
| 74     | 4284.54 |
| 82     | 0.00    |
| 84     | 67.13   |
| 85     | 44.55   |
| 87     | 675.94  |
| 91     | 39.23   |
| 92     | 53.51   |
| 95     | 108.08  |
| 97     | 80.16   |
| 99     | 293.13  |
| 101/90 | 251.11  |
| 105    | 70.02   |

-

#### Table 31 PCB congeners (IUPAC) in Pacific Oyster from site I6 (ng/kg wet weight). Investigator: Dr. Seiichi Uno

#### **Congener** #

| 110     | 1579.32 |
|---------|---------|
| 118     | 231.77  |
| 128     | 58.30   |
| 130     | 0.00    |
| 134     | 0.00    |
| 135     | 57.38   |
| 136     | 26.72   |
| 137     | 21.29   |
| 138     | 4029.32 |
| 141     | 14.87   |
| 146     | 504.46  |
| 149     | 247.02  |
| 151     | 109.54  |
| 153     | 5070.36 |
| 156     | 1.66    |
| 158     | 46.22   |
| 167     | 46.94   |
| 170/190 | 0.00    |
| 171     | 16.87   |
| 174     | 0.00    |
| 176     | 24.86   |
| 177     | 258.08  |
| 178     | 24.64   |
| 179     | 290.23  |
| 180     | 134.68  |
| 183     | 37.51   |
| 187     | 1340.47 |
| 193     | 0.00    |

IUPAC = International Union of Pure and Applied Chemistry.

Each value represents one analysis. Each analysis contains tissue from several oysters

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed with Gas Chromatography/Mass Spectometry.

#### Organochlorine pesticides in bivalves from site I-4 (ng/kg wet weight). Investigator: Dr. Seiichi Uno

| Species     | Pacific Little Neck | Nuttall's Cockle | Butter Clam |
|-------------|---------------------|------------------|-------------|
| analyte     |                     |                  |             |
| aHCH        | 6003.79             | 4264.33          | 13751.08    |
| внсн        | 749.73              | 736.15           | 657.47      |
| γHCH        | 1032.40             | 849.01           | 0.00        |
| Heptachlors | 969.60              | 3227.50          | 2687.56     |
| o,p'-DDE    | 76.91               | 183.17           | 189.45      |
| p,p'-DDE    | 120.84              | 185.74           | 103.68      |
| o,p'-DDD    | 119.48              | 42.21            | 60.59       |
| p,p'-DDD    | 567.70              | 5298.81          | 1090.76     |
| o,p'-DDT    | 114.95              | 112.23           | 0.00        |
| p,p'-DDT    | 189.44              | 318.46           | 56.44       |

 $\alpha$ -HCH = alpha hexachlorocyclohexane;  $\beta$ -HCH = beta hexachlorocyclohexane;

 $\gamma$ -HCH gamma hexachlorocyclohexane.

The method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

One composite sample was analyzed for each species. Tissue from 3 to 15 individuals of the same species were combined for each composite sample.

#### Organochlorine pesticides in Mytilus trossulus (ng/kg wet weight).

Investigator: Dr. Seiichi Uno

| Site       | I1      | I2      | I3A     | I3B     | I3C     | I4      | I5B     | I6      | I7     |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| Analyte    |         |         |         |         |         |         |         |         |        |
| αΗCΗ       | 1478.09 | 1320.64 | 1394.70 | 1132.02 | 932.97  | 1270.27 | 267.36  | 1946.52 | 887.15 |
| внсн       | 435.11  | 1186.71 | 2095.53 | 1253.16 | 3218.42 | 749.68  | 1387.19 | 1918.38 | 688.97 |
| γΗCΗ       | 241.04  | 1446.59 | 2253.23 | 1244.46 | 3403.28 | 835.46  | 891.69  | 1849.10 | 767.13 |
| Heptachlor | 692.05  | 343.90  | 528.06  | 208.45  | 214.10  | 862.15  | 524.91  | 868.96  | 622.91 |
| HeptaEIB   | 48.22   | 0.00    | 4.65    | 0.00    | 0.00    | 29.04   | 0.00    | 87.55   | 24.58  |
| o,p'-DDE   | 118.65  | 0.00    | 68.74   | 70.56   | 74.77   | 188.34  | 0.00    | 0.00    | 0.00   |
| p,p'-DDE   | 648.43  | 277.34  | 384.98  | 422.48  | 454.86  | 721.17  | 40.38   | 789.76  | 480.19 |
| o,p'-DDD   | 0.00    | 0.00    | 0.00    | 0.00    | 66.22   | 88.54   | 0.00    | 95.73   | 134.84 |
| p,p'-DDD   | 84.10   | 40.89   | 94.16   | 55.44   | 7677.27 | 247.67  | 50.38   | 258.87  | 131.17 |
| o,p'-DDT   | 0.00    | 30.41   | 0.00    | 0.00    | 58.81   | 129.93  | 0.00    | 189.96  | 37.10  |
| p,p'-DDT   | 0.00    | 78.98   | 179.73  | 272.33  | 703.42  | 1203.70 | 35.06   | 427.42  | 161.48 |

 $\alpha$ -HCH = alpha hexachlorocyclohexane;  $\beta$ -HCH = beta hexachlorocyclohexane;

 $\gamma$ -HCH gamma hexachlorocyclohexane; HeptEIB = Heptachlor Epoxide Isomer B

The analysis method used by Dr. Uno includes supercritical fluid extraction using CO2 and 1% methanol with a florisil clean up. Samples were analyzed by Gas Chromatography /Mass Spectometry.

One composite sample was analyzed at each site. Tissue from 15 mussels were combined for each composite sample.

#### Metals in the mussel Mytilus trossulus (ppm dry weight).

Investigators: Dr. Alexander Tkalin and Tatiana Lishavskaya

| Site | Al  | Cu    | Со  | Cr  | Ni  | Cd  | Pb    | Zn   | Mn   | Fe  | Laboratory   |
|------|-----|-------|-----|-----|-----|-----|-------|------|------|-----|--------------|
| I1   | 50  | 6.7   | 0.2 | 0.3 | 0.6 | 2.8 | 1.0   | 112  | 8.6  | 240 | TINRO-Centre |
| I3A  | 62  | 9.9   | 0.4 | 0.4 | 1.2 | 3.8 | 7.9   | 325  | 11.3 | 336 | TINRO-Centre |
| I6   | 50  | 6.1   | 0.1 | 0.1 | 0.7 | 1.7 | 2.9   | 146  | 7.4  | 197 | TINRO-Centre |
| I6*  | 77  | 165.0 | 0.2 | 0.2 | 0.7 | 4.0 | 1.7   | 2700 | 32.0 | 195 | TINRO-Centre |
| I2A  | 255 | 60.8  | 0.3 | 0.3 | 1.5 | 5.9 | 218.7 | 179  | 17.9 | 530 | TINRO-Centre |
| I4   | 68  | 8.8   | 0.2 | 0.2 | 1.0 | 2.3 | 3.0   | 168  | 7.9  | 197 | TINRO-Centre |
| I5B  | 64  | 6.3   | 0.1 | 0.1 | 0.6 | 2.2 | 2.0   | 156  | 7.5  | 150 | TINRO-Centre |
| I7   | 52  | 7.0   | 0.2 | 0.2 | 0.8 | 3.2 | 2.0   | 165  | 7.0  | 170 | TINRO-Centre |
| I1   |     | 9.6   |     |     | 3.0 |     | <4.0  | 145  | 13.0 | 352 | PGI RAS      |
| I3A  |     | 15.4  |     |     | 4.7 |     | 11.0  | 459  | 17.0 | 638 | PGI RAS      |
| I6   |     | 9.0   |     |     | 2.4 |     | <4.0  | 197  | 12.0 | 319 | PGI RAS      |
| I6*  |     | 233.4 |     |     | 2.2 |     | <4.0  | 3169 | 46.0 | 299 | PGI RAS      |
| I2A  |     | 99.1  |     |     | 5.2 |     | 299.0 | 698  | 28.0 | 857 | PGI RAS      |
| I4   |     | 14.4  |     |     | 4.4 |     | <4.0  | 276  | 13.0 | 419 | PGI RAS      |
| I5B  |     | 8.4   |     |     | 2.4 |     | <4.0  | 188  | 10.0 | 220 | PGI RAS      |
| I7   |     | 9.5   |     |     | 3.1 |     | <4.0  | 207  | 12.0 | 259 | PGI RAS      |
| I1   |     | 10.5  |     |     |     | 4.0 |       | 98   | 8.0  | 285 | POI FEB RAS  |
| I3A  |     | 10.7  |     |     |     | 4.5 | 14.7  | 276  | 13.5 | 407 | POI FEB RAS  |
| I6   |     | 10.3  |     |     |     | 2.8 |       | 135  | 8.1  | 247 | POI FEB RAS  |
| I6*  |     |       |     |     |     |     |       |      |      |     | POI FEB RAS  |
| I2A  |     | 55.7  |     |     |     | 7.3 | 237.0 | 385  | 17.7 | 478 | POI FEB RAS  |
| I4   |     | 15.1  |     |     |     | 4.1 |       | 181  | 8.0  | 276 | POI FEB RAS  |
| I5B  |     | 7.8   |     |     |     | 2.9 | 11.7  | 138  | 9.6  | 193 | POI FEB RAS  |
| I7   |     | 11.1  |     |     |     | 4.3 |       | 141  | 6.7  | 236 | POI FEB RAS  |

#### I6\* = oyster

TINRO-Centre = Pacific Research Centre of Fisheries and Oceanography , Vladivostok, Russia PGI FEB RAS = Pacific Geographical Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia POI FEB RAS = Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia Approximately 30 mussels were combined and analyzed at each site.

Tributyltin (ng/g wet weight) in mussels (M. trossulus) from Vancouver Harbour. Investigator: Dr. Toshihiro Horiguchi

P

| Site | Species        | Butyltin | Dibutyltin | Tributyltin |
|------|----------------|----------|------------|-------------|
| I1   | Foolish Mussel | 27.5     | 31.4       | 33.6        |
| I2   | Foolish Mussel | 32.4     | 73         | 120.8       |
| I3A  | Foolish Mussel | 91.8     | 222.6      | 120         |
| I4   | Foolish Mussel | 12.7     | 61.1       | 173.2       |
| I5B  | Foolish Mussel | 13.1     | 27.4       | 87.2        |
| I6   | Foolish Mussel | 16.3     | 47.4       | 51.4        |
| I7   | Foolish Mussel | 12.3     | 13.6       | 14.8        |

.

Each value is one analysis of a composite of 5-12 individuals

.

Tributyltin (ng/g wet weight) in all molluscs sampled from Vancouver Harbour and Victoria.

Investigator: Dr. Toshihiro Horiguchi

| Site         | Species             | butyltin | dibutyltin | tributyltin | Sex |
|--------------|---------------------|----------|------------|-------------|-----|
| Clover Pt.   | Nucella lima        | 14.4     | bd         | 14.4        | m   |
| Clover Pt.   | Nucella lima        | 9.6      | bd         | 9.6         | f   |
| Ogden Pt.    | Nucella lima        | 2.3      | bd         | 9.4         | m   |
| Ogden Pt.    | Nucella lima        | 2.4      | 4.7        | 2.4         | f   |
| Ten Mile Pt. | Nucella lima        | 7        | bd         | 7           | m   |
| Ten Mile Pt. | Nucella lima        | bd       | bd         | 7.3         | f   |
| Ten Mile Pt. | Nucella lima        | bd       | 4.3        | 6.5         | m   |
| Ten Mile Pt. | Nucella lima        | 8.7      | bd         | 8.7         | f   |
| Mission Pt.  | Nucella lima        | 12.2     | 9.8        | 22          | m   |
| Mission Pt.  | Nucella lima        | bd       | 12.5       | 21.9        | f   |
| I4           | Pacific little neck | 23.9     | 19.5       | 143.2       |     |
| I4           | Horse clam          | 6.9      | 57.5       | 2230        |     |
| I4           | Nuttall's cockle    | 7.1      | 14.3       | 166.3       |     |
| I4           | Softshell-clam      | 17.4     | 67.2       | 435.3       |     |
| I4           | Butter clam         | bd       | 9.3        | 201.4       |     |
| I4           | Foolish mussel      | 12.7     | 61.1       | 173.2       |     |
| I1           | Pacific oyster      | bd       | 17.2       | 86          |     |
| I1           | Foolish mussel      | 27.5     | 31.4       | 33.6        |     |
| I6           | Japanese littleneck | 19.7     | 9.9        | 105.9       |     |
| 16           | Pacific littleneck  | 20       | bd         | 30          |     |
| I6           | Pacific oyster      | bd       | 19.7       | 103.2       |     |
| I6           | Butter clam         | 7.4      | 22.1       | 63.9        |     |
| I6           | Foolish mussel      | 16.3     | 47.4       | 51.4        |     |
| I2           | Pacific littleneck  | 16.9     | 24.2       | 152.2       |     |
| I2           | Butter clam         | bd       | 27.3       | 89.3        |     |
| I2           | Foolish mussel      | 32.4     | 73         | 120.8       |     |
| T49          | Milky venus         | 14.7     | 17.2       | 27          |     |
| I7           | Pacific oyster      | bd       | bd         | 29.6        |     |
| I7           | Dark mahogany clam  | bd       | bd         | 14.5        |     |
| I7           | Foolish mussel      | 12.3     | 13.6       | 14.8        |     |

For bivalves, each value shown in this table represents one analysis of a composite of 5-12 individuals, without regard to sex.

For gastropods, each value shown in this table represents one analysis of a composite of 6-18 individuals, either male or female.

bd=below detection limits

#### Table 37 Lipid Composition in *Mytilus trossulus* (%). Investigator: Dr. Seiichi Uno

|      | TG    | FFA   | ST   | PL    |       | Phospho | olipid Compon | ents  |      |
|------|-------|-------|------|-------|-------|---------|---------------|-------|------|
| Site |       |       |      |       | PE    | Unknown | CAEP+PS+LPE   | РС    | LPC  |
| I1   | 15.29 | 33.76 | 3.84 | 45.97 | 30.70 | 0.00    | 53.23         | 11.92 | 4.15 |
| I2   | 11.90 | 33.87 | 3.93 | 48.13 | 27.31 | 3.20    | 47.11         | 17.63 | 4.76 |
| I3A  | 14.10 | 24.28 | 6.48 | 53.17 | 36.91 | 0.74    | 28.06         | 25.38 | 8.91 |
| I4   | 9.73  | 38.80 | 7.40 | 42.77 | 30.53 | 0.00    | 49.74         | 16.27 | 3.46 |
| I5B  | 10.93 | 28.30 | 5.73 | 55.10 | 29.72 | 0.00    | 41.20         | 22.10 | 6.98 |
| I6   | 17.80 | 33.00 | 6.08 | 42.70 | 36.33 | 0.00    | 41.58         | 18.10 | 3.98 |
| I7   | 23.39 | 36.53 | 5.17 | 35.50 | 28.53 | 1.37    | 55.22         | 11.09 | 3.78 |

TG = triglyceride FFA = free fatty acid ST = sterol PL = phospholipid PE= phosphatidylethanolamine CAEP = Ceramide 2-aminoethylphosphonate PS = phosphatidylserine LPE = Lysophosphatidylethanolamine PC= Phosphatidylcholine LPC = Lysophosphatidylcholine

Tissue from approximately 15 mussels were combinded and analyzed for each site.

| Fatty Acid       | Total lipid | Nonpolar lipid | Phospholipid | Site |
|------------------|-------------|----------------|--------------|------|
| 14:0             | 3.59        | 3.69           | 2.88         | I1   |
| 16:0             | 18.87       | 19.32          | 15.55        | I1   |
| 16:1n <b>-</b> 7 | 5.04        | 4.22           | 11.23        | I1   |
| 16:2n-7          | 1.91        | 2.17           | 1.61         | I1   |
| 17:0             | 1.89        | 1.93           |              | I1   |
| 18:0             | 2.84        | 2.85           | 2.80         | I1   |
| 18:1n-9          | 3.07        | 3.21           | 1.96         | I1   |
| 18:1n-7          | 5.87        | 6.15           | 3.74         | I1   |
| 18:2n-6          | 2.21        | 2.33           | 1.31         | I1   |
| 18:3n-3          | 2.99        | 3.29           |              | I1   |
| 18:4n-3          | 7.11        | 7.66           | 2.97         | I1   |
| 20:1n-11         | 0.77        | 0.65           | 1.68         | I1   |
| 20:1n-9          | 1.46        | 1.24           | 3.10         | I1   |
| 20:1n-7          | 4.16        | 4.42           | 2.23         | I1   |
| 20:2A            | 3.41        | 3.50           | 2.73         | I1   |
| 20:2B            | 1.14        | 1.13           | 1.16         | I1   |
| 20:2n-6          | 1.17        | 1.22           | 0.81         | I1   |
| 20:4n-6          | 2.00        | 2.07           | 1.52         | I1   |
| 20:5n-3          | 8.81        | 7.23           | 20.66        | I1   |
| 22:1n-11         | 3.34        | 3.16           | 4.69         | I1   |
| 22:5n-3          | 1.64        | 1.71           | 1.13         | I1   |
| 22:6n-3          | 8.12        | 7.64           | 11.71        | I1   |
| 14:0             | 2.40        | 2.38           | 2.47         | I2   |
| 16:0             | 15.97       | 15.37          | 17.54        | I2   |
| 16:1n-7          | 8.51        | 8.26           | 9.18         | I2   |
| 16:2n-7          | 1.02        | 1.41           | 1.57         | I2   |
| 17:0             | 1.50        | 1.47           |              | I2   |
| 18:0             | 2.83        | 2.73           | 3.10         | I2   |
| 18:1n-9          | 2.25        | 2.89           | 0.58         | I2   |
| 18:1n-7          | 4.33        | 4.74           | 3.26         | I2   |
| 18:2n-6          | 1.44        | 1.61           | 1.00         | I2   |
| 18:3n-3          | 1.85        | 2.06           |              | I2   |
| 18:4n-3          | 4.30        | 4.96           | 2.56         | I2   |
| 20:1n-11         | 1.01        | 0.87           | 1.36         | I2   |
| 20:1n-9          | 4.22        | 4.67           | 3.04         | I2   |
| 20:1n-7          | 3.03        | 3.31           | 2.32         | I2   |
| 20:2A            | 1.74        | 1.28           | 2.93         | I2   |
| 20:2B            | 0.71        | 0.66           | 0.86         | I2   |
| 20:2n-6          | 0.96        | 1.05           | 0.73         | I2   |
| 20:4n-6          | 1.87        | 1.95           | 1.64         | I2   |

ł

| Fatty Acid | Total lipid | Nonpolar lipid | Phospholipid | Site |
|------------|-------------|----------------|--------------|------|
| 20:5n-3    | 15.32       | 13.00          | 21.40        | I2   |
| 22:1n-11   | 3.57        | 3.10           | 4.80         | I2   |
| 22:5n-3    | 1.45        | 1.55           | 1.19         | I2   |
| 22:6n-3    | 14.53       | 14.93          | 13.48        | 12   |
| 14:0       | 1.86        | 2.02           | 1.58         | I3A  |
| 16:0       | 15.94       | 16.46          | 15.02        | I3A  |
| 16:1n-7    | 8.43        | 9.60           | 6.36         | I3A  |
| 16:2n-7    | 0.77        | 1.21           | 1.58         | I3A  |
| 17:0       | 1.53        | 1.50           |              | I3A  |
| 18:0       | 3.07        | 3.04           | 3.13         | I3A  |
| 18:1n-9    | 2.61        | 3.24           | 1.50         | I3A  |
| 18:1n-7    | 4.81        | 5.78           | 3.11         | I3A  |
| 18:2n-6    | 1.62        | 1.94           | 1.05         | I3A  |
| 18:3n-3    | 1.29        | 2.02           |              | I3A  |
| 18:4n-3    | 3.67        | 4.68           | 1.88         | I3A  |
| 20:1n-11   | 1.52        | 1.64           | 1.31         | I3A  |
| 20:1n-9    | 5.17        | 6.05           | 3.61         | I3A  |
| 20:1n-7    | 2.64        | 2.79           | 2.36         | I3A  |
| 20:2A      | 3.21        | 2.35           | 4.73         | I3A  |
| 20:2B      | 1.18        | 0.93           | 1.63         | I3A  |
| 20:2n-6    | 0.91        | 1.01           | 0.73         | I3A  |
| 20:4n-6    | 3.37        | 3.82           | 2.59         | I3A  |
| 20:5n-3    | 11.01       | 5.39           | 20.95        | I3A  |
| 22:1n-11   | 5.07        | 4.65           | 5.80         | I3A  |
| 22:5n-3    | 1.86        | 2.13           | 1.38         | I3A  |
| 22:6n-3    | 11.85       | 10.21          | 14.76        | I3A  |
| 14:0       | 3.03        | 3.21           | 2.78         | I4   |
| 16:0       | 15.48       | 15.30          | 15.73        | I4   |
| 16:1n-7    | 6.53        | 4.40           | 9.44         | I4   |
| 16:2n-7    | 0.78        | 1.35           | 1.52         | I4   |
| 17:0       | 1.43        | 1.36           |              | I4   |
| 18:0       | 2.65        | 2.52           | 2.81         | I4   |
| 18:1n-9    | 2.34        | 2.76           | 1.77         | I4   |
| 18:1n-7    | 4.59        | 5.31           | 3.60         | I4   |
| 18:2n-6    | 2.11        | 2.49           | 1.59         | I4   |
| 18:3n-3    | 2.53        | 3.14           |              | I4   |
| 18:4n-3    | 5.06        | 6.60           | 2.98         | I4   |
| 20:1n-11   | 1.09        | 0.91           | 1.32         | I4   |
| 20:1n-9    | 3.34        | 3.37           | 3.31         | I4   |
| 20:1n-7    | 3.08        | 3.46           | 2.57         | I4   |

| Fatty Acid | Total lipid | Nonpolar lipid | Phospholipid | Site |
|------------|-------------|----------------|--------------|------|
| 20:2A      | 1.94        | 1.15           | 3.00         | I4   |
| 20:2B      | 1.04        | 0.89           | 1.25         | I4   |
| 20:2n-6    | 1.09        | 1.25           | 0.87         | I4   |
| 20:4n-6    | 1.96        | 2.08           | 1.80         | I4   |
| 20:5n-3    | 17.59       | 16.92          | 18.50        | I4   |
| 22:1n-11   | 4.10        | 3.31           | 5.18         | I4   |
| 22:5n-3    | 1.53        | 1.71           | 1.28         | I4   |
| 22:6n-3    | 11.35       | 10.21          | 12.89        | I4   |
| 14:0       | 3.39        | 3.55           | 3.12         | I5B  |
| 16:0       | 15.71       | 16.04          | 15.14        | I5B  |
| 16:1n-7    | 6.51        | 3.71           | 11.29        | I5B  |
| 16:2n-7    | 0.96        | 1.52           | 1.15         | I5B  |
| 17:0       | 1.26        | 1.32           |              | I5B  |
| 18:0       | 2.51        | 2.40           | 2.70         | I5B  |
| 18:1n-9    | 2.96        | 3.52           | 2.00         | I5B  |
| 18:1n-7    | 4.84        | 5.42           | 3.85         | I5B  |
| 18:2n-6    | 2.61        | 3.13           | 1.73         | I5B  |
| 18:3n-3    | 3.38        | 3.43           |              | I5B  |
| 18:4n-3    | 4.80        | 7.60           | 3.31         | I5B  |
| 20:1n-11   | 1.11        | 0.90           | 1.47         | I5B  |
| 20:1n-9    | 3.48        | 3.83           | 2.89         | I5B  |
| 20:1n-7    | 2.98        | 3.38           | 2.29         | I5B  |
| 20:2A      | 1.87        | 1.15           | 3.11         | I5B  |
| 20:2B      | 0.73        | 0.72           | 0.76         | I5B  |
| 20:2n-6    | 1.32        | 1.36           | 1.24         | I5B  |
| 20:4n-6    | 1.66        | 1.82           | 1.38         | I5B  |
| 20:5n-3    | 16.83       | 15.07          | 19.83        | I5B  |
| 22:1n-11   | 3.60        | 3.08           | 4.48         | I5B  |
| 22:5n-3    | 1.61        | 1.64           | 1.56         | I5B  |
| 22:6n-3    | 9.32        | 8.22           | 11.19        | I5B  |
| 14:0       | 2.86        | 2.84           | 2.95         | I6   |
| 16:0       | 15.91       | 15.83          | 16.21        | I6   |
| 16:1n-7    | 6.66        | 5.67           | 10.25        | I6   |
| 16:2n-7    | 0.98        | 1.25           | 1.47         | I6   |
| 17:0       | 1.49        | 1.50           |              | 16   |
| 18:0       | 2.67        | 2.66           | 2.71         | I6   |
| 18:1n-9    | 2.74        | 2.96           | 1.93         | I6   |
| 18:1n-7    | 5.07        | 5.44           | 3.71         | I6   |
| 18:2n-6    | 2.40        | 2.56           | 1.80         | I6   |
| 18:3n-3    | 2.24        | 2.85           |              | I6   |

| Fatty Acid | Total lipid | Nonpolar lipid | Phospholipid | Site |
|------------|-------------|----------------|--------------|------|
| 18:4n-3    | 5.28        | 6.07           | 2.42         | I6   |
| 20:1n-11   | 1.15        | 0.90           | 2.08         | I6   |
| 20:1n-9    | 4.31        | 4.67           | 3.01         | I6   |
| 20:1n-7    | 3.49        | 3.78           | 2.42         | I6   |
| 20:2A      | 1.65        | 1.05           | 3.85         | I6   |
| 20:2B      | 0.87        | 0.83           | 0.99         | I6   |
| 20:2n-6    | 1.21        | 1.27           | 1.01         | I6   |
| 20:4n-6    | 2.42        | 2.61           | 1.75         | I6   |
| 20:5n-3    | 14.47       | 13.59          | 17.71        | I6   |
| 22:1n-11   | 4.14        | 3.71           | 5.70         | I6   |
| 22:5n-3    | 1.78        | 1.91           | 1.31         | I6   |
| 22:6n-3    | 9.43        | 8.91           | 11.35        | I6   |
| 14:0       | 5.40        | 5.68           | 4.39         | I7   |
| 16:0       | 14.95       | 15.34          | 13.54        | I7   |
| 16:1n-7    | 10.64       | 9.16           | 16.03        | I7   |
| 16:2n-7    | 1.51        | 1.93           | 1.37         | I7   |
| 17:0       | 1.59        | 1.65           |              | I7   |
| 18:0       | 2.18        | 2.16           | 2.26         | I7   |
| 18:1n-9    | 2.61        | 2.92           | 1.50         | 17   |
| 18:1n-7    | 6.15        | 6.90           | 3.44         | I7   |
| 18:2n-6    | 2.00        | 2.23           | 1.19         | 17   |
| 18:3n-3    | 1.62        | 1.56           |              | 17   |
| 18:4n-3    | 1.42        | 1.81           | 1.84         | I7   |
| 20:1n-11   | 0.88        | 0.72           | 1.46         | 17   |
| 20:1n-9    | 3.29        | 3.57           | 2.27         | I7   |
| 20:1n-7    | 2.87        | 3.17           | 1.76         | 17   |
| 20:2A      | 1.46        | 0.77           | 3.95         | I7   |
| 20:2B      | 0.88        | 0.69           | 1.55         | I7   |
| 20:2n-6    | 0.71        | 0.77           | 0.52         | I7   |
| 20:4n-6    | 2.54        | 2.65           | 2.11         | 17   |
| 20:5n-3    | 18.81       | 18.63          | 19.47        | I7   |
| 22:1n-11   | 4.20        | 3.60           | 6.37         | I7   |
| 22:5n-3    | 1.19        | 1.24           | 1.01         | I7   |
| 22:6n-3    | 6.44        | 5.66           | 9.27         | 17   |

\* = the position of the double bond was not identified

Tissue from approximately 15 mussels was combined and analyzed for each site.

Fluorescent aromatic compounds in bile of English sole as an indicator of aromatic hydrocarbon metabolites. Investigators: Dr. Sylvester Spencer and Ms. Carla Stehr

| Fish ID | Site | BaP         | NpH         | PhN         | protein    | <b>BaP/protein</b> | NpH/protein | PhN/protein |
|---------|------|-------------|-------------|-------------|------------|--------------------|-------------|-------------|
|         |      | ng/g BaP    | ng/g NpH    | ng/g PhN    | -<br>mg/ml | micrograms         | micrograms  | micrograms  |
|         |      | equivalents | equivalents | equivalents |            | Bap equiv./        | NpH equiv./ | PhN equiv./ |
|         |      |             |             |             |            | g protein          | g protein   | g protein   |
| 990018  | T49  | 43          | 67984       | 17219       | 5.78       | 7                  | 11800       | 3000        |
| 990021  | T49  | 103         | 63747       | 18063       | 1.21       | 85                 | 52700       | 14900       |
| 990023  | T49  | 17          | 39975       | 7737        | 1.45       | 12                 | 27600       | 5300        |
| 990024  | T49  | 0           | 46381       | 10788       | 0.73       | 0                  | 63500       | 14800       |
| 990025  | T49  | 2           | 34963       | 6756        | 0.74       | 3                  | 47200       | 9100        |
| 990026  | T49  | 126         | 92543       | 20100       | 3.82       | 33                 | 24200       | 5300        |
| 990027  | T49  | 146         | 65597       | 18872       | 4.45       | 33                 | 14700       | 4200        |
| 990028  | T49  | 68          | 60419       | 18387       | 1.22       | 56                 | 49500       | 15100       |
| 990029  | T49  | 8           | 47221       | 10798       | 2.61       | 3                  | 18100       | 4100        |
| 990030  | T49  | 34          | 58343       | 12366       | 3.62       | 9                  | 16100       | 3400        |
| 990046  | T11B | 39          | 32035       | 8237        | 1.26       | 31                 | 25400       | 6500        |
| 990047  | T11B | 65          | 25186       | 7841        | 2.69       | 24                 | 9400        | 2900        |
| 990048  | T11B | 59          | 15953       | 3260        | 0.37       | 159                | 43100       | 8800        |
| 990050  | T11B | 61          | 36938       | 10084       | 0.78       | 78                 | 47400       | 12900       |
| 990051  | T11B | 12          | 24338       | 4197        | 0.59       | 20                 | 41300       | 7100        |
| 990056  | T11B | 103         | 52419       | 13400       | 0.80       | 129                | 65500       | 16800       |
| 990057  | T11B | 264         | 77572       | 23551       | 2.36       | 112                | 32900       | 10000       |
| 990058  | T11B | 193         | 37488       | 10262       | 0.89       | 217                | 42100       | 11500       |
| 990059  | T11B | 66          | 43457       | 8768        | 2.97       | 22                 | 14600       | 3000        |
| 990060  | T11B | 24          | 31106       | 7506        | 0.76       | 32                 | 40900       | 9900        |
| 990076  | Т38  | 145         | 50537       | 17149       | 0.39       | 372                | 129600      | 44000       |
| 990077  | T38  | 640         | 113577      | 39821       | 3.29       | 195                | 34500       | 12100       |
| 990078  | T38  | 653         | 157332      | 48605       | 1.41       | 463                | 111600      | 34500       |
| 990079  | T38  | 264         | 61821       | 21043       | 0.98       | 269                | 63100       | 21500       |
| 990080  | T38  | 542         | 109260      | 35919       | 0.82       | 661                | 133200      | 43800       |
| 990081  | T38  | 317         | 78125       | 27623       | 1.00       | 317                | 78100       | 27600       |
| 990082  | T38  | 613         | 109489      | 40691       | 0.65       | 943                | 168400      | 62600       |
| 990083  | T38  | 187         | 66444       | 22008       | 0.67       | 279                | 99200       | 32800       |
| 990084  | T38  | 871         | 208133      | 69907       | 1.03       | 846                | 202100      | 67900       |
| 990085  | Т38  | 1286        | 196675      | 78234       | 1.39       | 925                | 141500      | 56300       |
| 990106  | T48  | 354         | 93895       | 34511       | 1.62       | 219                | 58000       | 21300       |
| 990107  | T48  | 264         | 115193      | 28954       | 0.69       | 383                | 166900      | 42000       |
| 990108  | T48  | 202         | 90608       | 28082       | 0.82       | 246                | 110500      | 34200       |
| 990109  | T48  | 154         | 89655       | 22214       | 1.05       | 147                | 85400       | 21200       |
| 990110  | T48  | 149         | 117084      | 28480       | 0.61       | 244                | 191900      | 46700       |
| 990111  | T48  | 442         | 278040      | 66008       | 9.43       | 47                 | 29500       | 7000        |
| 990112  | T48  | 187         | 67919       | 17871       | 0.98       | 191                | 69300       | 18200       |
| 990113  | T48  | 76          | 57373       | 17320       | 0.47       | 162                | 122100      | 36900       |
| 990114  | T48  | 233         | 95952       | 25810       | 0.67       | 348                | 143200      | 38500       |
| 990115  | T48  | 172         | 76422       | 22175       | 0.91       | 189                | 84000       | 24400       |
| 990136  | T50  | 13          | 50016       | 13443       | 1.07       | 12                 | 46700       | 12600       |
| 990137  | T50  | 11          | 64390       | 16542       | 3.19       | 3                  | 20200       | 5200        |
| 990138  | T50  | 12          | 56892       | 14763       | 2,54       | 5                  | 22400       | 5800        |
| 990139  | T50  | 12          | 48196       | 10765       | 1.70       | 7                  | 28400       | 6300        |
| 990140  | T50  | 72          | 83530       | 23289       | 2.66       | 27                 | 31400       | 8800        |
| 990141  | T50  | 8           | 44505       | 9109        | 0.98       | 8                  | 45400       | 9300        |
| 990142  | T50  | 7           | 32261       | 8624        | 1.14       | 6                  | 28300       | 7600        |
| 990143  | T50  | 14          | 42137       | 9852        | 2.14       | 7                  | 19700       | 4600        |
| 990144  | T50  | 54          | 76427       | 19346       | 5.70       | 9                  | 13400       | 3400        |
| 990145  | T50  | 32          | 47542       | 14708       | 1.29       | 25                 | 36900       | 11400       |

 $\begin{array}{l} BaP = Benzo[a] pyrene wavelength equivalents \\ NpH = naphthalene wavelength equivalents \\ PhN = Phenanthrene wavelength equivalents \end{array}$ 

Ten fish from each site were individually analyzed for biliary metabolites.

**Quality assurance data for fluorescent aromatic compounds in bile of English sole.** Investigators: Dr. Sylvester Spencer and Ms. Carla Stehr

| Quality | Control                 | BaP         | NpH         | PhN         | Replicate |
|---------|-------------------------|-------------|-------------|-------------|-----------|
| Control | Name                    | ng/g BaP    | ng/g NpH    | ng/g PhN    | number    |
| number  |                         | equivalents | equivalents | equivalents |           |
| B48031  | Blank                   | 0           | 0           | 0           | 1         |
| B48001  | Initial Calibration     | 98          | 14460       | 5941        | 1         |
| B48002  | Initial Calibration     | 98          | 15512       | 5929        | 2         |
| B48003  | Continuing Calibration  | 99          | 16059       | 6055        | 1         |
| B48004  | Continuing Calibration  | 100         | 16328       | 6042        | 2         |
| B48010  | Continuing Calibration  | 98          | 16021       | 6024        | 3         |
| B48017  | Continuing Calibration  | 98          | 15772       | 6111        | 4         |
| B48024  | Continuing Calibration  | 103         | 16294       | 5781        | 5         |
| B48038  | Continuing Calibration  | 103         | 16013       | 6059        | 6         |
| B48005  | Bile Reference Material | 353         | 97483       | 47222       | 1         |
| B48040  | Bile Reference Material | 495         | 100475      | 55983       | 2         |
| B47902  | Blank                   | 1           | 129         | 31          | 1         |
| B47931  | Blank                   | 4           | 0           | 0           | 2         |
| B47901  | Initial Calibration     | 111         | 15095       | 5653        | 1         |
| B47903  | Initial Calibration     | 105         | 16790       | 6344        | 2         |
| B47904  | Continuing Calibration  | 111         | 17181       | 6718        | 1         |
| B47910  | Continuing Calibration  | 105         | 16879       | 5863        | 2         |
| B47917  | Continuing Calibration  | 88          | 15203       | 5210        | 3         |
| B47924  | Continuing Calibration  | 89          | 15840       | 6045        | 4         |
| B47938  | Continuing Calibration  | 91          | 15011       | 6166        | 5         |
| B47905  | Bile Reference Material | 466         | 107127      | 57562       | 1         |
| B47940  | Bile Reference Material | 398         | 91295       | 49358       | 2         |
|         |                         |             |             |             |           |

BaP = Benzo[a]pyrene wavelength equivalents

NpH = naphthalene wavelength equivalents

PhN = Phenanthrene wavelength equivalents

| FishID    | Site  | CYP Conc. | Protein Conc. | Specific Content  | EROD Activity A           | EROD Activity B          | CYP1A Level A           | CYP1A Level B    |
|-----------|-------|-----------|---------------|-------------------|---------------------------|--------------------------|-------------------------|------------------|
|           |       | (nmol/mL) | (mg/mL)       | (nmol/mg protein) | (pmol/min/nmol total CYP) | (pmol/min/mg<br>protein) | (ROD/pmol<br>total CYP) | (ROD/mg protein) |
| 990001-00 | 3 T49 | 5.94      | 24.9          | 0.24              | 4830                      | 1152                     | 0.26                    | 62.16            |
| 990004    | T49   | 4.18      | 13.5          | 0.31              | 2699                      | 837                      | 0.21                    | 65.10            |
| 990005    | T49   | 5.61      | 23.5          | 0.24              | 8636                      | 2065                     | 0.35                    | 84.84            |
| 900066    | T49   | 7.04      | 24.3          | 0.29              | 2983                      | 863                      | 0.18                    | 51.77            |
| 200066    | T49   | 3.14      | 10.1          | 0.31              | 3578                      | 1108                     | 0.38                    | 118.73           |
| 800066    | T49   | 4.62      | 24.4          | 0.19              | 7049                      | 1335                     | 0.18                    | 34.87            |
| 600066    | T49   | 3.03      | 14.0          | 0.22              | 4886                      | 1058                     | 0.14                    | 30.03            |
| 990010    | T49   | 6.27      | 16.5          | 0.38              | 5114                      | 1946                     | 0.18                    | 68.59            |
| 990031    | TIIB  | 1.98      | 10.4          | 0.19              | 2691                      | 511                      | 0.28                    | 53.20            |
| 990032    | T11B  | 1.76      | 10.9          | 0.16              | 3337                      | 540                      | 0.27                    | 42.48            |
| 990033    | T11B  | 5.94      | 13.9          | 0.43              | 4034                      | 1726                     | 0.35                    | 150.29           |
| 990034    | TIIB  | 10.56     | 23.2          | 0.45              | 4830                      | 2195                     | 0.27                    | 119.93           |
| 990035    | T11B  | 4.9       | 14.4          | 0.34              | 5483                      | 1863                     | 0.20                    | 67.32            |
| 950036    | TIIB  | 4.29      | 15.4          | 0.28              | 3153                      | 879                      | 0.15                    | 42.56            |
| 990037    | T11B  | 4.29      | 11.0          | 0.39              | 13011                     | 5065                     | 0.29                    | 111.15           |
| 990038    | TIIB  | 7.48      | 18.0          | 0.41              | 5273                      | 2188                     | 0.27                    | 109.06           |
| 990039    | T11B  | 0.99      | 6.6           | 0.15              | 946                       | 142                      | 0.21                    | 31.88            |
| 990040    | T11B  | 1.98      | 6.8           | 0.29              | 1767                      | 511                      | 0.44                    | 126.88           |
| 990061    | T38   | 3.85      | 12.0          | 0.32              | 6026                      | 1932                     | 0.63                    | 202.40           |
| 990062    | T38   |           | 26.0          |                   |                           | 3011                     |                         | 301.90           |
| 990063    | T38   | 7.04      | 20.6          | 0.34              | 8068                      | 3040                     | 0.83                    | 282.37           |
| 990064    | T38   | 2.31      | 8.6           | 0.27              | 11476                     | 3068                     | 0.81                    | 219.24           |
| 990065    | T38   | 6.82      | 14.1          | 0.48              | 8282                      | 4006                     | 0.80                    | 382.08           |
| 990066    | T38   | 5.94      | 16.1          | 0.37              | 10318                     | 3807                     | 1.01                    | 373.33           |
| 790066    | T38   | 4.73      | 10.4          | 0.45              | 11931                     | 5426                     | 1.03                    | 462.38           |
| 890066    | T38   | 9.02      | 22.3          | 0.40              | 14947                     | 6051                     | 0.51                    | 203.80           |
| 690066    | T38   | 9.46      | 21.1          | 0.45              | 13383                     | 5994                     | 0.48                    | 217.80           |

Table 41Cytochrome P4501A activity and protein levels in liver microsomes of English sole.Investigator: Dr. Stelvio Bandiera

.

| FishID | Site | CVP Cone. | Protein Conc. | Specific Content  | EROD Activity A              | EROD Activity B          | CYP1A Level A           | CYP1A Level B    |
|--------|------|-----------|---------------|-------------------|------------------------------|--------------------------|-------------------------|------------------|
|        |      | (nmol/mL) | (mg/mL)       | (nmol/mg protein) | (pmol/min/nmol<br>total CYP) | (pmol/min/mg<br>protein) | (ROD/pmol<br>total CYP) | (ROD/mg protein) |
| 020066 | T38  | 7.26      | 18.9          | 0.38              | 14215                        | 5455                     | 0.54                    | 205.01           |
| 990071 | T38  | 6.86      | 24.1          | 0.28              | 19047                        | 5426                     | 0.62                    | 173.60           |
| 990072 | T38  | 7.26      | 20.9          | 0.35              | 11881                        | 4119                     | 11.1                    | 386.58           |
| 990091 | T48  | 5.94      | 15.5          | 0.38              | 7853                         | 3011                     | 1.25                    | 474.43           |
| 990092 | T48  | 7.26      | 18.5          | 0.39              | 5707                         | 2244                     | 1.04                    | 404.82           |
| 60063  | T48  | 9.24      | 21.3          | 0.43              | 8113                         | 3523                     | 0.86                    | 371.09           |
| 990094 | T48  | 5.5       | 15.0          | 0.37              | 4959                         | 1818                     | 0.67                    | 247.53           |
| 990095 | T48  | 5.5       | 15.7          | 0.35              | 6269                         | 2301                     | 0.80                    | 281.23           |
| 960066 | T48  | 3.63      | 8.1           | 0.45              | 6379                         | 2869                     | 0.74                    | 331.43           |
| 260066 | T48  | 7.48      | 18.2          | 0.41              | 10685                        | 4403                     | 0.51                    | 210.13           |
| 860066 | T48  | 6.16      | 13.7          | 0.45              | 3026                         | 1364                     | 0.33                    | 148.50           |
| 660066 | T48  | 2.53      | 6.3           | 0.40              | 8560                         | 3438                     | 0.73                    | 290.80           |
| 990100 | T48  | 3.96      | 15.0          | 0.26              | 7425                         | 1960                     | 0.54                    | 139.36           |
| 990101 | T48  | 0.77      | 5.8           | 0.13              | 1495                         | 199                      | 0.21                    | 26.59            |
| 990102 | T48  | 7.26      | 14.9          | 0.49              | 5597                         | 2727                     | 0.48                    | 232.75           |
| 990121 | T50  | 3.74      | 9.6           | 0.39              | 16619                        | 6488                     | 0.75                    | 292.11           |
| 990122 | T50  | 7.7       | 20.0          | 0.38              | 15710                        | 6042                     | 0.91                    | 344.47           |
| 990123 | T50  | 3.3       | 8.6           | 0.38              | 22102                        | 8452                     | 0.70                    | 266.19           |
| 990124 | T50  | 2.6       | 10.8          | 0.24              | 10689                        | 2585                     | 1.40                    | 334.80           |
| 990125 | T50  | 8.8       | 19.7          | 0.45              | 9375                         | 4198                     | 0.92                    | 415.13           |
| 990126 | T50  | 3.43      | 5.3           | 0.65              | 8626                         | 5625                     | 0.58                    | 377.98           |
| 990127 | T50  | 7.26      | 13.5          | 0.54              | 3722                         | 2000                     | 0.62                    | 332.37           |
| 990128 | T50  | 9.68      | 18.0          | 0.54              | 5994                         | 3225                     | 0.89                    | 481.95           |
| 990129 | T50  | 5.83      | 11.4          | 0.51              | 13097                        | 6715                     | 0.66                    | 336.09           |
| 990130 | T50  | 1.91      | 6.3           | 0.30              | 7753                         | 2358                     | 1.28                    | 384.30           |
| 990131 | T50  | 6.71      | 13.9          | 0.48              | 14773                        | 7152                     | 1.37                    | 656.88           |
| 990132 | T50  | 5.35      | 12.3          | 0.44              | 13295                        | 5807                     | 1.37                    | 601.48           |

Table 41Cytochrome P4501A activity and protein levels in liver microsomes of English sole.Investigator: Dr. Stelvio Bandiera

| FishID                     | Site                                  | <b>CYP Conc.</b> (nmol/mL)           | Protein Conc.<br>(mg/mL) | Specific Content<br>(nmol/mg protein) | EROD Activity A<br>(pmol/min/nmol<br>total CVP) | EROD Activity B<br>(pmol/min/mg<br>protein) | CYP1A Level A<br>(ROD/pmol<br>total CYP) | CYP1A Level B<br>(ROD/mg protein) |
|----------------------------|---------------------------------------|--------------------------------------|--------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------|
| 990133                     | T50                                   | 5.28                                 | 9.2                      | 0.57                                  | 14574                                           | 8373                                        | 1.45                                     | 828.78                            |
| 990134                     | T50                                   | 5.06                                 | 9.9                      | 0.51                                  | 15682                                           | 6662                                        | 1.03                                     | 524.28                            |
| 990151                     | T49                                   | 3.96                                 | 14.6                     | 0.27                                  | 7933                                            | 2159                                        | 0.27                                     | 71.82                             |
| 990152                     | T49                                   | 4.4                                  | 15.7                     | 0.28                                  | 6906                                            | 1932                                        | 0.22                                     | 61.74                             |
| 990153                     | T49                                   | 3.3                                  | 12.2                     | 0.27                                  | 6849                                            | 1847                                        | 0.29                                     | 78.17                             |
| 990154                     | T49                                   | 7.26                                 | 14.9                     | 0.49                                  | 8915                                            | 4347                                        | 0.31                                     | 149.45                            |
| 990155                     | T49                                   | 5.5                                  | 10.8                     | 0.51                                  | 3950                                            | 2017                                        | 0.15                                     | 74.97                             |
| 990156                     | T49                                   | 3.96                                 | 12.8                     | 0.31                                  | 6046                                            | 1875                                        | 0.21                                     | 65.72                             |
| 990157                     | T49                                   | 5.39                                 | 15.7                     | 0.34                                  | 4971                                            | 1705                                        | 0.22                                     | 73.95                             |
| 990158                     | T49                                   | 1.98                                 | 8.7                      | 0.23                                  | 2884                                            | 653                                         | 0.16                                     | 35.65                             |
| 990159                     | T49                                   | 3.52                                 | 14.7                     | 0.24                                  | 2840                                            | 682                                         | 0.25                                     | 60.96                             |
| 990160                     | T49                                   | 2.2                                  | 11.6                     | 0.19                                  | 1499                                            | 284                                         | 0.12                                     | 22.14                             |
| 990161                     | T49                                   | 2.97                                 | 15.5                     | 0.19                                  | 5054                                            | 996                                         | 0.20                                     | 38.38                             |
| 990162                     | T49                                   | 4.29                                 | 17.3                     | 0.25                                  | 6625                                            | 1648                                        | 0.28                                     | 69.50                             |
| CYP1A = cyt<br>EROD = etho | ochrome P <sup>2</sup><br>xyresorufin | 4501A<br>1 <i>O</i> -deethylase acti | ivity                    |                                       |                                                 |                                             |                                          |                                   |

Cytochrome P4501A activity and protein levels in liver microsomes of English sole. Investigator: Dr. Stelvio Bandiera Table 41

ROD = relative optical density CYP Conc. = Microsomal cytochrome P450 concentration Protein Conc. = Microsomal protein concentration

CYP = total Cytochrome P450 enzymes, (includes CYP1A and other Cytochrome P450 enzymes)

Ten or more fish were indivdiually analyzed from each site. A composite sample, where equal amounts of liver from three fish were combined (Fish ID numbers 990001, 990002, and 990003), was also analyzed.

# Cytochrome P4501A activity and protein levels in treated English sole. Investigator: Dr. Stelvio Bandiera

| Treatment    | CYP Conc. | <b>Protein Conc.</b> | <b>Specific Content</b> | EROD Activity A ] | EROD Activity B | CYP1A Level A C | YP1A Level B |
|--------------|-----------|----------------------|-------------------------|-------------------|-----------------|-----------------|--------------|
| Fish ID/     | (nmol/mL) | (mg/mL)              | (nmol/mg protein)       | (pmol/min/nmol    | (pmol/min/mg    | (ROD/pmol       | (ROD/mg      |
| Treatment    |           |                      |                         | total CYP)        | protein)        | total CYP)      | protein)     |
| <b>BNF</b> 1 | 3.41      | 7.6                  | 0.45                    | 18807             | 8494            | 0.95            | 428.18       |
| <b>BNF2</b>  | 3.41      | 6.1                  | 0.56                    | 18693             | 10382           | 0.82            | 457.24       |
| BNF3         | 2.68      | 9.1                  | 0.30                    | 14403             | 4256            | 0.75            | 225.15       |
| BNF4         | 8.8       | 10.2                 | 0.86                    | 14972             | 12904           | 1.07            | 915.90       |
| BNF5         | 10.56     | 13.8                 | 0.77                    | 16619             | 12736           | 1.05            | 807.73       |
| BNF6         | 3.74      | . 6.2                | 09.0                    | 13097             | 2006            | 1.01            | 608.10       |
| BNF7         | 2.53      | 4.8                  | 0.53                    | 14907             | 7841            | 0.92            | 485.22       |
| BNF8         | 1.21      | 2.8                  | 0.43                    | 17810             | 7642            | 0.86            | 370.66       |
| BNF9         | 4.18      | 11.3                 | 0.37                    | 13750             | 5068            | 0.72            | 267.33       |
| BNF10        | 3.52      | 6.3                  | 0.56                    | 18153             | 10111           | 0.56            | 313.60       |
| CornOil1     | 2.53      | 13.8                 | 0.18                    | 4063              | 748             | 0.12            | 22.23        |
| CornOil2     | 5.65      | 20.5                 | 0.28                    | 1619              | 446             | 0.13            | 35.84        |
| CornOil3     | 6.16      | 17.7                 | 0.35                    | 313               | 109             | 0.02            | 8.05         |
| CornOil4     | 2.97      | 10.2                 | 0.29                    | 795               | 233             | 0.08            | 23.20        |
| CornOil5     | 1.1       | 6.5                  | 0.17                    | 833               | 142             | 0.11            | 18.28        |
| CornOil6     | 4.18      | 14.5                 | 0.29                    | 4688              | 1354            | 0.21            | 60.61        |
| CornOil7     | 3.89      | 11.6                 | 0.33                    | 3409              | 1141            | 0.20            | 66.66        |
| CornOil8     |           | 23.2                 |                         |                   | 142             |                 | 6.05         |
| CornOil9     | 5.5       | 15.0                 | 0.37                    | 881               | 323             | 0.26            | 97.31        |
| CornOil10    | 3.08      | 8.8                  | 0.35                    | 739               | 259             | 0.09            | 31.04        |
|              |           |                      |                         |                   |                 |                 |              |

CYP1A = cytochrome P4501A EROD = ethoxyresorufin*O* -deethylase activity ROD = relative optical density CYP Conc. = microsomal cytochrome P450 concentration

Protein Conc. = microsomal protein concentration

CYP = total Cytochrome P450 enzymes, (includes CYP1A and other Cytochrome P450 enzymes)
#### Vitellogenin in blood plasma from English sole (ng/ml plasma).

Investigators. Mr. Dan Lomax, Dr. Munetaka Shimizu

| Fish ID | Site | Sex    | Vitellogenin | Investigator |
|---------|------|--------|--------------|--------------|
| 990001  | T49  | male   | ND           | Shimizu      |
| 990002  | T49  | female | ND           | Shimizu      |
| 990003  | T49  | male   | ND           | Shimizu      |
| 990004  | T49  | male   | ND           | Shimizu      |
| 990005  | T49  | male   | ND           | Shimizu      |
| 990006  | T49  | male   | ND           | Shimizu      |
| 990007  | T49  | male   | ND           | Shimizu      |
| 990008  | T49  | male   | ND           | Shimizu      |
| 990008  | T49  | male   | ND           | Lomax        |
| 990009  | T49  | male   | ND           | Shimizu      |
| 990009  | T49  | male   | ND           | Lomax        |
| 990010  | T49  | male   | 79*          | Shimizu      |
| 990010  | T49  | male   | ND           | Lomax        |
| 990011  | T49  | male   | ND           | Lomax        |
| 990016  | T49  | male   | ND           | Lomax        |
| 990017  | T49  | male   | ND           | Lomax        |
| 990018  | T49  | male   | ND           | Lomax        |
| 990019  | T49  | male   | ND           | Lomax        |
| 990020  | T49  | male   | ND           | Lomax        |
| 990031  | T11B | male   | ND           | Shimizu      |
| 990031  | T11B | male   | ND           | Lomax        |
| 990032  | T11B | male   | ND           | Shimizu      |
| 990032  | T11B | male   | ND           | Lomax        |
| 990033  | T11B | female | ND           | Shimizu      |
| 990034  | T11B | female | ND           | Shimizu      |
| 990035  | T11B | female | ND           | Shimizu      |
| 990038  | T11B | female | ND           | Shimizu      |
| 990039  | T11B | male   | ND           | Shimizu      |
| 990039  | T11B | male   | ND           | Lomax        |
| 990040  | T11B | male   | ND           | Shimizu      |
| 990040  | T11B | male   | ND           | Lomax        |
| 990047  | T11B | male   | ND           | Shimizu      |
| 990047  | T11B | male   | ND           | Lomax        |
| 990048  | T11B | male   | ND           | Shimizu      |
| 990048  | T11B | male   | ND           | Lomax        |

ND = not detected

\*value is very close to the non-detect limit.

The method used by Dr. Shimizu was an enzyme-linked immunosorbent assay for carp vitellogenin. The method used by Mr. Lomax was an enzyme-linked immunosorbent assay for English sole vitellogenin.

137

| Site           | Sample | Species            | Shell       | Aperture    | Sex | Penis       | VDS |
|----------------|--------|--------------------|-------------|-------------|-----|-------------|-----|
|                |        |                    | Height (mm) | Length (mm) |     | Length (mm) |     |
| Ogden Point    | 1      | Nucella emarginata | 26          | 17.2        | F   | 2.2         | 2   |
| Ogden Point    | 2      | Nucella emarginata | 24          | 17.5        | F   | 2.5         | 2   |
| Ogden Point    | 3      | Nucella emarginata | 26          | 17.1        | F   | 1.7         | 2   |
| Ogden Point    | 4      | Nucella emarginata | 23.3        | 16          | F   | 2.5         | 2   |
| Ogden Point    | 5      | Nucella emarginata | 22.4        | 16.2        | F   | 1.9         | 2   |
| Ogden Point    | 6      | Nucella emarginata | 21          | 15.2        | М   | 5.2         |     |
| Ogden Point    | 7      | Nucella emarginata | 23.5        | 16          | Μ   | 4.9         |     |
| Ogden Point    | 8      | Nucella emarginata | 22          | 14.2        | F   | 1.5         | 2   |
| Ogden Point    | 9      | Nucella emarginata | 23.3        | 19.4        | М   | 6.8         |     |
| Ogden Point    | 10     | Nucella emarginata | 21.1        | 18.7        | F   | 2.5         | 2   |
| Ogden Point    | 11     | Nucella emarginata | 25.5        | 18          | F   | 2           | 2   |
| Ogden Point    | 12     | Nucella emarginata | 25.5        | 16          | F   | 1.9         | 2   |
| Ogden Point    | 13     | Nucella emarginata | 25.8        | 17          | F   | 2.8         | 2   |
| Ogden Point    | 14     | Nucella emarginata | 20.3        | 14          | F   | 1.8         | 2   |
| Ogden Point    | 15     | Nucella emarginata | 20.3        | 14.5        | Μ   | 5.5         |     |
| Ogden Point    | 16     | Nucella emarginata | 21.6        | 15.6        | F   | 2.5         | 2   |
| Ogden Point    | 17     | Nucella emarginata | 26.3        | 18.8        | F   | 2.1         | 2   |
| Ogden Point    | 18     | Nucella emarginata | 23.7        | 16.3        | М   | 6.5         |     |
| Ogden Point    | 19     | Nucella emarginata | 22          | 16.1        | F   | 1.4         | 2   |
| Ogden Point    | 20     | Nucella emarginata | 23.1        | 16          | F   | 2           | 2   |
| Ogden Point    | 21     | Nucella emarginata | 21.1        | 14.6        | F   | 2.2         | 4   |
| Ogden Point    | 22     | Nucella emarginata | 22          | 15.7        | F   | 1.2         | 2   |
| Ogden Point    | 23     | Nucella emarginata | 22.2        | 15          | F   | 2           | 2   |
| Ogden Point    | 24     | Nucella emarginata | 23.5        | 16          | F   | 1           | 2   |
| Ogden Point    | 25     | Nucella emarginata | 22.8        | 16          | F   | 2.2         | 2   |
| Ogden Point    | 26     | Nucella emarginata | 23.5        | 15.6        | F   | 2.1         | 2   |
| Ogden Point    | 27     | Nucella emarginata | 22          | 15.4        | F   | 2           | 2   |
| Ogden Point    | 28     | Nucella emarginata | 21.5        | 15          | F   | 1.2         | 2   |
| Ogden Point    | 29     | Nucella emarginata | 21.5        | 14.9        | F   | 1.5         | 2   |
| Ogden Point    | 30     | Nucella emarginata | 21.1        | 14.1        | F   | 1.9         | 2   |
| Ten Mile Point | 1      | Nucella emarginata | 22          | 14          | F   | 0.9         | 2   |
| Ten Mile Point | 2      | Nucella emarginata | 21.5        | 13          | F   | 1.2         | 2   |
| Ten Mile Point | 3      | Nucella emarginata | 22          | 13.9        | Μ   | 6           |     |
| Ten Mile Point | 4      | Nucella emarginata | 20          | 13.5        | F   | 0.5         | 2   |
| Ten Mile Point | 5      | Nucella emarginata | 16.4        | 10.1        | F   | 0.6         | 2   |
| Ten Mile Point | 1      | Nucella lamellosa  | 39.6        | 22.9        | Μ   | 5.8         |     |
| Ten Mile Point | 2      | Nucella lamellosa  | 37.1        | 23.9        | М   | 4.2         |     |
| Ten Mile Point | 3      | Nucella lamellosa  | 42          | 27.8        | F   | 0           | 0   |
| Ten Mile Point | 4      | Nucella lamellosa  | 36          | 23.2        | F   | 0           | 0   |
| Ten Mile Point | 5      | Nucella lamellosa  | 40.2        | 26          | F   | 0           | 0   |
| Ten Mile Point | 6      | Nucella lamellosa  | 39.8        | 25          | F   | 0           | 0   |
| Ten Mile Point | 7      | Nucella lamellosa  | 41.8        | 26.8        | F   | 0           | 0   |
| Ten Mile Point | 8      | Nucella lamellosa  | 39.2        | 25.9        | F   | 0           | 0   |
| Ten Mile Point | 9      | Nucella lamellosa  | 36.7        | 22.8        | F   | 0           | 0   |

-----

| Site            | Sample | Species           | Shell        | Aperture     | Sex     | Penis       | VDS    |
|-----------------|--------|-------------------|--------------|--------------|---------|-------------|--------|
|                 |        |                   | Height (mm)  | Length (mm)  |         | Length (mm) |        |
| Ten Mile Point  | 10     | Nucella lamellosa | 43.8         | 27.5         | М       | 6.2         |        |
| Ten Mile Point  | 11     | Nucella lamellosa | 35.5         | 23.5         | Μ       | 5           |        |
| Ten Mile Point  | 12     | Nucella lamellosa | 38.1         | 24.2         | Μ       | 5.5         |        |
| Ten Mile Point  | 13     | Nucella lamellosa | 35.3         | 20.2         | Μ       | 5.3         |        |
| Ten Mile Point  | 14     | Nucella lamellosa | 42           | 26           | F       | 0           | 0      |
| Ten Mile Point  | 15     | Nucella lamellosa | 39           | 25           | F       | 0.3         | 2      |
| Ten Mile Point  | 16     | Nucella lamellosa | 35           | 22           | Μ       | 7           |        |
| Ten Mile Point  | 17     | Nucella lamellosa | 33.5         | 22.1         | Μ       | 5.6         |        |
| Ten Mile Point  | 18     | Nucella lamellosa | 33.2         | 20.8         | F       | 0           | 0      |
| Ten Mile Point  | 19     | Nucella lamellosa | 36           | 22.6         | М       | 6           |        |
| Ten Mile Point  | 20     | Nucella lamellosa | 44           | 27           | М       | 7.6         |        |
| Ten Mile Point  | 21     | Nucella lamellosa | 45           | 27.2         | F       | 0.8         | 2      |
| Ten Mile Point  | 22     | Nucella lamellosa | 37.5         | 23.2         | F       | 0.4         | 2      |
| Ten Mile Point  | 23     | Nucella lamellosa | 31.9         | 20.8         | М       | 5.8         |        |
| Ten Mile Point  | 24     | Nucella lamellosa | 32.2         | 20.8         | М       | 5.6         |        |
| Ten Mile Point  | 25     | Nucella lamellosa | 34           | 22.8         | М       | 7           |        |
| Ten Mile Point  | 26     | Nucella lamellosa | 39.6         | 22.1         | F       | 0           | 0      |
| Ten Mile Point  | 27     | Nucella lamellosa | 42.5         | 26.9         | F       | 0           | Ő      |
| Ten Mile Point  | 28     | Nucella lamellosa | 39           | 25.1         | F       | 0           | 0      |
| Ten Mile Point  | 29     | Nucella lamellosa | 41           | 27           | F       | 0           | 0<br>0 |
| Ten Mile Point  | 30     | Nucella lamellosa | 36           | 21.1         | М       | 7.2         | Ū      |
| Mission Point   | 1      | Nucella lamellosa | 43           | 26           | М       | 7.1         |        |
| Mission Point   | 2      | Nucella lamellosa | 40.1         | 24.9         | F       | 0.5         | 2      |
| Mission Point   | 3      | Nucella lamellosa | 47.2         | 26.9         | F       | 2           | 2      |
| Mission Point   | 4      | Nucella lamellosa | 43           | 27.5         | F       | 12          | 2      |
| Mission Point   | • 5    | Nucella lamellosa | 35.9         | 22.5         | M       | 7.2         | 2      |
| Mission Point   | 6      | Nucella lamellosa | 39.9         | 24.1         | F       | 1.2         | 2      |
| Mission Point   | 7      | Nucella lamellosa | 36.3         | 22.2         | M       | 6.5         | 4      |
| Mission Point   | 8      | Nucella lamellosa | 37.6         | 22.2         | M       | 5           |        |
| Mission Point   | 9      | Nucella lamellosa | 36.6         | 23.2         | M       | 53          |        |
| Mission Point   | 10     | Nucella lamellosa | 34.7         | 21.6         | M       | 7.5         |        |
| Mission Point   | 11     | Nucella lamellosa | 35.3         | 21.3         | M       | 6           |        |
| Mission Point   | 12     | Nucella lamellosa | 41 1         | 23.6         | F       | 1.2         | 4      |
| Mission Point   | 12     | Nucella lamellosa | 35.3         | 23.0         | M       | 1.2<br>7    | 4      |
| Mission Point   | 14     | Nucella lamellosa | 34.1         | 203          | M       | 7           |        |
| Mission Point   | 15     | Nucella lamellosa | 35           | 20.5         | F       | 13          | 2      |
| Mission Point   | 16     | Nucella lamellosa | 37.8         | 21.1         | г<br>Б  | 1.3         | 2      |
| Mission Point   | 10     | Nucella lamellosa | 36.8         | 23.1         | г<br>Б  | 2.2         | 2      |
| Mission Point   | 18     | Nucella lamellosa | 37           | 23           | F       | 1           | 2      |
| Mission Point   | 10     | Nucella lamellosa | 36.0         | 23.5         | т<br>М  | 1           | 2      |
| Mission Point   | 20     | Nucella lamellosa | J0.9<br>41.6 | 22.1         | E       | 5.5         | 2      |
| Mission Point   | 20     | Nucella lamellosa | 41.0<br>12 1 | 23.9         | г<br>г  | 1.5         | 3<br>2 |
| Mission Point   | 21     | Nucella lamellosa | 43 Q         | 22.9<br>77 7 | г<br>Г  | 0.0         | с<br>л |
| Mission Point   | 22     | Nucella lamellosa | 14 C         | 0.6          | л.<br>Л | 1.5         | 4      |
| TATISSION LOUNT | 23     | walena tamenosa   | 14.4         | 2.0          | 1/1     | 1.5         |        |

| Site          | Sample | Species              | Shell       | Aperture    | Sex      | Penis       | VDS |
|---------------|--------|----------------------|-------------|-------------|----------|-------------|-----|
|               |        |                      | Height (mm) | Length (mm) |          | Length (mm) |     |
| Mission Point | 24     | Nucella lamellosa    | 14.6        | 11          | Μ        | 1.6         |     |
| Ogden Point   | 1      | Nucella canaliculata | 32.5        | 21.1        | F        | 1.5         | 2   |
| Ogden Point   | 2      | Nucella canaliculata | 30          | 20.3        | F        | 1.3         | 2   |
| Ogden Point   | 3      | Nucella canaliculata | 33.1        | 21          | М        | 8.6         |     |
| Ogden Point   | 4      | Nucella canaliculata | 34.1        | 21.1        | F        | 1.2         | 2   |
| Ogden Point   | 5      | Nucella canaliculata | 35          | 21.8        | F        | 3.3         | 4   |
| Ogden Point   | 6      | Nucella canaliculata | 33.5        | 22.1        | Μ        | 8           |     |
| Ogden Point   | 7      | Nucella canaliculata | 36.3        | 24          | F        | 1.2         | 2   |
| Ogden Point   | 8      | Nucella canaliculata | 35          | 21.1        | F        | 1.1         | 2   |
| Ogden Point   | 9      | Nucella canaliculata | 31          | 20          | М        | 10          |     |
| Ogden Point   | 10     | Nucella canaliculata | 32.3        | 21          | F        | 1           | 2   |
| Ogden Point   | 11     | Nucella canaliculata | 31.5        | 20.1        | F        | 1           | 2   |
| Ogden Point   | 12     | Nucella canaliculata | 33.1        | 21.5        | Μ        | 10          |     |
| Ogden Point   | 13     | Nucella canaliculata | 29.6        | 20.9        | М        | 8.2         |     |
| Ogden Point   | 14     | Nucella canaliculata | 30          | 20          | F        | 0           | 0   |
| Ogden Point   | 15     | Nucella canaliculata | 30.6        | 20          | F        | 1           | 2   |
| Ogden Point   | 16     | Nucella canaliculata | 31.3        | 19          | M        | 7.1         | -   |
| Ogden Point   | 17     | Nucella canaliculata | 29          | 18.3        | F        | 2.7         | 2   |
| Ogden Point   | 18     | Nucella canaliculata | 28.8        | 18.3        | F        | 0           | 0   |
| Ogden Point   | 19     | Nucella canaliculata | 29.1        | 19          | F        | 12          | 2   |
| Ogden Point   | 20     | Nucella canaliculata | 30.3        | 19.2        | F        | 0.8         | 2   |
| Ogden Point   | 21     | Nucella canaliculata | 27.1        | 18          | F        | 1.5         | 2   |
| Ogden Point   | 21     | Nucella canaliculata | 26.8        | 17.5        | M        | 8 1         | 2   |
| Ogden Point   | 23     | Nucella canaliculata | 16.5        | 12          | M        | 4.8         |     |
| Ogden Point   | 23     | Nucella canaliculata | 20.8        | 15.1        | M        | 5 1         |     |
| Ogden Point   | 25     | Nucella canaliculata | 20.5        | 14.3        | F        | 0           | 2   |
| Ogden Point   | 25     | Nucella canaliculata | 20.5        | 17          | F        | 0.5         | 2   |
| Ogden Point   | 20     | Nucella canaliculata | 19          | 13.2        | M        | 6.5         | 2   |
| Ogden Point   | 27     | Nucella canaliculata | 30.1        | 18.9        | F        | 1.8         | r   |
| Ogden Point   | 20     | Nucella canaliculata | 25.5        | 17.1        | M        | 1.0         | 2   |
| Ogden Point   | 30     | Nucella canaliculata | 23.5        | 17.1        | IVI<br>E | 7.2         | 1   |
| Clover Point  | 1      | Nucella canaliculata | 21.0        | 17.5        | Г        | 50          | 1   |
| Clover Point  | 1      | Nucella canaliculata | 20          | 17.5        | M        | 5.2         |     |
| Clover Point  | 2      | Nucella canaliculata | 22.6        | 19.3        | M        | 9           |     |
| Clover Point  | 3      | Nucella canaliculata | 33.0        | 20.1        | M        | 6           | 2   |
| Clover Point  | 4      | Nucella canaliculata | 20.0        | 18.1        | r<br>r   | 0           | 2   |
| Clover Point  | 5      | Nucella canaliculata | 20          | 17.4        | r<br>M   | 0.6         | 2   |
| Clover Point  | 0      | Nucella canaliculata | 28.8        | 17.6        | M        | 7.3         |     |
| Clover Point  | /      | Nucella canaliculata | 32          | 19.9        | r<br>T   | 1.2         | 2   |
| Clover Point  | 8      | Nucella canaliculata | 28          | 17.5        | F        | 0.5         | 2   |
| Clover Point  | 9      | Nucella canaliculata | 25.9        | 17.1        | M        | 7.8         |     |
| Clover Point  | 10     | Nucella canaliculata | 33.1        | 20.9        | M        | 7.5         |     |
| Clover Point  | 11     | Nucella canaliculata | 29.5        | 19          | F        | 0.5         | 2   |
| Clover Point  | 12     | Nucella canaliculata | 28.5        | 19          | F        | 0           | 0   |
| Clover Point  | 13     | Nucella canaliculata | 29          | 18.7        | Μ        | 8           |     |

-----

1.000

| Site           | Sample | Species              | Shell       | Aperture    | Sex | Penis       | VDS |
|----------------|--------|----------------------|-------------|-------------|-----|-------------|-----|
|                |        |                      | Height (mm) | Length (mm) |     | Length (mm) |     |
| Clover Point   | 14     | Nucella canaliculata | 28.4        | 17.6        | F   | 0.9         | 2   |
| Clover Point   | 15     | Nucella canaliculata | 30.9        | 18.8        | F   | 0.5         | 2   |
| Clover Point   | 16     | Nucella canaliculata | 30          | 18.1        | Μ   | 4           |     |
| Clover Point   | 17     | Nucella canaliculata | 29.7        | 18.8        | F   | 0.8         | 2   |
| Clover Point   | 18     | Nucella canaliculata | 29.1        | 18          | F   | 0.8         | 2   |
| Clover Point   | 19     | Nucella canaliculata | 30.2        | 18.6        | F   | 0           | 1   |
| Clover Point   | 20     | Nucella canaliculata | 29          | 18          | Μ   | 6.1         |     |
| Clover Point   | 21     | Nucella canaliculata | 28.5        | 18          | Μ   | 6.3         |     |
| Clover Point   | 22     | Nucella canaliculata | 28          | 18          | Μ   | 5.2         |     |
| Clover Point   | 23     | Nucella canaliculata | 28          | 18.5        | М   | 5.5         |     |
| Clover Point   | 24     | Nucella canaliculata | 29.6        | 18          | F   | 1.2         | 2   |
| Clover Point   | 25     | Nucella canaliculata | 28.6        | 18          | F   | 0           | 0   |
| Clover Point   | 26     | Nucella canaliculata | 29          | 17.2        | Μ   | 6.2         |     |
| Clover Point   | 27     | Nucella canaliculata | 25.3        | 16          | Μ   | 7           |     |
| Clover Point   | 28     | Nucella canaliculata | 29.2        | 17          | Μ   | 3           |     |
| Clover Point   | 29     | Nucella canaliculata | 33          | 20.7        | М   | 6.1         |     |
| Clover Point   | 30     | Nucella canaliculata | 30          | 18.9        | F   | 0           | 0   |
| Ten Mile Point | 1      | Nucella canaliculata | 28.1        | 18.8        | F   | 0           | 0   |
| Ten Mile Point | 2      | Nucella canaliculata | 25.9        | 16.3        | F   | 0           | 0   |
| Ten Mile Point | 3      | Nucella canaliculata | 26          | 15.2        | F   | 0           | 0   |
| Ten Mile Point | 4      | Nucella canaliculata | 28.5        | 17.2        | F   | 0           | 1   |
| Ten Mile Point | 5      | Nucella canaliculata | 25.4        | 17          | F   | 0           | 0   |
| Ten Mile Point | 6      | Nucella canaliculata | 30.9        | 19          | F   | 0           | 0   |
| Ten Mile Point | 7      | Nucella canaliculata | 29.9        | 19          | F   | 0           | 0   |
| Ten Mile Point | 8      | Nucella canaliculata | 24          | 14.9        | F   | 0           | 1   |
| Ten Mile Point | 9      | Nucella canaliculata | 26          | 15.6        | Μ   | 8           |     |
| Ten Mile Point | 10     | Nucella canaliculata | 26          | 16          | F   | 0.5         | 1   |
| Ten Mile Point | 11     | Nucella canaliculata | 25.5        | 16          | Μ   | 8.1         |     |
| Ten Mile Point | 12     | Nucella canaliculata | 24.2        | 15.8        | Μ   | 9           |     |
| Ten Mile Point | 13     | Nucella canaliculata | 25.2        | 16          | F   | 0           | 0   |
| Ten Mile Point | 14     | Nucella canaliculata | 26.9        | 16.1        | F   | 0           | 0   |
| Ten Mile Point | 15     | Nucella canaliculata | 27.5        | 17          | Μ   | 8.8         |     |
| Ten Mile Point | 16     | Nucella canaliculata | 27.1        | 16          | Μ   | 6.2         |     |
| Ten Mile Point | 17     | Nucella canaliculata | 26          | 15.1        | Μ   | 7.5         |     |
| Ten Mile Point | 18     | Nucella canaliculata | 25.6        | 15.9        | F   | 0           | 0   |
| Ten Mile Point | 19     | Nucella canaliculata | 25.9        | 15.6        | F   | 0           | 0   |
| Ten Mile Point | 20     | Nucella canaliculata | 22.8        | 13.8        | F   | 0           | 0   |
| Ten Mile Point | 21     | Nucella canaliculata | 24.5        | 16          | F   | 0           | 0   |
| Ten Mile Point | 22     | Nucella canaliculata | 23          | 15          | М   | 4.8         |     |
| Ten Mile Point | 23     | Nucella canaliculata | 20          | 12.5        | F   | 0           | 0   |
| Ten Mile Point | 24     | Nucella canaliculata | 25          | 15.2        | Μ   | 7.5         |     |
| Ten Mile Point | 25     | Nucella canaliculata | 22.5        | 14          | Μ   | 7.1         |     |
| Ten Mile Point | 26     | Nucella canaliculata | 23          | 13.5        | F   | 0.3         | 2   |
| Ten Mile Point | 27     | Nucella canaliculata | 24          | 15.1        | F   | 0           | 0   |

,

A STATE OF STATE

of the second

Contract of the local division of the local

| Site           | Sample | Species              | Shell       | Aperture    | Sex | Penis       | VDS |
|----------------|--------|----------------------|-------------|-------------|-----|-------------|-----|
|                |        |                      | Height (mm) | Length (mm) |     | Length (mm) |     |
| Ten Mile Point | 28     | Nucella canaliculata | 22.2        | 15          | Μ   | 7.2         |     |
| Ten Mile Point | 29     | Nucella canaliculata | 24          | 15          | М   | 7.4         |     |
| Ten Mile Point | 30     | Nucella canaliculata | 22          | 13.5        | F   | 0           | 0   |
| Clover Point   | 1      | Searlesia dira       | 38.5        | 18.7        | Μ   | 8.9         |     |
| Clover Point   | 2      | Searlesia dira       | 39          | 21          | Μ   | 12.5        |     |
| Clover Point   | 3      | Searlesia dira       | 36          | 17          | F   | 0           | 0   |
| Clover Point   | 4      | Searlesia dira       | 33.5        | 18          | М   | 10          |     |
| Clover Point   | 5      | Searlesia dira       | 33.6        | 18          | Μ   | 8           |     |
| Clover Point   | 6      | Searlesia dira       | 31          | 17.5        | F   | 0           | 0   |
| Clover Point   | 7      | Searlesia dira       | 30.9        | 17.1        | Μ   | 9           |     |
| Clover Point   | 8      | Searlesia dira       | 27.6        | 15.9        | F   | 0           | 0   |
| Clover Point   | 9      | Searlesia dira       | 26.8        | 14.5        | Μ   | 5           |     |
| Clover Point   | 10     | Searlesia dira       | 23.9        | 13.1        | F   | 0           | 0   |
|                |        |                      |             |             |     |             |     |

in the second

VDS = vas deferens sequence index; stages are based on Gibbs et al., 1987. J. Mar. Biol. Ass. U.K. 67:507-523. M=male; F=female

Imposex measurements in gastropods from Victoria and Mission Point. Investigator: Dr. Toshihiro Horiguchi

| Sample l | Date: 99053 | -          | Location     | n: Victoria, 6 | <b>Odgen Point</b> |          | Species: Nucella lin    | n         |                |               |
|----------|-------------|------------|--------------|----------------|--------------------|----------|-------------------------|-----------|----------------|---------------|
| Specimen | Shell       | Shell      | Shell        | Soft tissue    | Eirst sex          | Penis    | Penis length Penis leng | th VDS    | Opening of     | Second sex    |
| No.      | height (mm) | width (mm) | ) weight (g) | weight (g)     | determination      | present? | curved (mm) straight (1 | nm) Index | vulva blocked? | determination |
| -        | 33.9        | 20.4       | 6.6          | 1.6            | Ъ                  | Y        | ŝ                       | ŝ         | Z              | imposex       |
| 2        | 31.8        | 19.9       | 4.7          | 1.1            | ц                  | Υ        | 2                       | ŝ         | Z              | imposex       |
| б        | 32.7        | 20.0       | 5.5          | 1.2            | Μ                  | Υ        | 10                      |           |                | Μ             |
| 4        | 32.3        | 20.2       | 5.2          | 1.2            | Ч                  | Υ        | 1                       | ŝ         | Z              | imposex       |
| 5        | 30.7        | 19.1       | 4.8          | 1.0            | Μ                  | Υ        | 11                      |           |                | Μ             |
| 9        | 31.7        | 19.6       | 6.0          | 1.2            | Μ                  | Υ        | 13                      |           |                | Μ             |
| 7        | 34.5        | 20.0       | 6.0          | 1.6            | Ч                  | Υ        | 2                       | ŝ         | Z              | imposex       |
| 8        | 32.0        | 20.2       | 5.1          | 1.2            | ц                  | Υ        | 1.5                     | ŝ         | Z              | imposex       |
| 6        | 32.2        | 18.8       | 4.8          | 1.3            | Μ                  | Υ        | 11                      |           |                | Μ             |
| 10       | 33.3        | 19.8       | 5.7          | 1.5            | ц                  | Υ        | 2                       | £         | Z              | imposex       |
| 11       | 36.8        | 22.0       | 8.9          | 2.1            | Μ                  | Y        | 8.5                     |           |                | Μ             |
| 12       | 30.0        | 18.1       | 4.4          | 1.2            | Μ                  | γ        | 12                      |           |                | Μ             |
| 13       | 29.4        | 17.7       | 3.9          | 1.0            | M                  | Υ        | 10                      |           |                | Μ             |
| 14       | 31.7        | 20.5       | 5.3          | 1.6            | ц                  | Υ        | 2                       | ŝ         | Z              | imposex       |
| 15       | 37.3        | 21.9       | 7.1          | 2.0            | ц                  | Υ        | 1                       | ŝ         | Z              | imposex       |
| 16       | 29.5        | 19.2       | 4.4          | 1.0            | Μ                  | Υ        | 8                       |           |                | Μ             |
| 17       | 29.2        | 18.8       | 3.9          | 1.0            | Г                  | Υ        | 1                       | ŝ         | Z              | imposex       |
| 18       | 27.8        | 17.0       | 3.5          | 0.7            | Μ                  | Υ        | 8                       |           |                | Μ             |
| 19       | 33.9        | 21.0       | 6.9          | 1.7            | Μ                  | Υ        | 11                      |           |                | Μ             |
| 20       | 32.0        | 20.6       | 4.8          | 1.2            | Μ                  | Υ        | 11                      |           |                | Μ             |
| 21       | 38.1        | 23.9       | 8.38         | 2.68           | Ч                  | Υ        | 3 2.7                   | ŝ         | Z              | imposex       |
| 22       | 41.2        | 24.8       | 11.66        | 3.50           | ц                  | Υ        | 4 3                     | 4         | Z              | imposex       |
| 23       | 39.0        | 23.2       | 8.24         | 2.42           | ц                  | Z        |                         | 1         | Z              | imposex       |
| 24       | 35.8        | 22.7       | 8.79         | 2.49           | н                  | Υ        | 2 2                     | ŝ         | Z              | imposex       |
| 25       | 39.8        | 22.4       | 8.11         | 2.14           | ц                  | Υ        | 1.5 1.4                 | ŝ         | Z              | imposex       |
| 26       | 35.5        | 20.8       | 6.28         | 1.99           | F                  | Υ        | 2 2.2                   | ς         | Z              | imposex       |
| 27       | 35.4        | 21.5       | 7.71         | 1.88           | Μ                  | Υ        | 6 5.7                   |           |                | Σ             |
| 28       | 35.3        | 21.6       | 6.60         | 1.97           | ц                  | Υ        | 2 2                     | ŝ         | Z              | imposex       |
| 29       | 34.7        | 21.9       | 6.64         | 1.58           | ц                  | Υ        | 2 2                     | ŝ         | Z              | imposex       |
| 30       | 34.7        | 21.2       | 7.54         | 1.67           | ц                  | Υ        | 2 2.1                   | ς         | Z              | imposex       |

143

144

Imposex measurements in gastropods from Victoria and Mission Point. Investigator: Dr. Toshihiro Horiguchi

| Sampling | <b>5 Date:</b> 9905 | 531       |              | Location:   | Victoria, Clov | ver Point |              | Species: Nuce   | ella lin | а             |               |
|----------|---------------------|-----------|--------------|-------------|----------------|-----------|--------------|-----------------|----------|---------------|---------------|
| Specimen | Shell               | Shell     | Shell        | Soft tissue | First sex      | Penis     | Penis length | Penis length V  | ) SQ     | Opening of    | Second sex    |
| No.      | height (mm)         | width (mm | ) weight (g) | weight (g)  | determination  | present?  | curved (mm)  | straight (mm) I | ndex v   | ulva blocked? | determination |
| 1        | 33.9                | 19.0      | 5.2          | 1.4         | Ч              | Υ         | 1            |                 | ŝ        | Z             | imposex       |
| 2        | 30.4                | 19.4      | 4.2          | 1.4         | ц              | Υ         | 1            |                 | 7        | Z             | imposex       |
| ŝ        | 33.0                | 19.4      | 5.3          | 1.7         | н              | Υ         | 1.5          |                 | e        | Z             | imposex       |
| 4        | 30.2                | 17.5      | 4.0          | 1.1         | Ц              | Υ         | 1.5          |                 | 7        | z             | imposex       |
| 5        | 25.5                | 17.5      | 3.5          | 0.8         | Ч              | Υ         | 2.5          |                 | e        | Z             | imposex       |
| 9        | 27.0                | 16.6      | 3.0          | 1.0         | ц              | Υ         | 1.5          |                 | 7        | Z             | imposex       |
| 7        | 28.8                | 17.5      | 3.2          | 0.9         | Σ              | Υ         | 7.5          |                 |          |               | Μ             |
| 8        | 29.8                | 17.5      | 3.6          | 1.0         | Ч              | Υ         | 2            |                 | e        | Z             | imposex       |
| 6        | 29.8                | 17.8      | 3.9          | 1.2         | Ц              | Υ         | 1            |                 | ŝ        | Z             | imposex       |
| 10       | 27.7                | 17.1      | 3.2          | 0.9         | Σ              | Υ         | 11           |                 |          |               | Σ             |
| 11       | 31.8                | 18.5      | 4.53         | 1.46        | Я              | Υ         | 1.5          | 1               | ŝ        | Z             | imposex       |
| 12       | 31.0                | 18.6      | 4.48         | 1.30        | н              | Υ         | 2            | 1.4             | ŝ        | Z             | imposex       |
| 13       | 30.7                | 18.0      | 4.17         | 1.29        | н              | Z         |              |                 | 0        | Z             | F             |
| 14       | 32.4                | 19.7      | 4.95         | 1.58        | Ц              | z         |              |                 | 0        | Z             | F             |
| 15       | 33.0                | 19.0      | 5.08         | 1.30        | Ъ              | Υ         | 1.5          | 0.9             | e        | Z             | imposex       |
| 16       | 29.4                | 17.9      | 4.11         | 1.14        | F              | Υ         | 1.2          | 1               | 4        | Z             | imposex       |
| 17       | 29.4                | 17.6      | 3.88         | 1.11        | F              | Y         | 1            | 1               | ŝ        | Z             | imposex       |
| 18       | 29.5                | 17.1      | 3.47         | 1.12        | F              | z         |              |                 | 0        | Z             | н             |
| 19       | 29.6                | 16.5      | 3.48         | 0.94        | F              | Z         |              |                 | 0        | Z             | F             |
| 20       | 27.5                | 17.0      | 3.25         | 0.79        | Ч              | Z         |              |                 | 0        | z             | ц             |

•

:

.....

Imposex measurements in gastropods from Victoria and Mission Point. Investigator: Dr. Toshihiro Horiguchi

| Sampling | <b>Date:</b> 990 | 531         |               | Location:   | Victoria, Ten- | mile Poir | nt                | Species: $Nu$ | icella li | ima               |               |
|----------|------------------|-------------|---------------|-------------|----------------|-----------|-------------------|---------------|-----------|-------------------|---------------|
| Specimen | Shell            | Shell       | Shell         | Soft tissue | First sex      | Penis     | Penis length      | Penis length  | VDS       | <b>Opening of</b> | Second sex    |
| N0.      | height (mm)      | ) width (mn | n) weight (g) | weight (g)  | determination  | present?  | curved (mm)       | straight (mm) | ) Index   | vulva blocked?    | determination |
| 1        | 29.0             | 17.4        |               | 1.2         | ц              | Υ         | $\nabla$          | 0.5           | 7         | Z                 | imposex       |
| 2        | 28.0             | 15.6        |               | 0.7         | М              | Υ         | 10                |               |           |                   | Μ             |
| ŝ        | 26.0             | 15.3        |               | 0.8         | Ч              | z         | 0                 |               |           | Z                 | ц             |
| 4        | 26.0             | 16.9        |               | 1.0         | ц              | z         | 0                 |               |           | Z                 | щ             |
| 5        | 26.0             | 14.4        |               | 0.7         | ц              | z         | 0                 |               | 1         | z                 | imposex       |
| 9        | 30.5             | 17.6        |               | 1.0         | ц              | Υ         | $\overline{\lor}$ | 0.5           | 7         | Z                 | imposex       |
| 7        | 29.0             | 16.3        |               | 0.9         | М              | Υ         | 10.5              |               |           |                   | М             |
| 8        | 29.3             | 17.1        |               | 1.0         | ц              | Υ         | 1                 |               | 7         | Z                 | imposex       |
| 6        | 27.1             | 15.2        |               | 0.8         | ц              | Z         | 0                 |               | 1         | Z                 | imposex       |
| 10       | 31.3             | 17.3        |               | 1.0         | Σ              | Y         | 6.5               |               |           |                   | Μ             |
| 11       | 37.1             | 22.7        | 10.40         | 1.45        | ц              | z         |                   |               | 1         | Z                 | imposex       |
| 12       | 44.4             | 25.6        | 12.55         | 2.61        | М              | Υ         | 7                 | 5.8           |           |                   | Μ             |
| 13       | 37.2             | 22.4        | 9.61          | 1.31        | ц              | Υ         | <0.5              | 0.6           | 0         | Z                 | imposex       |
| 14       | 39.6             | 24.4        | 8.66          | 1.84        | Μ              | Υ         | 7                 | 7             |           |                   | Μ             |
| 15       | 40.9             | 25.4        | 9.43          | 2.05        | F              | Υ         | -                 | 1             | ŝ         | Z                 | imposex       |
| 16       | 41.4             | 23.9        | 9.60          | 2.43        | F              | Υ         | -                 | 0.9           | 7         | Z                 | imposex       |
| 17       | 35.4             | 22.2        | 7.20          | 1.48        | Ц              | Z         |                   |               | 1         | Z                 | imposex       |
| 18       | 35.4             | 22.7        | 7.73          | 1.42        | X              | Y         | 8                 | 5.9           |           |                   | Μ             |
| 19       | 36.8             | 21.5        | 6.49          | 1.56        | Σ              | Υ         | 7                 | 6.6           |           |                   | Μ             |
| 20       | 34.9             | 21.4        | 6.49          | 1.50        | F              | Υ         | 1                 | 0.8           | 0         | Z                 | imposex       |

.

. ....

7

.

Imposex measurements in gastropods from Victoria and Mission Point. Investigator: Dr. Toshihiro Horiguchi

| Sampling | <b>; Date:</b> 9906 | 502        |            | Location:   | Mission Point | (Wilson  | Creek)              | Species: Nu   | cella h | amellosa          |               |
|----------|---------------------|------------|------------|-------------|---------------|----------|---------------------|---------------|---------|-------------------|---------------|
| Specimen | Shell               | Shell      | Shell      | Soft tissue | First sex     | Penis    | <b>Penis length</b> | Penis length  | VDS     | <b>Opening</b> of | Second sex    |
| No.      | height (mm)         | width (mm) | weight (g) | weight (g)  | determination | present? | curved (mm)         | straight (mm) | Index   | vulva blocked?    | determination |
| -        | 38.7                | 23.6       | 9.84       | 1.95        | F             | Υ        | 7                   | 1.6           | ŝ       | Z                 | imposex       |
| 2        | 41.2                | 25.2       | 11.41      | 2.36        | Ц             | Υ        | 2                   | 1.5           | ŝ       | Z                 | imposex       |
| ŝ        | 37.5                | 22.0       | 8.01       | 1.59        | Μ             | Υ        | 6                   | 7             |         |                   | М             |
| 4        | 38.8                | 22.4       | 9.32       | 1.74        | Μ             | γ        | 8                   | 7             |         |                   | Σ             |
| 5        | 38.2                | 22.3       | 8.00       | 1.91        | Ĺ             | γ        | 1.5                 | -             | ŝ       | Z                 | imposex       |
| 9        | 35.8                | 20.4       | 7.05       | 1.43        | Μ             | Υ        | 8.5                 | 5.8           |         |                   | Μ             |
| 7        | 36.0                | 20.0       | 5.71       |             | Μ             | Υ        | 6.5                 | 5.9           |         |                   | М             |
| 8        | 33.3                | 20.1       | 5.36       |             | Μ             | Υ        | 6                   | 7             |         |                   | Μ             |
| 6        | 34.2                | 18.8       | 5.81       | 0.89        | Μ             | γ        | 7.5                 | 6.6           |         |                   | Σ             |
| 10       | 32.7                | 20.2       | 6.13       | 1.36        | Μ             | γ        | 9                   | 4.8           |         |                   | Μ             |

VDS Index = Vas Deferens Sequence Index. This is based on stages described by Gibbs et al., 1987. J. Mar. Biol. Ass. U.K. 67:507-523.

.

•

M = Male; F = Female; Y = Yes; N = No

A gastropod penis is curved. Two methods were used to measure its length: The curved length was measured with thread. This measurement was used to calculate the indicies used in Table 46. The straight length was measured from the bottom to the tip of the penis.

imposex = females with penis development, and/or vas deferens development

.

.

•

•

### Table 46 **Imposex indicies and tributyltin (ng/g wet weight) in gastropods from Victoria and Mission Point.**

Investigators: Dr. Toshihiro Horiguchi

.

| Site         | Species           | Tributyltin* | <b>RPL Index</b> | <b>RPS Index</b> | <b>VDS Index</b> | N**     |
|--------------|-------------------|--------------|------------------|------------------|------------------|---------|
| Clover Pt.   | Nucella lima      | 9.6          | 11.8             | 0.2              | 2.1              | 14f/16m |
| Ogden Pt.    | Nucella lima      | 2.4          | 19               | 0.7              | 2.9              | 19f/11m |
| Ten-Mile Pt. | Nucella lima      | 7.3          | 3.3              | 0.004            | 1.1              | 19f/11m |
| Ten-Mile Pt. | Nucella lamellosa | 8.7          | 8.2              | 0.1              | 1                | 16f/14m |
| Mission Pt.  | Nucella lamellosa | 21.9         | 23.1             | 1.2              | 1                | 12f/12m |

\*each value is the analysis of one sample containing 6-18 female gastropods of the same species.

\*\* = number of females (f) and males (m) measured to obtain the indicies. Measurements

of individual animals are listed in Dr. Horiguchi's imposex measurements data (Table 45) of this report.

RPL Index = Relative Penis length [(mean penis length in females)/ (mean penis length in males)]\*100

RPS Index = Relative Penis size Index = [(mean penis length in females)3/(mean penis length in males)3]\*100.

VDS Index = Vas Deferens sequence index. Stages based on Gibbs et al., 1987. J. Mar. Biol Ass. U.K. 67:507-523.

| Table 47                                                                                  |
|-------------------------------------------------------------------------------------------|
| Histopathology of liver, kidney, gonad and spleen in English sole from Vancouver Harbour. |
| Investigators: Mr. Mark Myers and Ms. Carla Stehr                                         |

|      |         |             |            |           |             |          | Liver<br>Nacrosic | Liver    | Liver<br>Hemosid | Liver<br>Nd/MH | Liver<br>Decembrolif | Liver<br>Chalfibrasis | Liver     |
|------|---------|-------------|------------|-----------|-------------|----------|-------------------|----------|------------------|----------------|----------------------|-----------------------|-----------|
| Site | Fish ID | length (mm) | weight (g) | Gross Sex | Histo Sex   | Age (yr) |                   | erendodu |                  | SDN            | Prolif               | Prolif                | TotProlif |
| T49  | 100066  | 262         | 131        | Δ         | Μ           | ç<br>œ   | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990002  | 263         | 152        | ĹŦ.       | ц           | 80       | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990003  | 204         | 63         | Σ         | Σ           | З        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990004  | 200         | 63         | Σ         | Σ           | З        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990005  | 240         | 112        | Σ         | Σ           | 10       | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 900066  | 311         | 261        | Σ         | н           | 6        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990007  | 215         | 80         | Σ         | Σ           | 6        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 800066  | 250         | 130        | Μ         | Σ           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 600066  | 223         | 86         | Σ         | M           | 5        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990010  | 218         | 90         | Μ         | М           | 5        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 110066  | 207         | 78         | Σ         | Μ           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990012  | 261         | 158        | Σ         | Μ           | 2        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990013  | 243         | 115        | Μ         | М           | 5        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990014  | 274         | 165        | Ч         | ц           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990015  | 290         | 220        | Н         | ц           | 6        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990016  | 251         | 137        | Μ         | М           | 6        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990017  | 257         | 158        | Σ         | М           | 8        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990018  | 230         | 103        | Σ         | M           | 8        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 610066  | 227         | 109        | Σ         | Μ           | ×        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990020  | 227         | 110        | Σ         | Μ           | 5        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990021  | 295         | 193        | н         | ч           | 7        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990022  | 263         | 157        | ц         | ч           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990023  | 265         | 161        | ц         | <u>ل</u> تر | 5        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990024  | 275         | 160        | F         | LL.         | 4        | -                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990025  | 260         | 140        | F         | ц.          | 4        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990026  | 259         | 156        | F         | ц           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990027  | 245         | 133        | Ч         | Μ           | 10       | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990028  | 265         | 174        | F         | Ч           | 7        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990029  | 255         | 150        | Ч         | Ч           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| T49  | 990030  | 278         | 171        | н         | F           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| TIIB | 990031  | 223         | 90         | Σ         | М           | 8        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| TIIB | 990032  | 218         | 87         | Z         | Μ           | 7        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| TIIB | 990033  | 262         | 148        | F         | ш           | 9        | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |
| TIIB | 990034  | 311         | 284        | ц         | F           | 11       | 0                 | 0        | 0                | 0              | 0                    | 0                     | 0         |

|        |                | -                  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|--------|----------------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Spleen |                | MAFree             | 5      | 5      | 5      | 5      | 4      | 5      | 7      | 4      | 5      | 4      | 4      | ę      | 9      | 5      | 5      | 5      | 5      | 5      | 5      | 5      | 9      | 4      | 5      | 4      | 5      | 5      | 5      | 5      | 4      | 9      |        | S      | 5      | 2      |
| Ovary  | •              | Atresia            |        | -      |        |        |        | 1      |        |        |        |        |        |        |        | 1      | -      |        |        |        |        |        | 1      |        | -      | 1      | 0      | 0      |        | 0      | 1      | I      |        |        | 1      | 0      |
| Ovary  | •              | Stage              |        | ŝ      |        |        |        | ę      |        |        |        |        |        |        |        | 2      | 2      |        |        |        |        |        | 2      | ς      | 7      | 7      | ę      | ę      |        | ę      | 7      | 2      |        |        | 7      | 2      |
| Testis |                | Stage              | 9      |        | 2      | 5      | 9      |        | 9      | 5      | 4      | 9      | 9      | 4      | 9      |        |        | 9      | 4      | 4      | 9      | 7      |        |        |        |        |        |        | 9      |        |        |        | 9      | 9      |        |        |
| Kidney | •              | MesLysis           | 0      | 0      |        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Kidney | •              | MesScl ]           | -      | 0      |        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | C      |
| Liver  |                | AnyToxLes          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Liver  |                | <b>FotNeoplasm</b> | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | C      |
| Liver  | epAdenoma      | Neoplasm 7         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | C      |
| Liver  | CholCare H     | Neoplasm           | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Liver  |                | TotPreneo          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | C      |
| Liver  | <b>CCFocus</b> | Preneo '           | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | C      |
| Liver  | BasoFocus      | Preneo             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | c      |
| Liver  | EosinFocus     | Preneo             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|        |                | Fish ID            | 100066 | 990002 | 990003 | 990004 | 990005 | 900066 | 200066 | 900066 | 600066 | 990010 | 990011 | 990012 | 990013 | 990014 | 990015 | 990016 | 990017 | 990018 | 610066 | 990020 | 990021 | 990022 | 990023 | 990024 | 990025 | 990026 | 990027 | 990028 | 990029 | 990030 | 990031 | 990032 | 990033 | 000034 |
|        |                | Site               | T49    | TIIB   | T11B   | TIIB   | TIIR   |

|                         | - 5 |
|-------------------------|-----|
|                         | 1   |
| ~                       | - 7 |
| 5                       |     |
| $\overline{\mathbf{A}}$ |     |
| <b>d</b> 2              | - 2 |
| 1                       | - 2 |
| 9                       | - 1 |
| 65                      | •   |
|                         |     |

|      |         |             |            |                  |           |          | Liver    | Liver     | Liver   | Liver | Liver       | Liver        | Liver     |
|------|---------|-------------|------------|------------------|-----------|----------|----------|-----------|---------|-------|-------------|--------------|-----------|
|      |         |             |            |                  |           |          | Necrosis | Apoptosis | Hemosid | HM/4N | RegenProlif | Cholfibrosis |           |
| Site | Fish ID | length (mm) | weight (g) | <b>Gross Sex</b> | Histo Sex | Age (yr) |          |           |         | SDN   | Prolif      | Prolif       | TotProlif |
| TIIB | 990035  | 272         | 188        | يتر              | F         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 950036  | 325         | 276        | £1.,             | ц         | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990037  | 254         | 135        | ц                | ч         | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990038  | 256         | 148        | LL,              | ц         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990039  | 232         | 100        | Μ                | Σ         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T11B | 990040  | 243         | 120        | Μ                | Σ         | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990041  | 273         | 172        | ĹĨĸ              | Ч         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990042  | 229         | 67         | ц                | Ч         | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990043  | 216         | 81         | <u>[</u>         | Μ         | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990044  | 235         | 116        | يتر              | ш         | 5        | 0        | -         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990045  | 247         | 148        | í.               | ц         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990046  | 240         | 122        | Ľ.               | ц         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990047  | 228         | 108        | Μ                | Σ         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990048  | 227         | 16         | Μ                | М         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990049  | 217         | 88         | ы                | М         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990050  | 217         | 86         | ц                | ц         | 9        | 0        | 0         | 0       | 0     | I           | 0            | -         |
| TIIB | 990051  | 258         | 145        | ĹĽ.              | ц         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990052  | 237         | 112        | (1.              | ц         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990053  | 241         | 121        | Ľ.               | Ľ.        | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990054  | 227         | 104        | Μ                | ц         | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990055  | 236         | 111        | ц                | ц         | 4        | I        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990056  | 228         | 98         | بىر              | н         | 5        | 0        | 0         | 0       | -     | 0           | 0            | 0         |
| TIIB | 990057  | 226         | 89         | Ŀ                | ц         | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990058  | 228         | 95         | Ľ.               | ц         | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 990059  | 230         | 103        | ц                | Ч         | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| TIIB | 090066  | 218         | 89         | ц                | ч         | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990061  | 257         | 129        | ц                | F         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990062  | 322         | 265        | ц                | ц         | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990063  | 290         | 184        | ц                | ш         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990064  | 285         | 160        | Μ                | Σ         | 11       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990065  | 342         | 298        | ч                | ц         | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990066  | 336         | 312        | بىتى             | ы         | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 90065   | 289         | 170        | Μ                | Μ         | 15       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 890066  | 332         | 275        | ц                | ц         | 12       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |

|      |         | Liver      | Liver     | Liver   | Liver     | Liver      | Liver      | Liver       | Liver     | Kidney | Kidney   | Testis | Ovary   | Ovary   | Spleen |
|------|---------|------------|-----------|---------|-----------|------------|------------|-------------|-----------|--------|----------|--------|---------|---------|--------|
|      |         | EosinFocus | BasoFocus | CCFocus |           | CholCare I | HepAdenoma |             |           |        |          |        |         |         |        |
| Site | Fish ID | Preneo     | Preneo    | Preneo  | TotPreneo | Neoplasm   | Neoplasm   | TotNeoplasm | AnyToxLes | MesScl | MesLysis | Stage  | Stage . | Atresia | MAFreq |
| TIIB | 990035  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       | 1       | 5      |
| TIIB | 990036  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | ς       | -       | 4      |
| TIIB | 990037  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | I       | 4      |
| TIIB | 990038  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | -       | 9      |
| TIIB | 990039  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 4      |         |         | 5      |
| TIIB | 990040  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9      |         |         | 4      |
| TIIB | 990041  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | 1       | 9      |
| TIIB | 990042  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | 1       | 9      |
| TIIB | 990043  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 6      |         |         | 5      |
| TIIB | 990044  | 1          | 0         | 0       | 1         | 0          | 0          | 0           | 1         | 0      | 0        |        | 2       | 1       | 5      |
| TIIB | 990045  | 1          |           | 0       | 1         | 0          | 0          | 0           | 1         | 0      | 0        |        | ę       |         | 5      |
| TIIB | 990046  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       |         | 9      |
| TIIB | 990047  | -          | 0         | 0       | 1         | 0          | 0          | 0           |           | 0      | 0        | 9      |         |         | 5      |
| TIIB | 990048  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9      |         |         | S      |
| TIIB | 990049  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9      |         |         | 5      |
| T11B | 990050  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | -         | 0      | 0        |        | 2       | -       | 4      |
| TIIB | 990051  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | 1       | 5      |
| TIIB | 990052  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | ŝ       | 0       | 5      |
| TIIB | 990053  | 1          | 0         | 0       | -         | 0          | 0          | 0           | 1         | 0      | 0        |        | 7       | -       | 4      |
| TIIB | 990054  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       | 1       | 5      |
| TIIB | 990055  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | 1       | 4      |
| TIIB | 990056  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 1         | 0      | 0        |        | 7       | -       | 4      |
| TIIB | 990057  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 6       | 1       | 4      |
| T11B | 990058  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | -       | 4      |
| T11B | 990059  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       | 0       | 5      |
| TIIB | 090066  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       | 1       | 5      |
| T38  | 990061  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       | -       | 4      |
| T38  | 990062  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         |        |          |        | 4       | 1       | 5      |
| T38  | 990063  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 7       | -       | 9      |
| T38  | 990064  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9      |         |         | 7      |
| T38  | 990065  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |        | 2       | 0       | 5      |
| T38  | 990066  | -          | 0         | 0       | -         | -          | 0          | 1           | -         | 0      | 0        |        | 7       | -       | 9      |
| T38  | 990067  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9      |         |         | 9      |
| T38  | 90066   | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | -        |        | 7       | 0       | 7      |

|   | 9   |
|---|-----|
|   | 2   |
|   | 2   |
|   | ÷   |
|   | 2   |
|   | Ŧ   |
| 4 | 2   |
| e | - 2 |
| 5 | 1   |
| _ | _   |

|      |         |             |            |                  |           |          | Liver    | Liver     | Liver   | Liver | Liver       | Liver        | Liver     |
|------|---------|-------------|------------|------------------|-----------|----------|----------|-----------|---------|-------|-------------|--------------|-----------|
|      |         |             |            |                  |           |          | Necrosis | Apoptosis | Hemosid | HW/dN | RegenProlif | Cholfibrosis |           |
| Site | Fish ID | length (mm) | weight (g) | <b>Gross Sex</b> | Histo Sex | Age (yr) |          |           |         | NUS   | Prolif      | Prolif       | TotProlif |
| T38  | 690066  | 332         | 301        | ц                | ц         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990070  | 315         | 242        | Щ                | ц         | П        | 0        | 0         | 0       | 1     | 0           | 0            | 0         |
| T38  | 120066  | 344         | 297        | ц                | ц         | 11       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990072  | 332         | 313        | Ч                | ц         | 15       | 0        | 0         | 0       | 0     | 1           | 1            | -         |
| T38  | 990073  | 338         | 350        | ч                | ц         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990074  | 321         | 266        | ц                |           | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990075  | 304         | 204        | ц                | ц         | 8        | 0        | 0         | -       | 0     | 0           | 0            | 0         |
| T38  | 920076  | 306         | 220        | Ŀ                | ц         | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 770066  | 297         | 221        | ц                | щ         | 11       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990078  | 290         | 168        | Σ                | X         | 15       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 620066  | 295         | 201        | [ <del>1</del> . | Ч         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 080066  | 284         | 170        | ۲.,              | ц         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 180066  | 262         | 137        | ц                | ц         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990082  | 283         | 183        | Ľ.               | ц         | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990083  | 280         | 165        | Σ                | Μ         | 14       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990084  | 300         | 220        | Σ                | Σ         | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990085  | 271         | 152        | Μ                | Μ         | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990086  | 284         | 153        | Μ                | Μ         | 10       | 1        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990087  | 258         | 139        | ц                | ч         | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990088  | 258         | 137        | ц                | ц         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 990089  | 265         | 141        | Ľ.               | ц         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T38  | 060066  | 282         | 202        | [14              | Ч         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 160066  | 302         | 192        | щ                | ц         | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990092  | 287         | 192        | ц                | ц         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990093  | 290         | 190        | ц                | F         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990094  | 271         | 152        | F                | ц         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990095  | 255         | 160        | Ч                | Ч         | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 960066  | 247         | 125        | ц                | Ъ         | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 760066  | 286         | 188        | ц                | ч         | 7        | -        | 0         | 0       | 0     | -           | 0            | -         |
| T48  | 860066  | 278         | 178        | ĹĽ               | ч         | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 660066  | 230         | 94         | Μ                | Χ         | ×        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990100  | 266         | 40         | М                | Х         | 11       | 0        | 0         | 0       | 0     | 0           | -            | -         |
| T48  | 101066  | 256         | 120        | Μ                | Σ         | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990102  | 271         | 176        | М                | Σ         | 13       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |

|      |         | 1          | T incom   | T inon  | I inon    | l inou     | T ince              | I ince      | T ince    | Widnew | <b>Widney</b> | Tactic / |         |           | Culaan |
|------|---------|------------|-----------|---------|-----------|------------|---------------------|-------------|-----------|--------|---------------|----------|---------|-----------|--------|
|      |         | EosinFocus | BasoFocus | CCFocus |           | CholCare H | Liver<br>lepAdenoma | TING        |           | Municy | Vinite        |          | C LA LA | A IBAO    |        |
| Site | Fish ID | Preneo     | Preneo    | Preneo  | TotPreneo | Neoplasm   | Neoplasm            | TotNeoplasm | AnyToxLes | MesScl | MesLysis      | Stage    | Stage / | Atresia N | AFreq  |
| T38  | 690066  | 0          | 0         | -       | 1         | 0          | 1                   | -           | -         | 0      | 0             |          | 2       | -         | 5      |
| T38  | 020066  | 1          | 0         | 0       | 1         | 0          | 0                   | 0           | -         | 0      | 0             |          | 7       | 0         | 5      |
| T38  | 120066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 1      | 0             |          | ę       | 1         | 9      |
| T38  | 990072  | 0          | 0         | 0       | 0         | 0          | -                   | 1           | -         | 0      | 0             |          | 7       | 0         |        |
| T38  | 990073  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 2       | 1         |        |
| T38  | 990074  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 4       | 0         | 5      |
| T38  | 990075  | 1          |           | 0       | -         | 0          | 0                   | 0           | 1         | 0      | 0             |          | 7       | -         | ٢      |
| T38  | 920066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 2       | 1         | 6      |
| T38  | 220066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | _         | 9      |
| T38  | 990078  | -          | 0         | 0       | -         | 0          | 0                   | 0           | 1         | 0      | 0             | 9        |         |           | 9      |
| T38  | 620066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 2       | 0         | 5      |
| T38  | 080066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | e       | 1         | 5      |
| T38  | 180066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 2       | -         | 6      |
| T38  | 990082  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 1      | 0             |          | 5       | 1         | S      |
| T38  | 990083  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             | 9        |         |           | 7      |
| T38  | 990084  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | -         | 9      |
| T38  | 990085  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             | 9        |         |           | 7      |
| T38  | 990086  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             | 9        |         |           | ٢      |
| T38  | 990087  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | 0         | S      |
| T38  | 990088  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | 1         | 9      |
| T38  | 680066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 2       | 1         | S      |
| T38  | 060066  | -          | 0         | 0       | 1         | 0          | 0                   | 0           | -         | 0      | 0             |          | ŝ       | 0         | 7      |
| T48  | 160066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 2       | 1         | S      |
| T48  | 990092  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | -         | S      |
| T48  | 990093  | 1          | 0         | 0       | -         | 0          | 0                   | 0           | -         | 0      | 0             |          | 7       | 1         | S      |
| T48  | 990094  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | 1         | Ś      |
| T48  | 990095  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | 1         | 6      |
| T48  | 960066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | 7       | 1         | 4      |
| T48  | 260066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | -         | 0      | 0             |          | ŝ       | 1         | 5      |
| T48  | 990098  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             |          | ς       | -         | 4      |
| T48  | 660066  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             | 9        |         |           | 5      |
| T48  | 901066  | 1          | -         | 0       |           | 0          | 1                   | -           | -         | 0      | 0             |          |         |           | 6      |
| T48  | 101066  | 1          | 1         | 0       | 1         | 0          | 0                   | 0           | 1         | 0      | 0             | 9        |         |           | 7      |
| T48  | 990102  | 0          | 0         | 0       | 0         | 0          | 0                   | 0           | 0         | 0      | 0             | 4        |         |           | 9      |

|      |         |             |            |           |              |          | Liver    | Liver     | Liver   | Liver | Liver       | Liver        | Liver     |
|------|---------|-------------|------------|-----------|--------------|----------|----------|-----------|---------|-------|-------------|--------------|-----------|
|      |         |             |            |           |              |          | Necrosis | Apoptosis | Hemosid | HM/AN | RegenProlif | Cholfibrosis |           |
| Site | Fish ID | length (mm) | weight (g) | Gross Sex | Histo Sex    | Age (yr) |          |           |         | SDN   | Prolif      | Prolif       | TotProlif |
| T48  | 990103  | 285         | 176        | ч         | цт           | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990104  | 318         | 283        | ц         | ц            | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990105  | 302         | 235        | 1         | Щ            | 80       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 901066  | 275         | 168        | Ĺ.        | Ľ.,          | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 201066  | 262         | 150        | Ľ.        | Ц            | 5        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 90108   | 248         | 126        | ч         | ц            | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 601066  | 255         | 135        | Ч         | ц            | \$       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 011066  | 274         | 155        | ч         | ĹŦ           | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 111066  | 247         | 126        | M         | Μ            | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990112  | 252         | 132        | 1         | ц            | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990113  | 250         | 134        | Ц         | ц            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990114  | 265         | 146        | Ч         | ц            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990115  | 297         | 228        | Ч         | ц            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990116  | 262         | 153        | Ч         | Ч            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990117  | 274         | 177        | Ч         | ч            | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990118  | 274         | 168        | ц         | ц            | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990119  | 256         | 143        | Ч         | ц            | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T48  | 990120  |             | 265        | Ч         | ц            | 11       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990121  | 246         | 113        | ц         | ц            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990122  | 295         | 204        | Ч         | ц            | 12       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990123  |             | 125        | ш         | ц            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990124  | 265         | 124        | Σ         | Σ            | 13       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990125  | 280         | 166        | ц         | [ <b>1</b> 4 | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990126  |             | 95         | н         | [L.          | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990127  | 235         | 16         | Σ         | Μ            | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990128  | 245         | 112        | Ŀ         | ц            | 7        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990129  | 246         | 120        | ц         | ц            | 9        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990130  | 243         | 107        | ц         | ц            | 4        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990131  | 234         | 06         | Σ         | Μ            | ×        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990132  | 269         | 142        | Ŀ         | ц            | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990133  | 228         | 67         | Σ         | M            | 8        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990134  | 230         | 101        | М         | Σ            | 6        | 0        | 0         | 0       | 0     | 0           | 0            | 0         |
| T50  | 990135  | 240         | 105        | Σ         | Σ            | 9        |          |           |         |       |             |              |           |
| T50  | 990136  | 233         | 96         | Σ         | M            | 10       | 0        | 0         | 0       | 0     | 0           | 0            | 0         |

|      |         | Liver      | Liver     | Liver   | Liver     | Liver      | Liver      | Liver       | Liver     | Kidney | Kidney   | Testis C | Dvary C | vary 5   | ipleen |
|------|---------|------------|-----------|---------|-----------|------------|------------|-------------|-----------|--------|----------|----------|---------|----------|--------|
|      |         | EosinFocus | BasoFocus | CCFocus |           | CholCarc F | HepAdenoma |             |           | •      | •        |          | •       | •        |        |
| Site | Fish ID | Preneo     | Preneo    | Preneo  | TotPreneo | Neoplasm   | Neoplasm   | TotNeoplasm | AnyToxLes | MesScl | MesLysis | Stage 5  | Stage A | tresia M | lAFreq |
| T48  | 990103  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 5      |
| T48  | 990104  | 0          | 0         | 0       | 0         | 0          | -          | -           | -         | 0      | 0        |          | ŝ       | 0        | 5      |
| T48  | 990105  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 7       | 0        | 5      |
| T48  | 90106   | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | e       | 0        | 4      |
| T48  | 990107  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | ę       | -        | 5      |
| T48  | 990108  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | -        | 5      |
| T48  | 601066  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 7       | 1        | 9      |
| T48  | 911066  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | -        | 5      |
| T48  | 111066  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9        |         |          | 9      |
| T48  | 990112  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 7       | 0        | 4      |
| T48  | 990113  | 1          | 0         | 0       | l         | 0          | 0          | 0           | -         | 0      | 0        |          | 2       | 1        | 5      |
| T48  | 990114  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 4      |
| T48  | 990115  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | e       | 0        | S      |
| T48  | 990116  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 9      |
| T48  | 60117   | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 7      |
| T48  | 90118   | 1          | 0         | 0       | -         | 0          | 0          | 0           | -         | 0      | 0        |          | 7       | 1        | 5      |
| T48  | 611066  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | -      | -        |          | 7       | 1        | 4      |
| T48  | 990120  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 5      |
| T50  | 990121  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 0        | 5      |
| T50  | 990122  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 9      |
| T50  | 990123  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 0        | 5      |
| T50  | 990124  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 5        |         |          | ٢      |
| T50  | 990125  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 7       | -        | 9      |
| T50  | 990126  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 0        | 5      |
| T50  | 990127  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 4        |         |          | 5      |
| T50  | 990128  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 7       | -        | 5      |
| T50  | 990129  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 7       | -        | 4      |
| T50  | 990130  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | 2       | 1        | 4      |
| T50  | 990131  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9        |         |          | 9      |
| T50  | 990132  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        |          | ε       | 0        | S      |
| T50  | 990133  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 5        |         |          | 9      |
| T50  | 990134  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9        |         |          | 9      |
| T50  | 990135  |            |           |         |           |            |            |             |           |        |          |          |         |          |        |
| T50  | 990136  | 0          | 0         | 0       | 0         | 0          | 0          | 0           | 0         | 0      | 0        | 9        |         |          | 7      |

|      |         |                         |                      |                      |                   |          | Liver    | Liver              | Liver             | I iver          | Liver                 | I ,iver               | Liver     |
|------|---------|-------------------------|----------------------|----------------------|-------------------|----------|----------|--------------------|-------------------|-----------------|-----------------------|-----------------------|-----------|
|      |         |                         |                      |                      |                   |          | Necrosis | Apoptosis          | Hemosid           | HM/AN           | RegenProlif           | Cholfibrosis          |           |
| Site | Fish ID | length (mm)             | weight (g)           | Gross Sex            | Histo Sex         | Age (yr) |          |                    |                   | SDN             | Prolif                | Prolif                | TotProlif |
| T50  | 990137  | 229                     | 66                   | н                    | F                 | 7        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990138  | 235                     | 94                   | Σ                    | М                 | 6        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990139  | 224                     | 92                   | ш                    | Ľ.                | 7        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990140  | 239                     | 89                   | Μ                    | Σ                 | ę        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990141  | 246                     | 93                   | <u>14</u>            | F                 | ę        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990142  | 234                     | 92                   | M                    | Μ                 | 11       | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990143  | 225                     | 79                   | M                    | M                 | ~        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990144  | 216                     | 61                   | Σ                    | Σ                 | 9        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990145  | 237                     | 96                   | ſ                    | M                 | 7        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990146  | 235                     | 92                   | Μ                    | Σ                 | 9        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990147  | 234                     | 66                   | ш                    | Ч                 | 9        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990148  | 230                     | 85                   | Σ                    | М                 | 6        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990149  | 225                     | 80                   | ц                    | Σ                 | 9        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T50  | 990150  | 229                     | 85                   | Σ                    | Μ                 | 6        | 0        | 0                  | 0                 | 0               | 0                     | 0                     | 0         |
| T49  | 990151  | 285                     | 172                  | ц                    |                   | ę        |          |                    |                   |                 |                       |                       |           |
| T49  | 990152  | 260                     | 135                  | Σ                    |                   | 9        |          |                    |                   |                 |                       |                       |           |
| T49  | 990153  | 290                     | 178                  | Ч                    |                   | 9        |          | BasoFocus = bas    | ophilic focus     |                 |                       |                       |           |
| T49  | 990154  | 292                     | 193                  | ц                    |                   | 5        |          | CCFocus = clear    | cell focus        |                 |                       |                       |           |
| T49  | 990155  | 265                     | 141                  | ц                    |                   | 9        |          | CholCarc = chola   | ngiocellular ca   | rcinoma         |                       |                       |           |
| T49  | 990156  | 254                     | 145                  | ы                    |                   | 6        |          | Cholfibrosis ≖ch   | olangiofibrosis   |                 |                       |                       |           |
| T49  | 990157  | 290                     | 213                  | Δ                    |                   | 9        |          | EosinFocus = eos   | sinophilic focus  |                 |                       |                       |           |
| T49  | 990158  | 234                     | 103                  | Σ                    |                   | 7        |          | Gross Sex = sex    | determined by     | visual observa  | tion at the time of n | lecropsy              |           |
| T49  | 990159  | 265                     | 155                  | Σ                    |                   | 7        |          | Hemosid = Hemo     | siderosis         |                 |                       |                       |           |
| T49  | 990160  | 227                     | 108                  | М                    |                   | 9        |          | HepAdenoma = I     | Hepatocellular    | adenoma         |                       |                       |           |
| T49  | 990161  | 237                     | 107                  | Ч                    |                   | 4        |          | Histo = Histology  |                   |                 |                       |                       |           |
| T49  | 990162  | 255                     | 132                  | Μ                    |                   | 9        |          | Histo sex = sex (  | letermined by I   | nistology       |                       |                       |           |
|      |         |                         |                      |                      |                   |          |          | Length = total ler | ngth (head to ta  | il) reported in | millimeters           |                       |           |
|      |         | Fish numbers 990150     | - 990162 did not ha  | ive any tissues coll | ected             |          |          | AnyToxLes = inc    | licates a fish th | at has one or 1 | nore lesions consid   | ered to be toxicopatl | ic,       |
|      |         | for histopathological e | xamination           |                      |                   |          |          | including neol     | plasms, preneol   | olasms, SDN a   | and proliferative les | ions.                 |           |
|      |         |                         |                      |                      |                   |          |          | MAFreq= Macro      | phage aggregat    | e frequency     |                       |                       |           |
|      |         | Thanks to Dr. Colin L   | evings, Dept. Fish a | und Oceans, Canad    | a for the age dat | gi       |          | MesLysis = Mes     | angial lysis      |                 |                       |                       |           |
|      |         |                         |                      |                      |                   |          |          | MesScl = Mesan     | gial sclorosis    |                 |                       |                       |           |
|      |         |                         |                      |                      |                   |          |          | MH = Megalocyt     | ic hepatosis      |                 |                       |                       |           |

NP = Nuclear Pleomorphism

|      |         | Liver      | Liver               | Liver           | Liver            | Liver               | Liver                | Liver           | Liver     | Kidney        | Kidney          | Testis 0      | vary (      | Ovary       | Spleen        |
|------|---------|------------|---------------------|-----------------|------------------|---------------------|----------------------|-----------------|-----------|---------------|-----------------|---------------|-------------|-------------|---------------|
|      |         | EosinFocus | BasoFocus           | CCFocus         |                  | CholCare 1          | HepAdenoma           |                 |           |               |                 |               |             |             |               |
| Site | Fish ID | Preneo     | Preneo              | Preneo          | TotPreneo        | Neoplasm            | Neoplasm             | TotNeoplasm     | AnyToxLes | MesScl        | MesLysis        | Stage S       | stage ⊿     | Atresia N   | <b>AAFreq</b> |
| T50  | 990137  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               |               | ę           | 0           | 5             |
| T50  | 990138  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 5             |
| T50  | 990139  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               |               | б           | 0           | 4             |
| T50  | 990140  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 4             |
| T50  | 990141  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               |               | 7           | 0           | ŝ             |
| T50  | 990142  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 5             |             |             | 5             |
| T50  | 990143  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 5             |
| T50  | 990144  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 5             |
| T50  | 990145  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 5             |
| T50  | 990146  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 5             |
| T50  | 990147  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               |               | ŝ           | 1           | 5             |
| T50  | 990148  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 9             |
| T50  | 990149  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 5             |
| T50  | 990150  | 0          | 0                   | 0               | 0                | 0                   | 0                    | 0               | 0         | 0             | 0               | 9             |             |             | 9             |
| T49  | 990151  |            | Preneo = preneop    | olasm (include  | s Basophilic foc | us, clear cell foci | is, and eosinophili  | : focus)        |           | M=Male, F =   | = Female, J=Ju  | venile, sex u | ndetermir   | led         |               |
| T49  | 990152  |            | Prolif = Prolifera  | tive lesion     |                  |                     |                      |                 |           |               |                 |               |             |             |               |
| T49  | 990153  |            | RegenProlif = Re    | sgenerative Pro | oliferation      |                     |                      |                 |           | Macrophage    | Aggregate Fre   | quency Ratii  | sgn         |             |               |
| T49  | 990154  |            | SDN = Specific I    | Degeneration/   | Vecrosis (includ | es megalocytic h    | epatosis and nucles  | r pleomorphism) |           | 0= none       |                 |               |             |             |               |
| T49  | 990155  |            | TotProl = indicat   | es fish having  | one or more typ  | es of proliferativ  | e lesions            |                 |           | 1= minimal,   | very few        |               |             |             |               |
| T49  | 990156  |            | TotPreneo = indi    | cates fish havi | ng one or more   | types of preneop    | astic lesions.       |                 |           | 2= minimal-r  | mild            |               |             |             |               |
| T49  | 990157  |            | TotNeoplasm = ii    | ndicates fish h | aving one or mo  | ore types of neop   | astic lesions.       |                 |           | 3= mild, few  |                 |               |             |             |               |
| T49  | 990158  |            |                     |                 |                  |                     |                      |                 |           | 4= mild-mod   | lerate number   |               |             |             |               |
| T49  | 990159  |            | A note on sex det   | termination: G  | ross sex was det | termined by visu:   | al observations of g | onads           |           | 5= moderate   | number          |               |             |             |               |
| T49  | 990160  |            | at the time of nec  | ropsy. Smalle   | r fish have unde | veloped ovaries,    | so it is sometimes   |                 |           | 6= moderate   | -severe number  |               |             |             |               |
| T49  | 990161  |            | difficult to detern | nine sex in you | unger fish. Ther | efore, sex detern   | ination by histolog  | y.              |           | 7= Severe, n  | umerous         |               |             |             |               |
| T49  | 990162  |            | is more accurate t  | than gross sex  |                  |                     |                      |                 |           |               |                 |               |             |             |               |
|      |         |            |                     |                 |                  |                     |                      |                 |           | Ovary stages  |                 |               |             |             |               |
|      |         |            | Testis stages:      |                 |                  |                     |                      |                 |           | l= regressed  | ; oogonia and p | orimary oocy  | /tes        |             |               |
|      |         |            | l=regressed; sper   | matogonia an    | d primary sperm  | latocytes           |                      |                 |           | 2= late regre | ssed; secondar  | / oocytes     |             |             |               |
|      |         |            | 2= early recrudes   | cence; second   | ary spermatocyt  | es                  |                      |                 |           | 3= previtello | genic; vacuola  | ted secondar  | y oocytes   |             |               |
|      |         |            | 3= late recrudesc   | ence; seconda   | ry spermatocyte  | s to spermatids     |                      |                 |           | 4= vitelloger | nic             |               |             |             |               |
|      |         |            | 4= early spermion   | genesis or spei | rm production    |                     |                      |                 |           | 5= some hyd   | Irated oocytes; | no post-ovul  | latory foll | icles (POFs | (             |
|      |         |            | 5= late spermioge   | enesis; spawni  | gu               |                     |                      |                 |           | 6= spawning   | ; hydrated ooc  | /tes with PO  | )Fs         |             |               |
|      |         |            | 6= spawned out;     | few mature sp   | erm remaining    |                     |                      |                 |           | 7= spawned    | out             |               |             |             |               |

157

×,

Number of individual fish and invertebrates caught in each trawl from Vancouver Harbour Table 48Fish abundanceNulInvestigator: Dr. Colin Levings

|                     | Site       | T-49    | T-49    | T-49    | T-49    | T-49    | T-11B   | T-11B   | T-11B   | T-38    | T-38     | T-38     |
|---------------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|
|                     | Trawl/site | -       | 2       | Э       | 4       | 5       | 1       | 2       | б       | 1       | 2        | ŝ        |
| Species             |            | Trawl 1 | Trawl 2 | Trawl 3 | Trawl 4 | Trawl 5 | Trawl 6 | Trawl 7 | Trawl 8 | Trawl 9 | Trawl 10 | Trawl 11 |
| Spiny dogfish       |            |         | su      |         |         |         |         |         |         |         |          |          |
| Longnose skate      |            |         | us      |         |         |         |         |         |         |         |          |          |
| Pacific herring     |            |         | ns      |         | -       |         | 10      | 5       | 8       | 23      | ŝ        | n        |
| Longfin smelt       |            | 1       | ns      |         |         |         | 1       |         | 2       | 2       | 12       | 4        |
| Eulachon            |            |         | su      |         |         |         |         |         |         |         |          |          |
| Pacific hake        |            |         | su      |         |         |         |         |         |         |         |          |          |
| Pacific tomcod      |            | 1       | ns      | 7       | 4       | 1       | 16      | 6       | 16      | 29      | 20       | 41       |
| Walleye pollock     |            |         | ns      |         |         |         |         |         |         |         |          |          |
| Blackbelly eelpout  |            | 93      | ns      | 37      | 74      | 65      |         |         |         |         |          |          |
| Shiner perch        |            |         | us      |         | 1       | 8       |         | ŝ       |         | 17      | 15       | 11       |
| Copper rockfish     |            |         | ns      |         |         |         |         |         |         |         |          |          |
| Greenstriped rockf  | ish        |         | su      |         |         |         |         |         |         |         |          |          |
| Quillback rockfish  |            |         | su      |         |         |         |         |         |         |         |          |          |
| Kelp greenling      |            |         | us      |         |         |         |         |         |         |         |          |          |
| Whitespotted greer  | ıling      |         | su      |         |         |         |         | 1       | -       |         |          |          |
| Roughback sculpin   |            |         | su      |         |         |         | ς       | 2       | 7       |         |          |          |
| Buffalo sculpin     |            |         | su      |         |         |         |         |         | 1       |         |          |          |
| Pacific staghorn sc | ulpin      | 1       | มร      |         |         | 2       |         |         |         | 15      | 10       | 10       |
| Tadpole sculpin     |            |         | su      |         |         |         |         |         |         |         |          |          |
| Plainfin midshipm   | n          |         | su      | 4       | 2       |         |         |         |         | 2       | 25       | 18       |
| Sturgeon poacher    |            | 1       | su      |         |         |         |         | 2       |         |         |          |          |
| Pacific sanddab     |            | 2       | us      |         | m       | ς       |         | 9       | 1       | 2       | 9        | 1        |
| Speckled sanddab    |            |         | ns      |         |         |         |         |         |         |         |          |          |
| Rex sole            |            | 20      | su      | 21      | 18      | 17      |         |         |         |         |          |          |
| Flathead sole       |            | 21      | su      | 20      | 37      | 28      |         |         |         | ω       | 4        | ω        |
| Butter sole         |            |         | ns      |         |         |         |         |         |         |         |          |          |

| 8       | ondonno |
|---------|---------|
| Table 4 | Fich al |

Number of individual fish and invertebrates caught in each trawl from Vancouver Harbour Fish abundance Nu Investigator: Dr. Colin Levings

|                 | Site       | T-49    | T-49    | T-49    | T-49    | T-49    | T-11B   | T-11B   | T-11B      | T-38    | T-38     | T-38     |
|-----------------|------------|---------|---------|---------|---------|---------|---------|---------|------------|---------|----------|----------|
|                 | Trawl/site | 1       | 2       | З       | 4       | 5       | 1       | 2       | 3          | 1       | 2        | 3        |
| Species         |            | Trawl 1 | Trawl 2 | Trawl 3 | Trawl 4 | Trawl 5 | Trawl 6 | Trawl 7 | Trawl 8    | Trawl 9 | Trawl 10 | Trawl 11 |
| Rock sole       |            | 2       | su      |         | 7       | 5       | 4       | 16      | 9          |         |          |          |
| Slender sole    |            | 16      | su      | 8       | 20      | 22      | 4       | 2       | ς          |         |          |          |
| Dover sole      |            | ŝ       | su      | 2       | ŝ       |         |         |         |            | 138     |          |          |
| English sole    |            | 11      | su      |         | 24      | 36      | 62      | 46      | 47         | 100     | 173      | 248      |
| Starry flounder |            | 13      | us      | 2       | 16      | 14      | 2       | 5       | 9          | 100     |          | 1        |
| Sand sole       |            | 9       | su      |         | 1       | m       | 7       | m       | m          | 5       | ς        | ω        |
| Dungeness crab  |            | 14      | ns      | 19      | 17      | 14      | 8       | 6       | 6          | 52      | 126      | 82       |
| Tanner crab     |            | 7       | ns      |         | 1       | 1       |         |         | 1          |         |          |          |
| Rock crab       |            | 0       | SU      |         |         |         |         |         |            |         |          |          |
| anemone         |            | 0       | su      |         |         |         |         |         |            |         | 20       |          |
| Yoldia          |            | 0       | ns      |         |         |         |         |         |            |         | 4        | 1        |
| Cockle          |            | 0       | su      |         |         |         |         |         |            |         | 5        | 7        |
| Butter Clam     |            | 0       | su      |         |         |         |         |         |            |         | -        |          |
| TOTALS          |            | 191     | Su      | 96      | 211     | 204     | 121     | 100     | <i>L</i> 6 | 436     | 271      | 343      |

ns = no sample due to net problems.

Table 48 **Fish abun** Investigate

Number of individual fish and invertebrates caught in each trawl from Vancouver Harbour

|                        | Site       | T-48     | T-48     | T-48     | T-11B    | T-50     | T-50     | T-50     | T-50     | T-49     | T-49     |
|------------------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                        | Trawl/site | 1        | 2        | n        | 4        | 1        | 2        | ε        | 4        | 9        | 7        |
| Species                |            | Trawl 12 | Trawl 13 | Trawl 14 | Trawl 15 | Trawl 16 | Trawl 17 | Trawl 18 | Trawl 19 | Trawl 20 | Trawl 21 |
| Spiny dogfish          |            |          |          |          |          | 1        | 7        | su       |          |          |          |
| Longnose skate         |            |          |          |          | 1        |          |          | su       |          |          |          |
| Pacific herring        |            | 2        |          | 9        |          |          |          | us       |          |          |          |
| Longfin smelt          | •          |          | 13       | 2        | 2        |          |          | su       |          |          |          |
| Eulachon               |            |          |          |          |          |          |          | ns       |          |          |          |
| Pacific hake           |            |          |          |          |          | 113      | 75       | su       | 28       |          |          |
| Pacific tomcod         |            | 6        | 29       | 15       | ŝ        | 14       | 19       | su       | 23       | 4        | 2        |
| Walleye pollock        |            |          |          |          |          |          |          | ns       |          |          |          |
| Blackbelly eelpout     |            | 10       | 17       | 7        | 6        | 7        | 6        | su       | ς        | 114      | 93       |
| Shiner perch           |            |          | S        |          |          |          | 1        | ns       |          |          |          |
| Copper rockfish        |            |          |          |          |          |          | 1        | su       |          |          |          |
| Greenstriped rockf     | ish        |          |          |          |          |          |          | su       |          |          |          |
| Quillback rockfish     |            |          |          |          |          |          |          | su       |          |          |          |
| Kelp greenling         |            |          |          |          |          |          |          | su       |          |          |          |
| Whitespotted greer     | ling       |          | 1        | 1        |          |          |          | su       |          |          |          |
| Roughback sculpin      |            | 1        | Ś        |          | 1        |          |          | su       |          | 1        |          |
| Buffalo sculpin        |            |          |          |          |          |          |          | su       |          |          |          |
| Pacific staghorn sc    | ulpin      | Ś        | 5        | 1        | 1        |          |          | ns       |          | 2        |          |
| <b>Tadpole sculpin</b> |            |          |          |          |          | 1        |          | ns       |          |          |          |
| Plainfin midshipma     | II         | 7        | 9        |          |          |          | 1        | ns       |          |          | 1        |
| Sturgeon poacher       |            | 7        |          |          | -        | 7        | 22       | ns       | 14       |          |          |
| Pacific sanddab        |            |          |          |          | 2        |          | 1        | su       | 5        | 2        | 7        |
| Speckled sanddab       |            |          |          |          |          | 4        |          | su       |          |          |          |
| Rex sole               |            |          |          |          |          | 5        | 7        | su       | 5        | 26       | 25       |
| Flathead sole          |            | 21       | 38       | 17       | ς        | L        |          | ns       | ω        | 34       | 36       |
| Butter sole            |            |          |          |          | 1        |          |          | ns       |          |          |          |

ς.

.

Table 48 **Fish abundance** Investigator: Dr. Colin Levin,

Number of individual fish and invertebrates caught in each trawl from Vancouver Harbour

|                 | Site       | T-48     | T-48     | T-48     | T-11B    | T-50     | T-50     | T-50     | T-50     | T-49     | T-49     |
|-----------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                 | Trawl/site |          | 2        | 3        | 4        | 1        | 2        | З        | 4        | 6        | 7        |
| Species         |            | Trawl 12 | Trawl 13 | Trawl 14 | Trawl 15 | Trawl 16 | Trawl 17 | Trawl 18 | Trawl 19 | Trawl 20 | Trawl 21 |
| Rock sole       |            | 1        |          |          |          |          |          | su       | 1        | ŝ        | 7        |
| Slender sole    |            |          |          |          | 4        | ŝ        | 11       | su       | 9        | 26       | 18       |
| Dover sole      |            |          |          |          |          |          | 1        | su       |          | 9        | 2        |
| English sole    |            | 99       | 116      | 108      | 67       | 79       | 88       | su       | 51       | 69       | 45       |
| Starry flounder |            | ŝ        | _        | 1        | 9        |          |          | su       |          | 14       | 12       |
| Sand sole       |            | 2        |          | -        | ŝ        |          |          | su       |          | 1        | 5        |
| Dungeness crab  |            | 82       | 106      | 38       | 19       | 0        | 10       | su       | 17       | 26       | 53       |
| Tanner crab     |            |          |          |          | 20       |          | 2        | su       |          | 1        | 7        |
| Rock crab       |            | 1        |          |          |          |          |          | su       |          |          |          |
| anemone         |            |          |          |          |          |          |          |          |          |          |          |
| Yoldia          |            |          |          |          |          |          |          |          |          |          |          |
| Cockle          |            |          |          |          |          |          |          |          |          |          |          |
| Butter Clam     |            |          |          |          |          |          |          |          |          |          |          |
| <b>FOTALS</b>   |            | 123      | 235      | 159      | 104      | 241      | 233      | 0        | 139      | 302      | 244      |
| -<br>-          | :          |          |          |          |          |          |          |          |          |          |          |

ns = no sample due to net problems.

Grand 3850 Total 'n

.

#### Average biomass of fish for 100 square meters trawled.

| Species                  | Site        | Average biomass of fish/ | Average Number fish/ |
|--------------------------|-------------|--------------------------|----------------------|
|                          |             | 100 square Meters        | 100 square Meters    |
| Pacific staghorn sculpin | T11B        | 0.000                    | 0.00                 |
| Pacific staghorn sculpin | T38         | 0.020                    | 0.34                 |
| Pacific staghorn sculpin | T48         | 0.009                    | 0.07                 |
| Pacific staghorn sculpin | T49         | 0.002                    | 0.01                 |
| Pacific staghorn sculpin | T50         | 0.000                    | 0.00                 |
| Pacific tomcod           | T11B        | 0.010                    | 0.18                 |
| Pacific tomcod           | T38         | 0.040                    | 0.98                 |
| Pacific tomcod           | T48         | 0.019                    | 0.34                 |
| Pacific tomcod           | T49         | 0.003                    | 0.04                 |
| Pacific tomcod           | T50         | 0.025                    | 0.56                 |
| Plainfin midshipman      | T11B        | 0.000                    | 0.00                 |
| Plainfin midshipman      | T38         | 0.012                    | 0.52                 |
| Plainfin midshipman      | T48         | 0.002                    | 0.05                 |
| Plainfin midshipman      | T49         | 0.001                    | 0.02                 |
| Plainfin midshipman      | T50         | 0.000                    | 0.01                 |
| Quillback rockfish       | T11B        | 0.000                    | 0.00                 |
| Quillback rockfish       | T38         | 0.000                    | 0.00                 |
| Quillback rockfish       | T48         | 0.000                    | 0.00                 |
| Quillback rockfish       | T49         | 0.000                    | 0.00                 |
| Quillback rockfish       | T50         | 0.000                    | 0.00                 |
| Rex sole                 | T11B        | 0.000                    | 0.00                 |
| Rex sole                 | T38         | 0.000                    | 0.00                 |
| Rex sole                 | T4 <b>8</b> | 0.000                    | 0.00                 |
| Rex sole                 | T49         | 0.064                    | 0.36                 |
| Rex sole                 | T50         | 0.003                    | 0.15                 |
| Rock crab                | T11B        | 0.000                    | 0.00                 |
| Rock crab                | T38         | 0.000                    | 0.00                 |
| Rock crab                | T48         | 0.003                    | 0.01                 |
| Rock crab                | T49         | 0.000                    | 0.00                 |
| Rock crab                | T50         | 0.000                    | 0.00                 |
| Rock sole                | T11B        | 0.006                    | 0.10                 |
| Rock sole                | T38         | 0.000                    | 0.00                 |
| Rock sole                | T48         | 0.005                    | 0.01                 |
| Rock sole                | T49         | 0.011                    | 0.05                 |
| Rock sole                | T50         | 0.001                    | 0.01                 |
| Roughback sculpin        | T11B        | 0.003                    | 0.03                 |
| Roughback sculpin        | T38         | 0.000                    | 0.00                 |
| Roughback sculpin        | T48         | 0.001                    | 0.03                 |
| Roughback sculpin        | T49         | 0.000                    | 0.00                 |
| Roughback sculpin        | T50         | 0.000                    | 0.00                 |
| Sand sole                | T11B        | 0.015                    | 0.05                 |
| Sand sole                | T38         | 0.011                    | 0.11                 |
| Sand sole                | T48         | 0.003                    | 0.03                 |

#### • Table 49

### Average biomass of fish for 100 square meters trawled.

| Species          | Site        | Average biomass of fish/ | Average Number fish/ |
|------------------|-------------|--------------------------|----------------------|
|                  |             | 100 square Meters        | 100 square Meters    |
| Sand sole        | T49         | 0.004                    | 0.06                 |
| Sand sole        | T50         | 0.000                    | 0.00                 |
| Shiner perch     | T11B        | 0.001                    | 0.02                 |
| Shiner perch     | T38         | 0.013                    | 0.42                 |
| Shiner perch     | T48         | 0.002                    | 0.03                 |
| Shiner perch     | T49         | 0.001                    | 0.02                 |
| Shiner perch     | T50         | 0.001                    | 0.01                 |
| Slender sole     | T11B        | 0.001                    | 0.06                 |
| Slender sole     | T38         | 0.000                    | 0.00                 |
| Slender sole     | T48         | 0.000                    | 0.00                 |
| Slender sole     | T49         | 0.007                    | 0.31                 |
| Slender sole     | T50         | 0.003                    | 0.17                 |
| Speckled sanddab | T11B        | 0.000                    | 0.00                 |
| Speckled sanddab | T38         | 0.000                    | 0.00                 |
| Speckled sanddab | T4 <b>8</b> | 0.000                    | 0.00                 |
| Speckled sanddab | T49         | 0.000                    | 0.00                 |
| Speckled sanddab | T50         | 0.016                    | 0.08                 |
| Spiny dogfish    | T11B        | 0.000                    | 0.00                 |
| Spiny dogfish    | T38         | 0.000                    | 0.00                 |
| Spiny dogfish    | T4 <b>8</b> | 0.000                    | 0.00                 |
| Spiny dogfish    | T49         | 0.000                    | 0.00                 |
| Spiny dogfish    | T50         | 0.103                    | 0.03                 |
| Starry flounder  | T11B        | 0.017                    | 0.08                 |
| Starry flounder  | T38         | 0.130                    | 0.65                 |
| Starry flounder  | T48         | 0.009                    | 0.04                 |
| Starry flounder  | T49         | 0.044                    | 0.21                 |
| Starry flounder  | T50         | 0.000                    | 0.00                 |
| Sturgeon poacher | T11B        | 0.000                    | 0.01                 |
| Sturgeon poacher | T38         | 0.000                    | 0.00                 |
| Sturgeon poacher | T48         | 0.001                    | 0.02                 |
| Sturgeon poacher | T49         | 0.000                    | 0.00                 |
| Sturgeon poacher | T50         | 0.009                    | 0.37                 |
| Tadpole sculpin  | T11B        | 0.000                    | 0.00                 |
| Tadpole sculpin  | T38         | 0.000                    | 0.00                 |
| Tadpole sculpin  | T48         | 0.000                    | 0.00                 |
| Tadpole sculpin  | T49         | 0.000                    | 0.00                 |
| Tadpole sculpin  | T50         | 0.000                    | 0.02                 |
| Tanner crab      | T11B        | 0.023                    | 0.10                 |
| Tanner crab      | T38         | 0.000                    | 0.00                 |
| Tanner crab      | T48         | 0.000                    | 0.00                 |
| Tanner crab      | T49         | 0.002                    | 0.05                 |
| Tanner crab      | T50         | 0.002                    | 0.01                 |
| Walleye pollock  | T11B        | 0.000                    | 0.00                 |

÷

.

.

#### Average biomass of fish for 100 square meters trawled.

| Species                | Site | Average biomass of fish/ | Average Number fish/ |
|------------------------|------|--------------------------|----------------------|
|                        |      | 100 square Meters        | 100 square Meters    |
| Walleye pollock        | T38  | 0.000                    | 0.00                 |
| Walleye pollock        | T48  | 0.002                    | 0.01                 |
| Walleye pollock        | T49  | 0.000                    | 0.00                 |
| Walleye pollock        | T50  | 0.000                    | 0.00                 |
| Whitespotted greenling | T11B | 0.001                    | 0.01                 |
| Whitespotted greenling | T38  | 0.000                    | 0.00                 |
| Whitespotted greenling | T48  | 0.003                    | 0.01                 |
| Whitespotted greenling | T49  | 0.000                    | 0.00                 |
| Whitespotted greenling | T50  | 0.000                    | 0.00                 |
| Yoldia                 | T11B | 0.000                    | 0.00                 |
| Yoldia                 | T38  | 0.000                    | 0.05                 |
| Yoldia                 | T48  | 0.000                    | 0.00                 |
| Yoldia                 | T49  | 0.000                    | 0.00                 |
| Yoldia                 | T50  | 0.000                    | 0.00                 |
| anemone                | T11B | 0.000                    | 0.00                 |
| anemone                | T38  | 0.000                    | 0.20                 |
| anemone                | T48  | 0.000                    | 0.00                 |
| anemone                | T49  | 0.000                    | 0.00                 |
| anemone                | T50  | 0.000                    | 0.00                 |
| Blackbelly eelpout     | T11B | 0.001                    | 0.04                 |
| Blackbelly eelpout     | T38  | 0.000                    | 0.00                 |
| Blackbelly eelpout     | T48  | 0.010                    | 0.24                 |
| Blackbelly eelpout     | T49  | 0.040                    | 1.41                 |
| Blackbelly eelpout     | T50  | 0.006                    | 0.21                 |
| Buffalo sculpin        | T11B | 0.000                    | 0.00                 |
| Buffalo sculpin        | T38  | 0.000                    | 0.00                 |
| Buffalo sculpin        | T48  | 0.000                    | 0.00                 |
| Buffalo sculpin        | T49  | 0.000                    | 0.00                 |
| Butter Clam            | T50  | 0.000                    | 0.00                 |
| Butter Clam            | T11B | 0.000                    | 0.00                 |
| Butter Clam            | T38  | 0.000                    | 0.01                 |
| Butter Clam            | T48  | 0.000                    | 0.00                 |
| Butter Clam            | T49  | 0.000                    | 0.00                 |
| Butter Clam            | Т50  | 0.000                    | 0.00                 |
| Butter sole            | T11B | 0.000                    | 0.00                 |
| Butter sole            | T38  | 0.000                    | 0.00                 |
| Butter sole            | T48  | 0.000                    | 0.00                 |
| Butter sole            | T49  | 0.000                    | 0.00                 |
| Butter sole            | T50  | 0.000                    | 0.00                 |
| Cockles                | T11B | 0.000                    | 0.00                 |
| Cockles                | T38  | 0.000                    | 0.08                 |
| Cockles                | T48  | 0.000                    | 0.00                 |
| Cockles                | T49  | 0.000                    | 0.00                 |

### Table 49 Average biomass of fish for 100 square meters trawled.

Investigator: Dr. Colin Levings

÷

÷

| Species               | Site | Average biomass of fish/ | Average Number fish/ |
|-----------------------|------|--------------------------|----------------------|
|                       |      | 100 square Meters        | 100 square Meters    |
| Cockles               | T50  | 0.000                    | 0.00                 |
| Copper rockfish       | T11B | 0.000                    | 0.00                 |
| Copper rockfish       | T38  | 0.000                    | 0.00                 |
| Copper rockfish       | T48  | 0.000                    | 0.00                 |
| Copper rockfish       | T49  | 0.000                    | 0.00                 |
| Copper rockfish       | T50  | 0.000                    | 0.01                 |
| Dover sole            | T11B | 0.000                    | 0.00                 |
| Dover sole            | T38  | 0.053                    | 0.88                 |
| Dover sole            | T48  | 0.000                    | 0.00                 |
| Dover sole            | T49  | 0.003                    | 0.05                 |
| Dover sole            | T50  | 0.001                    | 0.01                 |
| Dungeness crab        | T11B | 0.042                    | 0.20                 |
| Dungeness crab        | T38  | 0.308                    | 2.78                 |
| Dungeness crab        | T48  | 0.200                    | 1.67                 |
| Dungeness crab        | T49  | 0.128                    | 0.42                 |
| Dungeness crab        | T50  | 0.065                    | 0.18                 |
| English sole          | T11B | 0.083                    | 1.03                 |
| English sole          | T38  | 0.356                    | 5.95                 |
| English sole          | T48  | 0.177                    | 1.94                 |
| English sole          | T49  | 0.060                    | 0.51                 |
| English sole          | T50  | 0.185                    | 2.47                 |
| Eulachon              | T11B | 0.000                    | 0.00                 |
| Eulachon              | T38  | 0.000                    | 0.00                 |
| Eulachon              | T48  | 0.000                    | 0.00                 |
| Eulachon              | T49  | 0.000                    | 0.00                 |
| Eulachon              | T50  | 0.000                    | 0.00                 |
| Flathead sole         | T11B | 0.002                    | 0.01                 |
| Flathead sole         | T38  | 0.015                    | 0.10                 |
| Flathead sole         | T48  | 0.033                    | 0.53                 |
| Flathead sole         | T49  | 0.021                    | 0.49                 |
| Flathead sole         | T50  | 0.002                    | 0.16                 |
| Greenstriped rockfish | T11B | 0.000                    | 0.00                 |
| Greenstriped rockfish | T38  | 0.000                    | 0.00                 |
| Greenstriped rockfish | T48  | 0.000                    | 0.00                 |
| Greenstriped rockfish | T49  | 0.000                    | 0.00                 |
| Greenstriped rockfish | T50  | 0.000                    | 0.00                 |
| Kelp greenling        | T11B | 0.000                    | 0.00                 |
| Kelp greenling        | T38  | 0.000                    | 0.00                 |
| Kelp greenling        | T48  | 0.000                    | 0.00                 |
| Kelp greenling        | T49  | 0.000                    | 0.00                 |
| Kelp greenling        | T50  | 0.000                    | 0.00                 |
| Longfin smelt         | T11B | 0.000                    | 0.02                 |
| Longfin smelt         | T38  | 0.003                    | 0.19                 |

#### Average biomass of fish for 100 square meters trawled.

Investigator: Dr. Colin Levings

| Species         | Site | Average biomass of fish/ | Average Number fish/ |
|-----------------|------|--------------------------|----------------------|
|                 |      | 100 square Meters        | 100 square Meters    |
| Longfin smelt   | T48  | 0.001                    | 0.09                 |
| Longfin smelt   | T49  | 0.000                    | 0.00                 |
| Longfin smelt   | T50  | 0.000                    | 0.00                 |
| Longnose skate  | T11B | 0.000                    | 0.00                 |
| Longnose skate  | T38  | 0.000                    | 0.00                 |
| Longnose skate  | T48  | 0.000                    | 0.00                 |
| Longnose skate  | T49  | 0.000                    | 0.00                 |
| Longnose skate  | T50  | 0.000                    | 0.00                 |
| Pacific hake    | T11B | 0.000                    | 0.00                 |
| Pacific hake    | T38  | 0.000                    | 0.00                 |
| Pacific hake    | T48  | 0.000                    | 0.00                 |
| Pacific hake    | T49  | 0.000                    | 0.00                 |
| Pacific hake    | T50  | 0.066                    | 2.92                 |
| Pacific herring | T11B | 0.002                    | 0.09                 |
| Pacific herring | T38  | 0.007                    | 0.22                 |
| Pacific herring | T48  | 0.003                    | 0.05                 |
| Pacific herring | T49  | 0.000                    | 0.00                 |
| Pacific herring | T50  | 0.000                    | 0.00                 |
| Pacific sanddab | T11B | 0.004                    | 0.04                 |
| Pacific sanddab | T38  | 0.004                    | 0.09                 |
| Pacific sanddab | T48  | 0.000                    | 0.00                 |
| Pacific sanddab | T49  | 0.006                    | 0.03                 |
| Pacific sanddab | T50  | 0.005                    | 0.04                 |

The average biomass may be 0.000 even though a small number of fish were present. This is due to the number of significant figures reported.

.

#### Age of English sole, as determined from otoliths.

| Fish ID | Length (mm) | Weight (g) | Sex | Age (years) | Site number |
|---------|-------------|------------|-----|-------------|-------------|
| 990001  | 262         | 131        | Μ   | 8           | B49         |
| 990002  | 263         | 152        | F   | 8           | B49         |
| 990003  | 204         | 63         | Μ   | 3           | B49         |
| 990004  | 200         | 63         | Μ   | 3           | B49         |
| 990005  | 240         | 112        | Μ   | 10          | B49         |
| 990006  | 311         | 261        | Μ   | 9           | B49         |
| 990007  | 215         | 80         | Μ   | 9           | B49         |
| 990008  | 250         | 130        | Μ   | 6           | B49         |
| 990009  | 223         | 98         | Μ   | 5           | B49         |
| 990010  | 218         | 90         | Μ   | 5           | B49         |
| 990011  | 207         | 78         | Μ   | 6           | B49         |
| 990012  | 261         | 158        | Μ   | 2           | B49         |
| 990013  | 243         | 115        | Μ   | 5           | B49         |
| 990014  | 274         | 165        | F   | 6           | B49         |
| 990015  | 290         | 220        | F   | 9           | B49         |
| 990016  | 251         | 137        | Μ   | 9           | B49         |
| 990017  | 257         | 158        | Μ   | 8           | B49         |
| 990018  | 230         | 103        | Μ   | 8           | B49         |
| 990019  | 227         | 109        | Μ   | 8           | B49         |
| 990020  | 227         | 110        | Μ   | 5           | B49         |
| 990021  | 295         | 193        | F   | 7           | B49         |
| 990022  | 263         | 157        | F   | 6           | B49         |
| 990023  | 265         | 161        | F   | 5           | B49         |
| 990024  | 275         | 160        | F   | 4           | B49         |
| 990025  | 260         | 140        | F   | 4           | B49         |
| 990026  | 259         | 156        | F   | 6           | B49         |
| 990027  | 245         | 133        | F   | 10          | B49         |
| 990028  | 265         | 174        | F   | 7           | B49         |
| 990029  | 255         | 150        | F   | 6           | B49         |
| 990030  | 278         | 171        | F   | 6           | B49         |
| 990031  | 223         | 90         | Μ   | 8           | B11B        |
| 990032  | 218         | 87         | Μ   | 7           | B11B        |
| 990033  | 262         | 148        | F   | 6           | B11B        |
| 990034  | 311         | 284        | F   | 11          | B11B        |
| 990035  | 272         | 188        | F   | 9           | B11B        |
| 990036  | 325         | 276        | F   | 10          | B11B        |
| 990037  | 254         | 135        | F   | 5           | B11B        |
| 990038  | 256         | 148        | F   | 7           | B11B        |
| 990039  | 232         | 100        | Μ   | 7           | B11B        |
| 990040  | 243         | 120        | Μ   | 5           | B11B        |
| 990041  | 273         | 172        | F   | 9           | B11B        |
| 990042  | 229         | 97         | F   | 5           | B11B        |
| 990043  | 216         | 81         | F   | 5           | B11B        |
| 990044  | 235         | 116        | F   | 5           | B11B        |
| 990045  | 247         | 148        | F   | 7           | B11B        |

#### Age of English sole, as determined from otoliths.

| Fish ID | Length (mm) | Weight (g) | Sex | Age (years) | Site number |
|---------|-------------|------------|-----|-------------|-------------|
| 990046  | 240         | 122        | F   | 9           | B11B        |
| 990047  | 228         | 108        | Μ   | 7           | B11B        |
| 990048  | 227         | 91         | Μ   | 6           | B11B        |
| 990049  | 217         | 88         | F   | 6           | B11B        |
| 990050  | 217         | 86         | F   | 6           | B11B        |
| 990051  | 258         | 145        | F   | 7           | B11B        |
| 990052  | 237         | 112        | F   | 7           | B11B        |
| 990053  | 241         | 121        | F   | 8           | B11B        |
| 990054  | 227         | 104        | Μ   | 4           | B11B        |
| 990055  | 236         | 111        | F   | 4           | B11B        |
| 990056  | 228         | 98         | F   | 5           | B11B        |
| 990057  | 226         | 89         | F   | 4           | B11B        |
| 990058  | 228         | 95         | F   | 4           | B11B        |
| 990059  | 230         | 103        | F   | 4           | B11B        |
| 990060  | 218         | 89         | F   | 4           | B11B        |
| 990061  | 257         | 129        | F   | 7           | <b>B38</b>  |
| 990062  | 322         | 265        | F   | 8           | B38         |
| 990063  | 290         | 184        | F   | 7           | B38         |
| 990064  | 285         | 160        | Μ   | 11          | B38         |
| 990065  | 342         | 298        | F   | 10          | B38         |
| 990066  | 336         | 312        | F   | 8           | B38         |
| 990067  | 289         | 170        | Μ   | 15          | B38         |
| 990068  | 332         | 275        | F   | 12          | B38         |
| 990069  | 332         | 301        | F   | 9           | B38         |
| 990070  | 215         | 242        | F   | 11          | B38         |
| 990071  | 344         | 297        | F   | 11          | B38         |
| 990072  | 332         | 313        | F   | 15          | B38         |
| 990073  | 228         | 350        | F   | 9           | B38         |
| 990074  | 321         | 266        | F   | 8           | B38         |
| 990075  | 304         | 204        | F   | 8           | B38         |
| 990076  | 306         | 220        | F   | 10          | B38         |
| 990077  | 297         | 221        | F   | 11          | B38         |
| 990078  | 290         | 168        | Μ   | 15          | B38         |
| 990079  | 295         | 201        | F   | 6           | B38         |
| 990080  | 284         | 170        | F   | 6           | B38         |
| 990081  | 262         | 137        | F   | 7           | B38         |
| 990082  | 283         | 183        | F   | 8           | B38         |
| 990083  | 280         | 165        | Μ   | 14          | B38         |
| 990084  | 300         | 220        | Μ   | 10          | B38         |
| 990085  | 271         | 152        | Μ   | 10          | B38         |
| 990086  | 284         | 153        | Μ   | 10          | B38         |
| 990087  | 258         | 139        | F   | 5           | B38         |
| 990088  | 258         | 137        | F   | 6           | B38         |
| 990089  | 265         | 141        | F   | 6           | B38         |
| 990090  | 282         | 202        | F   | 7           | B38         |

#### Age of English sole, as determined from otoliths.

| Fish ID | Length (mm) | Weight (g) | Sex | Age (years) | Site number |
|---------|-------------|------------|-----|-------------|-------------|
| 990091  | 302         | 192        | F   | 10          | B48         |
| 990092  | 287         | 192        | F   | 6           | B48         |
| 990093  | 290         | 190        | F   | 9           | B48         |
| 990094  | 271         | 152        | F   | 6           | B48         |
| 990095  | 255         | 160        | F   | 9           | B48         |
| 990096  | 247         | 125        | F   | 6           | B48         |
| 990097  | 289         | 188        | F   | 7           | B48         |
| 990098  | 278         | 178        | F   | 7           | B48         |
| 990099  | 230         | 97         | Μ   | 8           | B48         |
| 990100  | 266         | 40         | Μ   | 11          | B48         |
| 990101  | 256         | 120        | Μ   | 5           | B48         |
| 990102  | 271         | 176        | Μ   | 13          | B48         |
| 990103  | 285         | 176        | F   | 10          | B48         |
| 990104  | 318         | 283        | F   | 10          | B48         |
| 990105  | 302         | 235        | F   | 8           | B48         |
| 990106  | 275         | 168        | F   | 5           | B48         |
| 990107  | 262         | 150        | F   | 5           | B48         |
| 990108  | 248         | 126        | F   | 4           | B48         |
| 990109  | 255         | 135        | F   | 5           | B48         |
| 990110  | 274         | 155        | F   | 6           | B48         |
| 990111  | 247         | 126        | Μ   | 9           | B48         |
| 990112  | 252         | 132        | F   | 7           | B48         |
| 990113  | 250         | 134        | F   | 6           | B48         |
| 990114  | 265         | 146        | F   | 6           | B48         |
| 990115  | 297         | 228        | F   | 6           | B48         |
| 990116  | 262         | 153        | F   | 6           | B48         |
| 990117  | 274         | 177        | F   | 9           | B48         |
| 990118  | 274         | 168        | F   | 8           | B48         |
| 990119  | 256         | 143        | F   | 4           | B48         |
| 990120  |             | 265        | F   | 11          | B48         |
| 990121  | 246         | 113        | F   | 6           | B50         |
| 990122  | 295         | 204        | F   | 12          | B50         |
| 990123  |             | 125        | F   | 6           | B50         |
| 990124  | 265         | 124        | Μ   | 13          | B50         |
| 990125  | 280         | 166        | F   | 6           | B50         |
| 990126  |             | 95         | F   | 6           | B50         |
| 990127  | 235         | 91         | Μ   | 8           | B50         |
| 990128  | 245         | 112        | F   | 7           | B50         |
| 990129  | 246         | 120        | F   | 6           | B50         |
| 990130  | 243         | 107        | F   | 4           | B50         |
| 990131  | 234         | 90         | М   | 8           | B50         |
| 990132  | 269         | 142        | F   | 9           | B50         |
| 990133  | 228         | 97         | Μ   | 8           | B50         |
| 990134  | 230         | 101        | М   | 9           | B50         |
| 990135  | 240         | 105        | Μ   | 6           | B50         |

#### Age of English sole, as determined from otoliths.

| Fish ID | Length (mm) | Weight (g) | Sex | Age (years) | Site number |
|---------|-------------|------------|-----|-------------|-------------|
| 990136  | 233         | 96         | Μ   | 10          | B50         |
| 990137  | 229         | 99         | F   | 7           | B50         |
| 990138  | 235         | 94         | Μ   | 9           | B50         |
| 990139  | 224         | 92         | F   | 7           | B50         |
| 990140  | 239         | 89         | Μ   | 3           | B50         |
| 990141  | 246         | 93         | F   | 3           | B50         |
| 990142  | 234         | 92         | Μ   | 11          | B50         |
| 990143  | 225         | 79         | Μ   | 8           | B50         |
| 990144  | 216         | 61         | Μ   | 6           | B50         |
| 990145  | 237         | 96         | J   | 7           | B50         |
| 990146  | 235         | 92         | Μ   | 6           | B50         |
| 990147  | 234         | 99         | F   | 6           | B50         |
| 990148  | 230         | 85         | Μ   | 9           | B50         |
| 990149  | 225         | 80         | F   | 6           | B50         |
| 990150  | 229         | 85         | Μ   | 9           | B50         |
| 990151  | 285         | 172        | F   | 3           | B49         |
| 990152  | 260         | 135        | Μ   | 6           | B49         |
| 990153  | 290         | 178        | F   | 6           | B49         |
| 990154  | 292         | 193        | F   | 5           | B49         |
| 990155  | 265         | 141        | F   | 6           | B49         |
| 990156  | 254         | 145        | F   | 9           | B49         |
| 990157  | 290         | 213        | Μ   | 6           | B49         |
| 990158  | 234         | 103        | Μ   | 7           | B49         |
| 990159  | 265         | 155        | Μ   | 7           | B49         |
| 990160  | 227         | 108        | Μ   | 6           | B49         |
| 990161  | 237         | 107        | F   | 4           | B49         |
| 990162  | 255         | 132        | М   | 6           | B49         |

Table 51Stomach contents for English sole from Vancouver Harbour.Investigator: Dr. Colin Levings

| gg capsules     |              |           | п          | u          | u          | u          | u          | u          | u          | u          | и          | u          | u           | u           | u           | u           | u           | u           | u           | u           | u           | u           | 2          | u          | u          | п          | u          | u          | u          | u          | u          | 2         |
|-----------------|--------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| nidentifiable E | nvertebrate  | Fragments | u          | п          | u          | u          | I          | u          | n          | u          | 2          | u          | u           | u           | u           | -           | 5           | u           | u           | 1           | I           | п           | u          | u          | u          | u          | n          | u          | u          | u          | u          | \$        |
| Stones U        | Ι            |           | u          | u          | u          | u          | u          | u          | u          | u          | u          | u          | u           | u           | u           | ц           | u           | u           | и           | ц           | u           | u           | u          | u          | ц          | ц          | п          | п          | u          | u          | u          | ;         |
| Jnknown         | Tissue       |           | Y          | У          | y          | y          | y          | y          | y          | Y          | y          | y          | y           | y           | y           | y           | y           | y           | У           | Y           | y           | y           | y          | y          | y          | y          | y          | Y          | y          | y          | y          |           |
| Bark 1          |              |           | y          | y          | y          | y          | y          | y          | y          | y          | y          | y          | y           | y           | Y           | y           | y           | y           | y           | Y           | Y           | y           | Y          | y          | y          | Y          | Y          | Y          | y          | y          | y          |           |
| Algae           |              |           | Y          | y          | y          | Y          | y          | Y          | y          | y          | y          | y          | У           | y           | y           | y           | Y           | y           | y           | y           | y           | Y           | Y          | Y          | Y          | y          | Y          | y          | Y          | y          | y          |           |
| Unknown A       | Crustaceans  |           | 0          | 0          | 0          | 0          | 0          | 0          | 0          | -          | 0          | 0          | 0           | 0           | 0           | 0           | ŝ           | 1           | 0           | 0           | 0           | 0           | 1          | 0          | 4          | 0          | 0          | 0          | 0          | I          | 0          | <         |
| Unknown         | Crustacean ( | Fragments | ŝ          | u          | u          | u          | и          | u          | u          | 1          | ц          | u          | u           | б           | u           | п           | 2           | u           | u           | n           | u           | u           | 4          | п          | ε          | u          | u          | u          | п          | ļ          | u          | •         |
| Amphipods       | -            |           | 4          | -          | 0          | 0          | 0          | 1          | 7          | 0          | 0          | 0          | 0           | 0           | 1           | 0           | 4           | 1           | 0           | 0           | 0           | 0           | 0          | 0          | 0          | l          | 0          | 0          | 0          | 0          | 0          | ¢         |
| Nematodes       |              |           | y          | Y          | Y          | y          | y          | Y          | Y          | y          | y          | y          | y           | y           | y           | Y           | у           | y           | y           | y           | y           | Y           | y          | y          | y          | y          | y          | y          | y          | Y          | y          |           |
| Annelid         | Fragments    |           | y          | y          | у          | y          | y          | y          | y          | y          | y          | y          | y           | y           | y           | У           | Y           | y           | У           | y           | y           | y           | y          | y          | y          | y          | y          | y          | y          | У          | y          |           |
| Annelids        |              |           | 7          | 1          | 25         | 24         | 22         | 4          | 25         | 26         | 20         | 18         | 6           | 9           | 3           | 13          | 45          | 26          | 6           | 15          | 21          | 9           | 56         | 7          | 67         | 74         | 30         | 62         | 35         | 61         | 9          | S         |
| Mollusc         | Fragments    |           | У          | Y          | Y          | y          | y          | y          | y          | y          | y          | У          | y           | y           | у           | y           | у           | y           | y           | y           | Y           | y           | y          | y          | y          | y          | y          | y          | y          | y          | Y          |           |
| Forams          | -            |           | 4          | 1          | 6          | 1          | 0          | S          | 0          | 0          | 7          | 7          | ε           | 2           | 1           | 1           | 0           | 0           | 1           | 2           | 0           | 0           | 0          | 0          | 1          | 0          | 0          | 7          | 0          | 0          | 0          | <         |
| Bivalves        |              |           | 34         | 14         | 22         | 40         | 30         | 13         | 34         | 2          | 7          | 6          | 9           | 16          | 5           |             | 2           | 6           | 4           | 7           | 7           | 8           | 1          | 9          | 4          | 1          | 5          | 0          | 5          | 0          | 0          | 0         |
| Age             |              |           | ŝ          | S          | 9          | 6          | ×          | 8          | 8          | S          | ٢          | 9          | 8           | ٢           | 9           | S           | 7           | ٢           | Ś           | S           | 6           | ٢           | 8          | ٢          | 11         | 15         | 12         | 11         | 11         | ٢          | 10         | 10        |
| Fish ID Site    |              |           | 990009 T49 | 990013 T49 | 990014 T49 | 990016 T49 | 990017 T49 | 990018 T49 | 990019 T49 | 990020 T49 | 990021 T49 | 990022 T49 | 990031 T11B | 990032 T11B | 990033 T11B | 990037 T11B | 990038 T11B | 990039 T11B | 990043 T11B | 990044 T11B | 990046 T11B | 990051 T11B | 990062 T38 | 990063 T38 | 990064 T38 | 990067 T38 | 990068 T38 | 990071 T38 | 990077 T38 | 990081 T38 | 990084 T38 | 00006 T30 |

•

| Table 51                                                  |
|-----------------------------------------------------------|
| Stomach contents for English sole from Vancouver Harbour. |
| Investigator: Dr. Colin Levings                           |

| gg capsules     |              |           | u        | п        | ц        | u        | u        | u          |          | u        | u        | u        | u        | u        | ц        | u        | u        | u        | и        | ц        | u        | u        | u        | u        | Ę        |
|-----------------|--------------|-----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| nidentifiable E | nvertebrate  | Fragments | u        | ц        | ц        | 3        | 1        |            | 6        | 2        | 2        | 19       | u        | ę        | e        | ц        | 6        | u        | п        | 2        | e        | ŝ        | u        | u        | u        |
| Stones U        | Ι            |           | u        | u        | 2        | и        | ц        | u          | u        | u        | ц        | ц        | u        | u        | u        | u        | 26       | 1        | u        | u        | u        | п        | 4        | п        | 9        |
| Unknown         | Tissue       |           | y        | y        | y        | y        | Y        | y          | y        | y        | y        | Y        | y        | y        | Y        | , y      | y        | Y        | Y        | y        | y        | Y        | y        | y        | ^        |
| Bark            |              |           | y        | y        | y        | y        | Ň        | ~          | Y        | Y        | Y        | Y        | y        | 2        | Y        | Ň        | y        | Y        | Y        | y        | y        | Y        | Y        | Y        | >        |
| Mgae            | )            |           | y        | Y        | Y        | Y        | Y        | Y          | y        | y        | Y        | Y        | Y        | Ň        | Y        | , y      | , y      | Y        | Y        | y        | y        | y        | y        | y        | 2        |
| Unknown A       | Crustaceans  |           | 0        | 0        | 0        | 7        | 0        | 0          | 0        | 2        | 0        | 0        | 0        | 1        | 0        | 0        | 1        | 1        | 0        | 1        | 0        | 0        | 1        | 0        | Ч        |
| Unknown         | Crustacean ( | Fragments | 3        | 1        | u        | -        | u        | u          | y        | 21       | 2        | 5        | 1        | ц        | u        | 1        | 4        | 1        | 3        | ц        | 6        | u        | u        | u        | u        |
| Amphipods       |              |           | 4        | 0        | 0        | -        | 0        | 0          | 0        | 7        | 7        | 0        | 0        | 0        | 0        | 4        | 0        | 2        | 4        | 1        | 9        | 1        | 1        | 2        | ε        |
| Nematodes /     |              |           | y        | 39       | 11       | 50       | 27       | 58         | 19       | 21       | 21       | 32       | 14       | 122      | 36       | y        | y        | y        | y        | y        | y        | y        | y        | y        | ٨        |
| Annelid         | Fragments    |           | y        | y        | y        | y        | u        | y          | y        | y        | Y        | u        | y        | y        | y        | y        | y        | y        | y        | y        | y        | u        | y        | y        | ٨        |
| Annelids        |              |           | 7        | 19       | 13       | 20       | 14       | 15         | 40       | 9        | 7        | -        | 4        | 14       | 24       | 9        | 27       | 4        | 4        | 7        | 4        | 15       | 22       | 9        | 4        |
| Mollusc         | Fragments    |           | y        | y        | y        | u        | y        | y          | y        | y        | y        | y        | Y        | y        | п        | y        | y        | y        | y        | y        | y        | y        | y        | y        | ٨        |
| Forams          | Ι            |           | 4        | 3        | 2        | 0        | 0        | 2          | 10       | ю        | 7        | 7        | 4        | 32       | 0        | 0        | 0        | 0        | 0        | 0        | 2        | 0        | 0        | 0        | 0        |
| Bivalves        |              |           | 34       | 1        | 36       | 1        | 14       | 2          | 31       | 36       | 2        | 32       | -        | 36       | 1        | 37       | 0        | 87       | 14       | 23       | 4        | 64       | 2        | 8        | 9        |
| Age             |              |           | S        | 9        | 6        | 6        | 9        | ٢          | ٢        | 8        | 11       | S        | 13       | 10       | 10       | 13       | 8        | 9        | ~        | ~        | 6        | 9        | 10       | 6        | ٢        |
| Site            |              |           | [49      | [48      | Γ48      | [48      | 148      | 148<br>148 | [48      | [48      | .48      | 48       | 48       | 48       | 48       | 50       | 50       | 50       | 50       | 50       | 50       | 50       | 50       | 50       | 50       |
| Fish ID         |              |           | L 600066 | 990092 J | 990093 J | 990095 T | L 960066 | L 700066   | L 860066 | L 660066 | 990100 T | T 101066 | 990102 T | 990103 T | 990104 T | 990124 T | 990127 T | 990129 T | 990131 T | 990133 T | 990134 T | 990135 T | 990136 T | 990138 T | 990139 T |

.
| Number         (mm)         Wt (g)         Wt (g)         Number         (mm)         Wt (g)           I1         1         7.8         0.07         0.01         I4         52         37.8         4.3           I1         2         7.5         0.05         0.01         I4         53         37.6         5.3           I1         3         7.5         0.07         0.01         I4         54         18.8         0.6           I1         4         7.0         0.05         0.00         I4         55         40.8         4.7           I1         5         6.5         0.04         0.00         I4         56         28.3         1.9           I1         6         5.8         0.03         0.00         I4         57         9.0         0.0           I1         7         8.0         0.08         0.01         I4         58         9.0         0.0           I1         7         8.0         0.08         0.01         I4         59         27.5         1.6           I1         8         8.0         0.08         0.01         I4         50         0.0         0.1 | Wt (g)         5       1.16         4       1.32         2       0.15         3       1.20         5       0.44         5       0.00         7       0.00         0       0.27 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5       1.16         4       1.32         2       0.15         3       1.20         5       0.44         6       0.00         7       0.00         0       0.27                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4         1.32           2         0.15           3         1.20           5         0.44           6         0.00           7         0.00           0         0.27           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2         0.15           3         1.20           5         0.44           5         0.00           7         0.00           0         0.27                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3       1.20         5       0.44         5       0.00         7       0.00         0       0.27                                                                               |
| I1       5       6.5       0.04       0.00       I4       56       28.3       1.9         I1       6       5.8       0.03       0.00       I4       57       9.0       0.0         I1       7       8.0       0.08       0.01       I4       58       9.0       0.0         I1       8       8.0       0.08       0.01       I4       59       27.5       1.6         I1       9       8.5       0.08       0.01       I4       50       0.1       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       0.44         5       0.00         7       0.00         0       0.27                                                                                                    |
| I1       6       5.8       0.03       0.00       I4       57       9.0       0.0         I1       7       8.0       0.08       0.01       I4       58       9.0       0.0         I1       8       8.0       0.08       0.01       I4       59       27.5       1.6         I1       8       8.5       0.08       0.01       I4       50       0.0       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 0.00<br>7 0.00<br>) 0.27                                                                                                                                                     |
| I1         7         8.0         0.08         0.01         I4         58         9.0         0.0           I1         8         8.0         0.08         0.01         I4         59         27.5         1.6           I1         9         8.5         0.08         0.01         I4         59         27.5         1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 0.00<br>) 0.27                                                                                                                                                               |
| I1         8         8.0         0.08         0.01         I4         59         27.5         1.6           I1         9         8.5         0.08         0.01         I4         59         27.5         1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.27                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · •— ·                                                                                                                                                                         |
| 7 0.5 0.00 0.01 14 00 10.0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 0.01                                                                                                                                                                         |
| II 10 9.1 0.11 0.02 I4 61 42.0 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 1.20                                                                                                                                                                         |
| I1         11         7.3         0.07         0.00         I4         62         32.4         2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 0.84                                                                                                                                                                         |
| I1         12         8.0         0.07         0.01         I4         63         7.2         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 0.01                                                                                                                                                                         |
| II 13 8.4 0.08 0.01 I4 64 8.5 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 0.01                                                                                                                                                                         |
| II 14 8.9 0.11 0.01 I4 65 41.8 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 1.00                                                                                                                                                                         |
| II 15 11.3 0.16 0.03 I4 66 13.0 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 0.04                                                                                                                                                                         |
| I1         16         9.4         0.13         0.01         I4         67         30.0         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 0.35                                                                                                                                                                         |
| I1         17         8.8         0.11         0.02         I4         68         29.4         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 0.44                                                                                                                                                                         |
| I1         18         8.1         0.08         0.01         I4         69         26.5         1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 0.31                                                                                                                                                                         |
| I1         19         8.0         0.10         0.01         I4         70         7.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 0.00                                                                                                                                                                         |
| I1         20         10.0         0.15         0.02         I4         71         24.3         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l 0.19                                                                                                                                                                         |
| I1         21         10.3         0.16         0.02         I4         72         33.9         2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>i</b> 0.67                                                                                                                                                                  |
| II 22 9.2 0.12 0.01 I4 73 27.8 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 0.40                                                                                                                                                                         |
| II 23 10.7 0.15 0.03 I4 74 21.6 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 0.12                                                                                                                                                                         |
| 11 24 11.0 0.15 0.03 14 75 30.3 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 0.63                                                                                                                                                                         |
| 11 25 10.0 0.13 0.03 14 76 27.4 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 0.39                                                                                                                                                                         |
| 11 26 11.3 0.19 0.03 14 77 15.0 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 0.03                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0.00                                                                                                                                                                         |
| 11         28         11.4         0.16         0.02         14         79         8.6         0.0           11         20         10.7         0.10         0.02         14         79         8.6         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 0.00                                                                                                                                                                         |
| 11         29         10.7         0.18         0.03         14         80         15.5         0.33           11         20         11.0         0.16         0.02         14         01         10.5         0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.03                                                                                                                                                                         |
| 11 30 11.0 0.16 0.03 14 81 10.5 0.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 0.02                                                                                                                                                                         |
| 11 31 10.3 0.14 0.03 14 82 8.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 0.01                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o 0.00                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 0.30                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | > 0.19                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 0.39                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 0.24                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0.48                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / 0.30                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | > 0.01                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.21                                                                                                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30 C                                                                                                                                                                         |
| II 44 12 8 0.20 0.05 14 94 8.8 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 0.00<br>5 0.00                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) 0.00<br>) 1.2 <i>1</i>                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · 1.34                                                                                                                                                                         |
| II 47 12.0 0.19 0.04 I4 98 10.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) 0.49<br>) 0.01                                                                                                                                                               |

| Site | Sample | Length | Whole  | Meat   | Site | Sample | Length | Whole  | Meat   |
|------|--------|--------|--------|--------|------|--------|--------|--------|--------|
|      | Number | (mm)   | Wt (g) | Wt (g) |      | Number | (mm)   | Wt (g) | Wt (g) |
| I1   | 48     | 14.0   | 0.34   | 0.07   | I4   | 99     | 8.3    | 0.05   | 0.01   |
| I1   | 49     | 12.8   | 0.26   | 0.06   | I4   | 100    | 7.6    | 0.05   | 0.00   |
| 11   | 50     | 14.5   | 0.42   | 0.09   | I5B  | 1      | 9.5    | 0.10   | 0.01   |
| I1   | 51     | 12.4   | 0.25   | 0.04   | I5B  | 2      | 10.5   | 0.12   | 0.02   |
| I1   | 52     | 12.5   | 0.23   | 0.05   | I5B  | 3      | 9.0    | 0.08   | 0.01   |
| I1   | 53     | 14.9   | 0.33   | 0.08   | I5B  | 4      | 10.4   | 0.09   | 0.01   |
| I1   | 54     | 12.9   | 0.22   | 0.04   | I5B  | 5      | 12.6   | 0.27   | 0.05   |
| I1   | 55     | 21.2   | 0.96   | 0.34   | I5B  | 6      | 14.0   | 0.27   | 0.06   |
| I1   | 56     | 14.3   | 0.30   | 0.06   | I5B  | 7      | 17.8   | 0.63   | 0.15   |
| I1   | 57     | 15.6   | 0.34   | 0.07   | I5B  | 8      | 14.7   | 0.35   | 0.08   |
| I1   | 58     | 22.1   | 0.92   | 0.27   | I5B  | 9      | 16.2   | 0.37   | 0.13   |
| I1   | 59     | 16.4   | 0.42   | 0.10   | I5B  | 10     | 14.8   | 0.28   | 0.06   |
| I1   | 60     | 17.8   | 0.53   | 0.18   | I5B  | 11     | 16.3   | 0.44   | 0.11   |
| I1   | 61     | 18.9   | 0.60   | 0.21   | I5B  | 12     | 14.4   | 0.24   | 0.05   |
| I1   | 62     | 15.7   | 0.43   | 0.10   | I5B  | 13     | 13.8   | 0.27   | 0.06   |
| I1   | 63     | 16.5   | 0.48   | 0.13   | I5B  | 14     | 13.5   | 0.29   | 0.06   |
| I1   | 64     | 16.8   | 0.44   | 0.11   | I5B  | 15     | 17.8   | 0.56   | 0.15   |
| 11   | 65     | 16.5   | 0.42   | 0.11   | I5B  | 16     | 15.8   | 0.37   | 0.09   |
| 11   | 66     | 17.8   | 0.66   | 0.20   | I5B  | 17     | 12.6   | 0.18   | 0.03   |
| I1   | 67     | 18.3   | 0.69   | 0.22   | I5B  | 18     | 17.6   | 0.53   | 0.14   |
| I1   | 68     | 18.9   | 0.66   | 0.21   | I5B  | 19     | 13.8   | 0.19   | 0.11   |
| I1   | 69     | 18.9   | 0.56   | 0.16   | I5B  | 20     | 14.8   | 0.43   | 0.12   |
| I1   | 70     | 19.2   | 0.67   | 0.20   | I5B  | 21     | 17.0   | 0.34   | 0.06   |
| I1   | 71     | 18.4   | 0.65   | 0.21   | I5B  | 22     | 16.0   | 0.38   | 0.08   |
| I1   | 72     | 22.2   | 1.08   | 0.34   | I5B  | 23     | 15.0   | 0.28   | 0.05   |
| I1   | 73     | 22.6   | 1.04   | 0.36   | I5B  | 24     | 16.6   | 0.43   | 0.08   |
| I1   | 74     | 22.2   | 0.99   | 0.36   | I5B  | 25     | 15.8   | 0.43   | 0.08   |
| I1   | 75     | 23.4   | 1.08   | 0.37   | I5B  | 26     | 17.3   | 0.50   | 0.13   |
| I1   | 76     | 26.4   | 1.46   | 0.57   | I5B  | 27     | 17.5   | 0.51   | 0.13   |
| I1   | 77     | 26.5   | 1.50   | 0.58   | I5B  | 28     | 28.2   | 0.47   | 0.11   |
| I1   | 78     | 24.6   | 1.55   | 0.61   | I5B  | 29     | 20.4   | 0.65   | 0.16   |
| I1   | 79     | 21.5   | 0.87   | 0.26   | I5B  | 30     | 21.4   | 0.91   | 0.24   |
| I1   | 80     | 29.8   | 1.94   | 0.68   | I5B  | 31     | 17.6   | 0.42   | 0.10   |
| I1   | 81     | 27.0   | 2.31   | 0.71   | I5B  | 32     | 29.5   | 0.63   | 0.17   |
| I1   | 82     | 28.0   | 1.62   | 0.65   | I5B  | 33     | 22.8   | 0.91   | 0.25   |
| 11   | 83     | 34.4   | 2.94   | 1.08   | I5B  | 34     | 18.2   | 0.63   | 0.14   |
| I1   | 84     | 34.7   | 2.93   | 0.95   | I5B  | 35     | 19.9   | 0.70   | 0.21   |
| 11   | 85     | 36.3   | 3.71   | 1.52   | 15B  | 36     | 21.4   | 0.85   | 0.27   |
| 11   | 86     | 37.9   | 3.83   | 1.45   | I5B  | 37     | 21.4   | 0.89   | 0.26   |
| I1   | 87     | 38.3   | 4.15   | 1.68   | I5B  | 38     | 19.8   | 0.62   | 0.15   |
| 11   | 88     | 41.8   | 6.65   | 2.53   | I5B  | 39     | 19.5   | 0.65   | 0.19   |
| I1   | 89     | 42.7   | 6.05   | 2.28   | I5B  | 40     | 18.6   | 0.61   | 0.18   |
| I1   | 90     | 44.4   | 7.43   | 2.88   | I5B  | 41     | 22.0   | 0.89   | 0.23   |
| 11   | 91     | 46.0   | 6.85   | 2.53   | I5B  | 42     | 19.9   | 0.55   | 0.15   |
| 11   | 92     | 45.4   | 6.32   | 2.26   | I5B  | 43     | 18.6   | 0.59   | 0.17   |
| I1   | 93     | 47.7   | 7.40   | 3.25   | I5B  | 44     | 21.7   | 0.81   | 0.22   |
| 11   | 94     | 47.6   | 7.91   | 2.71   | I5B  | 45     | 20.2   | 0.71   | 0.13   |

Table 52 Length (mm) and wet weight (g) of *Mytilus trossulus*. Investigator: Ms. Jihyun Yun

| Site | Sample | Length | Whole  | Meat   | Site       | Sample     | Length | Whole  | Meat         |
|------|--------|--------|--------|--------|------------|------------|--------|--------|--------------|
|      | Number | (mm)   | Wt (g) | Wt (g) |            | Number     | (mm)   | Wt (g) | Wt (g)       |
| 11   | 95     | 46.6   | 7.64   | 2.88   | I5B        | 46         | 24.9   | 1.22   | 0.33         |
| I1   | 96     | 52.8   | 9.58   | 2.98   | I5B        | 47         | 21.8   | 0.85   | 0.25         |
| I1   | 97     | 55.0   | 12.27  | 3.87   | I5B        | 48         | 22.6   | 1.00   | 0.35         |
| 11   | 98     | 53.7   | 8.48   | 3.46   | I5B        | 49         | 24.7   | 1.13   | 0.34         |
| I1   | 99     | 49.9   | 7.86   | 3.10   | I5B        | 50         | 23.5   | 1.27   | 0.38         |
| I1   | 100    | 50.5   | 8.32   | 2.89   | I5B        | 51         | 26.4   | 1.65   | 0.46         |
| 12   | 1      | 7.8    | 0.05   | 0.01   | I5B        | 52         | 25.8   | 1.71   | 0.69         |
| I2   | 2      | 11.9   | 0.17   | 0.03   | I5B        | 53         | 25.8   | 1.52   | 0.53         |
| 12   | 3      | 12.7   | 0.18   | 0.04   | I5B        | 54         | 26.2   | 1.61   | 0.54         |
| 12   | 4      | 9.5    | 0.09   | 0.01   | I5B        | 55         | 25.3   | 1.20   | 0.39         |
| I2   | 5      | 10.9   | 0.12   | 0.02   | I5B        | 56         | 24.5   | 1.34   | 0.47         |
| 12   | 6      | 12.0   | 0.16   | 0.02   | I5B        | 57         | 28.8   | 1.90   | 0.71         |
| 12   | 7      | 9.9    | 0.11   | 0.02   | I5B        | 58         | 27.4   | 1.55   | 0.56         |
| I2   | 8      | 10.9   | 0.16   | 0.03   | I5B        | 59         | 26.0   | 1.52   | 0.42         |
| 12   | 9      | 12.5   | 0.21   | 0.04   | I5B        | 60         | 30.5   | 2.05   | 0.69         |
| 12   | 10     | 13.0   | 0.22   | 0.05   | I5B        | 61         | 43.4   | 4.94   | 2.20         |
| 12   | 11     | 12.4   | 0.21   | 0.05   | I5B        | 62         | 42.8   | 7.08   | 2.57         |
| 12   | 12     | 12.7   | 0.22   | 0.05   | I5B        | 63         | 43.0   | 5.87   | 2.73         |
| 12   | 13     | 14.8   | 0.33   | 0.09   | I5B        | 64         | 49.9   | 6.68   | 1.89         |
| 12   | 14     | 13.8   | 0.28   | 0.06   | 15B        | 65         | 48.3   | 7.16   | 3.13         |
| 12   | 15     | 16.5   | 0.48   | 0.15   | 15B        | 66         | 49.7   | 6.84   | 2.42         |
| 12   | 16     | 19.0   | 0.57   | 0.16   | 15B        | 67         | 43.9   | 9.51   | 3.93         |
| 12   | 17     | 18.5   | 0.62   | 0.17   | 15B        | 68         | 49.2   | 7.26   | 3.12         |
| 12   | 18     | 17.7   | 0.52   | 0.15   | 15B        | 69         | 49.9   | 9.51   | 4.15         |
| 12   | 19     | 12.3   | 0.16   | 0.03   | 15B        | 70         | 47.2   | 8.19   | 3.59         |
| 12   | 20     | 13.3   | 0.26   | 0.06   | 158        | 71         | 48.8   | 8.18   | 3.76         |
| 12   | 21     | 16.5   | 0.49   | 0.13   | ISB        | 72         | 48.8   | 8.22   | 3.72         |
| 12   | 22     | 23.2   | 1.09   | 0.44   | 128        | /3         | 51.8   | 9.56   | 4.01         |
| 12   | 23     | 19.8   | 0.61   | 0.17   | 128        | /4         | 50.7   | 9.48   | 4.72         |
| 12   | 24     | 20.3   | 0.63   | 0.20   | 128        | 15         | 53.4   | 9.11   | 4.20         |
| 12   | 25     | 10.3   | 0.42   | 0.12   | 128        | /6         | 51.7   | 8.74   | 4.12         |
| 12   | 20     | 10.0   | 0.54   | 0.10   | 150        | 70         | 50.7   | 9.13   | 3.93         |
| 12   | 21     | 17.4   | 0.57   | 0.20   | 150        | 70         | 51.7   | 0.20   | 3.02         |
| 12   | 20     | 19.5   | 0.55   | 0.15   | 150        | 19         | 55.0   | 10.42  | 4.20         |
| 12   | 29     | 19.5   | 0.51   | 0.15   | 150        | 0U<br>01   | 56.0   | 10.75  | 5.11         |
| 12   | 21     | 21.0   | 0.39   | 0.20   | 150        | 01<br>01   | 52.0   | 0.22   | 3.04         |
| 12   | 22     | 10.7   | 0.67   | 0.20   | 150        | 02<br>92   | 52.9   | 9.52   | 4.23         |
| 12   | 32     | 22.7   | 1.03   | 0.18   | 150        | 0.J<br>9.A | 54.9   | 11.00  | 4.09         |
| 12   | 34     | 22.5   | 0.83   | 0.30   | 15D<br>15B | 04<br>85   | 58.0   | 11.09  | J.20<br>1 05 |
| 12   | 35     | 19.7   | 0.85   | 0.20   | 15B        | 85         | 56.0   | 10.40  | 4.95         |
| 12   | 36     | 18.7   | 0.61   | 0.19   | ISB        | 87         | 56.5   | 10.40  | 4.70         |
| 12   | 37     | 19.7   | 0.52   | 0.18   | ISB        | 88         | 55.0   | 9.41   | 4 21         |
| 12   | 38     | 22.8   | 1.21   | 0.46   | ISB<br>ISB | 00<br>80   | 52.0   | 8 83   | 3 78         |
| 12   | 39     | 20.4   | 0.66   | 0.19   | ISB        | 90         | 54 8   | 9.05   | 4 49         |
| 12   | 40     | 25.3   | 1.15   | 0.42   | I5B        | 91         | 59.1   | 12.53  | 5 59         |
| 12   | 41     | 22.4   | 0.96   | 0.31   | 15B        | 92         | 57.0   | 11.14  | 5.00         |
|      |        |        |        |        |            |            |        |        |              |

| Site | Sample | Length | Whole  | Meat   | Site | Sample | Length | Whole  | Meat   |
|------|--------|--------|--------|--------|------|--------|--------|--------|--------|
|      | Number | (mm)   | Wt (g) | Wt (g) |      | Number | (mm)   | Wt (g) | Wt (g) |
| I2   | 42     | 21.5   | 0.79   | 0.21   | I5B  | 93     | 62.0   | 13.52  | 6.09   |
| I2   | 43     | 25.5   | 1.26   | 0.35   | I5B  | 94     | 58.9   | 10.06  | 4.93   |
| I2   | 44     | 21.4   | 0.89   | 0.31   | I5B  | 95     | 59.8   | 15.69  | 7.65   |
| 12   | 45     | 21.2   | 0.81   | 0.25   | I5B  | 96     | 61.0   | 13.79  | 5.94   |
| I2   | 46     | 24.5   | 1.13   | 0.38   | I5B  | 97     | 59.1   | 12.72  | 6.60   |
| I2   | 47     | 22.9   | 1.01   | 0.31   | I5B  | 98     | 61.8   | 15.01  | 7.00   |
| I2   | 48     | 25.1   | 1.28   | 0.45   | I5B  | 99     | 59.6   | 11.99  | 5.50   |
| I2   | 49     | 25.1   | 1.09   | 0.43   | I5B  | 100    | 65.5   | 13.83  | 6.11   |
| I2   | 50     | 29.9   | 1.91   | 0.82   | I6   | 1      | 9.5    | 0.10   | 0.01   |
| 12   | 51     | 28.6   | 1.59   | 0.63   | I6   | 2      | 1.0    | 0.11   | 0.02   |
| 12   | 52     | 24.4   | 1.12   | 0.40   | 16   | 3      | 13.8   | 0.23   | 0.05   |
| I2   | 53     | 25.8   | 1.28   | 0.51   | I6   | 4      | 14.1   | 0.22   | 0.04   |
| I2   | 54     | 21.4   | 0.84   | 0.30   | I6   | 5      | 14.0   | 0.27   | 0.06   |
| 12   | 55     | 22.2   | 0.97   | 0.27   | I6   | 6      | 14.4   | 0.22   | 0.03   |
| I2   | 56     | 21.3   | 1.33   | 0.50   | I6   | 7      | 14.9   | 0.28   | 0.04   |
| 12   | 57     | 26.7   | 1.42   | 0.61   | 16   | 8      | 16.5   | 0.36   | 0.07   |
| I2   | 58     | 28.9   | 1.59   | 0.64   | I6   | 9      | 16.5   | 0.39   | 0.09   |
| 12   | 59     | 27.5   | 1.73   | 0.55   | I6   | 10     | 15.4   | 0.32   | 0.05   |
| I2   | 60     | 25.8   | 1.43   | 0.59   | I6   | 11     | 16.8   | 0.44   | 0.09   |
| I2   | 61     | 33.7   | 2.71   | 1.16   | I6   | 12     | 16.9   | 0.35   | 0.07   |
| 12   | 62     | 28.3   | 1.88   | 0.66   | I6   | 13     | 15.8   | 0.30   | 0.05   |
| I2   | 63     | 30.6   | 2.45   | 0.84   | 16   | 14     | 17.6   | 0.47   | 0.10   |
| I2   | 64     | 30.3   | 1.80   | 0.75   | I6   | 15     | 20.6   | 0.81   | 0.19   |
| I2   | 65     | 25.6   | 1.31   | 0.36   | I6   | 16     | 19.6   | 0.54   | 0.11   |
| I2   | 66     | 28.3   | 1.76   | 0.63   | I6   | 17     | 21.5   | 0.72   | 0.20   |
| I2   | 67     | 26.4   | 1.35   | 0.53   | I6   | 18     | 21.9   | 0.81   | 0.19   |
| I2   | 68     | 33.8   | 2.46   | 1.01   | I6   | 19     | 22.7   | 1.33   | 0.45   |
| I2   | 69     | 29.9   | 1.87   | 0.79   | I6   | 20     | 21.1   | 0.94   | 0.27   |
| I2   | 70     | 29.0   | 1.82   | 0.65   | I6   | 21     | 20.1   | 0.61   | 0.18   |
| I2   | 71     | 33.4   | 2.10   | 0.79   | I6   | 22     | 22.2   | 0.85   | 0.28   |
| I2   | 72     | 30.6   | 2.20   | 0.70   | 16   | 23     | 20.9   | 0.89   | 0.26   |
| I2   | 73     | 38.3   | 3.21   | 2.72   | I6   | 24     | 27.0   | 1.34   | 0.36   |
| I2   | 74     | 33.9   | 2.45   | 0.64   | I6   | 25     | 25.1   | 1.28   | 0.41   |
| I2   | 75     | 34.4   | 3.10   | 1.09   | 16   | 26     | 24.6   | 1.06   | 0.28   |
| I2   | 76     | 37.1   | 3.16   | 1.28   | 16   | 27     | 27.5   | 1.45   | 0.46   |
| I2   | 77     | 34.4   | 2.82   | 1.09   | I6   | 28     | 34.3   | 2.74   | 0.87   |
| I2   | 78     | 34.4   | 2.46   | 0.90   | I6   | 29     | 32.2   | 2.22   | 0.60   |
| I2   | 79     | 31.9   | 2.39   | 0.96   | 16   | 30     | 37.2   | 4.25   | 1.28   |
| 12   | 80     | 33.3   | 2.50   | 0.98   | 16   | 31     | 35.0   | 3.15   | 0.84   |
| I2   | 81     | 33.3   | 3.06   | 1.44   | 16   | 32     | 28.3   | 1.56   | 0.56   |
| I2   | 82     | 33.0   | 2.51   | 1.06   | 16   | 33     | 34.2   | 2.67   | 0.81   |
| 12   | 83     | 33.0   | 2.78   | 0.96   | 16   | 34     | 26.9   | 1.31   | 0.35   |
| I2   | 84     | 33.9   | 2.48   | 1.06   | 16   | 35     | 31.4   | 1.86   | 0.49   |
| I2   | 85     | 35.9   | 2.88   | 1.13   | I6   | 36     | 33.2   | 3.29   | 1.00   |
| 12   | 86     | 30.6   | 2.38   | 0.92   | 16   | 37     | 32.3   | 2.58   | 0.76   |
| I2   | 87     | 33.0   | 2.50   | 0.87   | I6   | 38     | 31.0   | 1.75   | 0.53   |
| I2   | 88     | 34.9   | 3.10   | 1.26   | I6   | 39     | 37.0   | 3.08   | 0.98   |

| Site | Sample | Length | Whole  | Meat   | Site | Sample | Length | Whole  | Meat   |
|------|--------|--------|--------|--------|------|--------|--------|--------|--------|
|      | Number | (mm)   | Wt (g) | Wt (g) |      | Number | (mm)   | Wt (g) | Wt (g) |
| I2   | 89     | 34.7   | 3.24   | 1.31   | I6   | 40     | 34.9   | 3.07   | 0.99   |
| 12   | 90     | 37.5   | 3.84   | 1.83   | I6   | 41     | 34.3   | 2.89   | 0.88   |
| 12   | 91     | 40.3   | 4.03   | 1.82   | I6   | 42     | 34.9   | 2.80   | 0.78   |
| 12   | 92     | 42.3   | 4.02   | 1.55   | I6   | 43     | 35.5   | 3.41   | 1.00   |
| I2   | 93     | 43.8   | 4.45   | 1.88   | I6   | 44     | 39.2   | 4.05   | 1.16   |
| I2   | 94     | 38.8   | 4.66   | 2.02   | 16   | 45     | 37.3   | 3.53   | 0.95   |
| I2   | 95     | 46.5   | 6.25   | 2.37   | 16   | 46     | 47.8   | 8.23   | 2.10   |
| I2   | 96     | 43.2   | 4.34   | 1.88   | I6   | 47     | 37.9   | 4.11   | 1.47   |
| I2   | 97     | 46.0   | 5.21   | 2.19   | I6   | 48     | 33.6   | 2.60   | 0.80   |
| I2   | 98     | 48.0   | 5.53   | 1.83   | I6   | 49     | 42.5   | 5.60   | 1.73   |
| I2   | 99     | 54.7   | 8.88   | 3.33   | I6   | 50     | 46.3   | 5.12   | 1.73   |
| I2   | 100    | 53.4   | 10.05  | 3.46   | I6   | 51     | 34.4   | 3.32   | 1.15   |
| I3A  | 1      | 7.5    | 0.03   | 0.01   | 16   | 52     | 35.9   | 3.40   | 1.34   |
| I3A  | 2      | 8.8    | 0.07   | 0.00   | I6   | 53     | 32.5   | 2.49   | 0.74   |
| I3A  | 3      | 11.4   | 0.13   | 0.00   | I6   | 54     | 39.5   | 4.46   | 1.47   |
| I3A  | 4      | 11.4   | 0.15   | 0.02   | 16   | 55     | 34.0   | 2.32   | 0.67   |
| I3A  | 5      | 11.4   | 0.13   | 0.01   | I6   | 56     | 36.8   | 3.47   | 1.18   |
| I3A  | 6      | 10.7   | 0.15   | 0.01   | 16   | 57     | 40.5   | 4.30   | 1.19   |
| I3A  | 7      | 10.5   | 0.12   | 0.00   | I6   | 58     | 45.4   | 5.01   | 1.45   |
| I3A  | 8      | 11.5   | 0.27   | 0.02   | I6   | 59     | 41.4   | 3.97   | 2.32   |
| I3A  | 9      | 12.1   | 0.18   | 0.01   | I6   | 60     | 41.1   | 5.39   | 0.83   |
| I3A  | 10     | 12.5   | 0.19   | 0.02   | I6   | 61     | 40.0   | 4.36   | 1.42   |
| I3A  | 11     | 14.8   | 0.27   | 0.02   | I6   | 62     | 43.7   | 6.71   | 2.31   |
| I3A  | 12     | 18.6   | 0.51   | 0.06   | I6   | 63     | 45.3   | 7.16   | 2.67   |
| I3A  | 13     | 18.0   | 0.66   | 0.03   | I6   | 64     | 44.9   | 5.73   | 1.49   |
| I3A  | 14     | 17.0   | 0.47   | 0.05   | I6   | 65     | 39.2   | 4.31   | 1.29   |
| I3A  | 15     | 15.4   | 0.44   | 0.07   | I6   | 66     | 45.5   | 5.44   | 1.74   |
| 13A  | 16     | 17.0   | 0.45   | 0.06   | I6   | 67     | 44.4   | 5.73   | 2.00   |
| I3A  | 17     | 18.0   | 0.52   | 0.05   | I6   | 68     | 45.6   | 6.74   | 1.98   |
| I3A  | 18     | 9.4    | 0.58   | 0.06   | I6   | 69     | 47.5   | 6.94   | 2.52   |
| I3A  | 19     | 18.3   | 0.59   | 0.04   | I6   | 70     | 40.5   | 4.48   | 1.19   |
| I3A  | 20     | 18.2   | 0.59   | 0.06   | I6   | 71     | 51.0   | 7.27   | 2.55   |
| I3A  | 21     | 23.4   | 0.84   | 0.14   | I6   | 72     | 43.0   | 6.06   | 1.92   |
| I3A  | 22     | 22.6   | 0.85   | 0.14   | I6   | 73     | 50.3   | 7.19   | 1.92   |
| I3A  | 23     | 24.9   | 1.25   | 0.23   | I6   | 74     | 50.2   | 7.15   | 2.25   |
| I3A  | 24     | 19.7   | 0.59   | 0.08   | · I6 | 75     | 44.9   | 4.79   | 1.50   |
| I3A  | 25     | 22.7   | 0.81   | 0.12   | 16   | 76     | 48.0   | 6.69   | 2.19   |
| I3A  | 26     | 21.6   | 0.92   | 0.14   | I6   | 77     | 44.1   | 5.81   | 1.89   |
| I3A  | 27     | 24.0   | 1.19   | 0.16   | I6   | 78     | 44.7   | 5.65   | 2.08   |
| I3A  | 28     | 19.9   | 0.56   | 0.02   | I6   | 79     | 46.0   | 5.76   | 2.04   |
| I3A  | 29     | 20.7   | 0.73   | 0.10   | I6   | 80     | 48.9   | 7.25   | 2.52   |
| I3A  | 30     | 22.9   | 0.77   | 0.15   | I6   | 81     | 47.7   | 8.02   | 2.88   |
| I3A  | 31     | 21.9   | 0.81   | 0.18   | 16   | 82     | 49.8   | 7.42   | 2.60   |
| I3A  | 32     | 24.5   | 1.00   | 0.17   | 16   | 83     | 43.2   | 5.87   | 1.89   |
| 13A  | 33     | 24.6   | 0.90   | 0.17   | 16   | 84     | 45.5   | 5.99   | 1.99   |
| I3A  | 34     | 24.9   | 0.88   | 0.14   | 16   | 85     | 46.9   | 6.05   | 1.74   |
| I3A  | 35     | 21.6   | 0.66   | 0.12   | 16   | 86     | 47.9   | 7.08   | 2.28   |

Table 52 Length (mm) and wet weight (g) of *Mytilus trossulus*. Investigator: Ms. Jihyun Yun

| Site | Sample | Length | Whole  | Meat   | Site       | Sample | Length | Whole  | Meat   |
|------|--------|--------|--------|--------|------------|--------|--------|--------|--------|
|      | Number | (mm)   | Wt (g) | Wt (g) |            | Number | (mm)   | Wt (g) | Wt (g) |
| I3A  | 36     | 24.1   | 1.00   | 0.13   | I6         | 87     | 51.0   | 8.03   | 2.07   |
| I3A  | 37     | 25.0   | 1.06   | 0.13   | I6         | 88     | 50.3   | 6.87   | 2.54   |
| I3A  | 38     | 24.1   | 1.04   | 0.18   | 16         | 89     | 52.0   | 8.29   | 3.38   |
| I3A  | 39     | 22.8   | 0.86   | 0.14   | 16         | 90     | 55.8   | 8.74   | 3.18   |
| I3A  | 40     | 23.4   | 1.10   | 0.19   | 16         | 91     | 51.0   | 8.63   | 2.89   |
| I3A  | 41     | 24.8   | 0.85   | 0.16   | 16         | 92     | 56.8   | 10.39  | 3.13   |
| I3A  | 42     | 23.2   | 0.89   | 0.10   | 16         | 93     | 51.0   | 7.80   | 2.81   |
| I3A  | 43     | 28.4   | 1.40   | 0.33   | I6         | 94     | 53.1   | 8.80   | 2.58   |
| I3A  | 44     | 26.1   | 1.01   | 0.26   | I6         | 95     | 51.2   | 7.58   | 2.66   |
| I3A  | 45     | 26.6   | 1.23   | 0.30   | I6         | 96     | 51.9   | 9.00   | 2.79   |
| I3A  | 46     | 23.2   | 0.99   | 0.14   | I6         | 97     | 61.8   | 14.16  | 5.80   |
| I3A  | 47     | 28.6   | 1.23   | 0.30   | I6         | 98     | 54.5   | 8.65   | 3.05   |
| I3A  | 48     | 27.7   | 1.45   | 0.30   | I6         | 99     | 57.3   | 9.74   | 3.74   |
| I3A  | 49     | 23.8   | 1.05   | 0.26   | I6         | 100    | 57.4   | 10.32  | 3.77   |
| I3A  | 50     | 22.6   | 1.28   | 0.34   | I7         | 1      | 34.4   | 2.74   | 0.58   |
| I3A  | 51     | 24.8   | 1.02   | 0.22   | 17         | 2      | 52.3   | 10.25  | 1.90   |
| I3A  | 52     | 26.5   | 1.51   | 0.34   | I7         | 3      | 42.0   | 7.34   | 1.33   |
| I3A  | 53     | 27.4   | 1.38   | 0.35   | 17         | 4      | 53.0   | 7.88   | 1.63   |
| I3A  | 54     | 27.3   | 1.28   | 0.32   | I7         | 5      | 52.3   | 7.29   | 1.75   |
| I3A  | 55     | 32.2   | 2.01   | 0.55   | I7         | 6      | 42.4   | 3.75   | 0.86   |
| I3A  | 56     | 32.3   | 2.45   | 0.70   | 17         | 7      | 42.8   | 4.60   | 1.13   |
| I3A  | 57     | 33.8   | 2.14   | 0.50   | 17         | 8      | 42.5   | 4.76   | 1.44   |
| I3A  | 58     | 31.2   | 1.96   | 0.55   | I7         | 9      | 36.4   | 2.89   | 0.82   |
| I3A  | 59     | 27.3   | 1.18   | 0.29   | 17         | 10     | 42.6   | 4.63   | 1.21   |
| I3A  | 60     | 30.5   | 19.80  | 0.53   | 17         | 11     | 35.2   | 2.66   | 0.75   |
| I3A  | 61     | 30.5   | 1.97   | 0.51   | 17         | 12     | 18.8   | 0.58   | 0.15   |
| I3A  | 62     | 32.4   | 2.54   | 0.65   | I7         | 13     | 57.5   | 11.79  | 2.38   |
| I3A  | 63     | 26.1   | 1.12   | 0.23   | I7         | 14     | 42.7   | 6.54   | 1.59   |
| I3A  | 64     | 21.8   | 1.22   | 0.28   | 17         | 15     | 44.2   | 6.67   | 1.11   |
| I3A  | 65     | 28.1   | 1.31   | 0.27   | I7         | 16     | 38.6   | 3.80   | 0.96   |
| I3A  | 66     | 32.3   | 2.13   | 0.58   | 17         | 17     | 46.8   | 5.44   | 1.18   |
| I3A  | 67     | 29.6   | 1.82   | 0.57   | I7         | 18     | 30.1   | 1.73   | 0.41   |
| I3A  | 68     | 30.0   | 1.68   | 0.55   | I7         | 19     | 39.5   | 4.15   | 1.01   |
| I3A  | 69     | 28.4   | 1.74   | 0.51   | I7         | 20     | 42.4   | 4.24   | 1.03   |
| I3A  | 70     | 28.5   | 1.67   | 0.44   | I7         | 21     | 33.6   | 2.30   | 0.55   |
| I3A  | 71     | 32.5   | 1.94   | 0.58   | I7         | 22     | 31.1   | 1.87   | 0.40   |
| I3A  | 72     | 28.5   | 1.89   | 0.50   | I7         | 23     | 21.9   | 1.58   | 0.29   |
| I3A  | 73     | 34.7   | 2.83   | 0.75   | I7         | 24     | 22.2   | 0.88   | 0.22   |
| I3A  | 74     | 31.3   | 1.84   | 0.50   | I7         | 25     | 29.7   | 1.71   | 0.49   |
| I3A  | 75     | 31.4   | 1.48   | 0.37   | 17         | 26     | 47.9   | 7.07   | 1.42   |
| I3A  | 76     | 30.5   | 1.80   | 0.27   | 17         | 27     | 36.9   | 2.53   | 0.52   |
| I3A  | 77     | 32.5   | 2.10   | 0.58   | 17         | 28     | 43.8   | 5.15   | 1.23   |
| I3A  | 78     | 34.4   | 2.66   | 0.83   | 17         | 29     | 35.4   | 2.58   | 0.62   |
| I3A  | 79     | 32.3   | 2.00   | 0.48   | I <b>7</b> | 30     | 12.8   | 0.27   | 0.05   |
| I3A  | 80     | 34.9   | 2.23   | 0.60   | I7         | 31     | 36.9   | 2.78   | 0.68   |
| I3A  | 81     | 34.0   | 2.71   | 0.85   | I7         | 32     | 41.8   | 4.50   | 1.08   |
| I3A  | 82     | 34.8   | 2.39   | 0.67   | I7         | 33     | 47.9   | 7.42   | 1.43   |

| Site       | Sample | Length | Whole  | Meat   | Site | Sample | Length | Whole  | Meat   |
|------------|--------|--------|--------|--------|------|--------|--------|--------|--------|
|            | Number | (mm)   | Wt (g) | Wt (g) |      | Number | (mm)   | Wt (g) | Wt (g) |
| I3A        | 83     | 33.2   | 2.97   | 0.99   | 17   | 34     | 45.3   | 5.62   | 1.35   |
| I3A        | 84     | 34.1   | 2.24   | 0.69   | I7   | 35     | 35.5   | 2.81   | 0.82   |
| I3A        | 85     | 36.0   | 2.74   | 0.88   | 17   | 36     | 26.4   | 1.24   | 0.29   |
| I3A        | 86     | 36.3   | 2.82   | 0.59   | 17   | 37     | 12.6   | 0.21   | 0.04   |
| I3A        | 87     | 39.7   | 3.87   | 1.09   | 17   | 38     | 12.8   | 0.21   | 0.04   |
| I3A        | 88     | 37.9   | 3.87   | 1.17   | 17   | 39     | 35.3   | 2.72   | 0.55   |
| I3A        | 89     | 38.3   | 3.84   | 1.28   | 17   | 40     | 32.8   | 4.01   | 0.90   |
| I3A        | 90     | 36.9   | 2.94   | 0.75   | I7   | 41     | 44.0   | 6.08   | 1.44   |
| I3A        | 91     | 38.4   | 3.69   | 0.80   | 17   | 42     | 40.2   | 3.93   | 0.90   |
| I3A        | 92     | 38.7   | 3.68   | 1.11   | 17   | 43     | 33.9   | 2.27   | 0.46   |
| 13A        | 93     | 40.5   | 4.52   | 1.45   | I7   | 44     | 39.8   | 3.91   | 1.03   |
| I3A        | 94     | 42.8   | 4.49   | 1.12   | 17   | 45     | 18.8   | 0.54   | 0.15   |
| I3A        | 95     | 37.2   | 3.64   | 1.06   | 17   | 46     | , 12.3 | 0.19   | 0.03   |
| I3A        | 96     | 40.4   | 4.10   | 1.18   | I7   | 47     | 23.1   | 0.92   | 0.26   |
| I3A        | 97     | 44.8   | 4.60   | 1.29   | I7   | 48     | 12.2   | 0.18   | 0.03   |
| I3A        | 98     | 43.5   | 4.96   | 1.56   | I7   | 49     | 12.8   | 0.17   | 0.03   |
| I3A        | 99     | 39.3   | 3.75   | 1.44   | I7   | 50     | 17.2   | 0.61   | 0.14   |
| I3A        | 100    | 45.7   | 5.31   | 1.52   | 17   | 51     | 49.5   | 8.50   | 1.84   |
| I4         | 1      | 33.8   | 2.27   | 0.60   | I7   | 52     | 21.6   | 1.25   | 0.33   |
| 14         | 2      | 44.4   | 5.41   | 1.54   | I7   | 53     | 36.5   | 2.49   | 0.72   |
| I4         | 3      | 33.4   | 3.70   | 0.96   | 17   | 54     | 36.2   | 2.59   | 0.78   |
| I4         | 4      | 17.7   | 0.61   | 0.12   | 17   | 55     | 29.8   | 1.76   | 0.56   |
| 14         | 5      | 20.0   | 0.80   | 0.15   | 17   | 56     | 29.4   | 1.81   | 0.45   |
| I4         | 6      | 26.1   | 1.76   | 0.31   | 17   | 57     | 34.9   | 2.60   | 0.78   |
| 14         | 7      | 9.9    | 0.13   | 0.00   | I7   | 58     | 30.4   | 1.70   | 0.56   |
| I4         | 8      | 13.0   | 0.26   | 0.03   | I7   | 59     | 41.0   | 3.87   | 0.88   |
| 14         | 9      | 28.5   | 2.03   | 0.45   | 17   | 60     | 18.4   | 0.42   | 0.09   |
| <b>I</b> 4 | 10     | 37.0   | 4.03   | 0.98   | 17   | 61     | 35.2   | 2.77   | 0.65   |
| I4         | 11     | 8.1    | 0.07   | 0.00   | I7   | 62     | 40.6   | 4.16   | 0.82   |
| 14         | 12     | 10.3   | 0.10   | 0.01   | 17   | 63     | 27.1   | 1.54   | 0.29   |
| 14         | 13     | 31.4   | 2.49   | 0.60   | 17   | 64     | 33.3   | 2.04   | 0.54   |
| 14         | 14     | 29.0   | 1.90   | 0.40   | 17   | 65     | 24.4   | 1.24   | 0.34   |
| I4         | 15     | 36.9   | 3.93   | 1.01   | 17   | 66     | 43.6   | 4.84   | 1.17   |
| I4         | 16     | 20.7   | 0.93   | 0.19   | 17   | 67     | 32.9   | 1.85   | 0.48   |
| I4         | 17     | 21.0   | 0.77   | 0.10   | 17   | 68     | 24.7   | 1.01   | 0.24   |
| I4         | 18     | 32.5   | 2.57   | 0.55   | 17   | 69     | 23.2   | 0.86   | 0.17   |
| I4         | 19     | 34.8   | 3.52   | 0.66   | 17   | 70     | 11.9   | 0.19   | 0.03   |
| 14         | 20     | 11.4   | 0.13   | 0.01   | 17   | 71     | 15.5   | 0.32   | 0.07   |
| 14         | 21     | 22.3   | 0.91   | 0.14   | 17   | 72     | 25.4   | 1.21   | 0.30   |
| 14         | 22     | 21.5   | 0.86   | 0.15   | I7   | 73     | 47.9   | 6.58   | 1.57   |
| 14         | 23     | 13.8   | 0.24   | 0.02   | 17   | 74     | 52.9   | 8.71   | 2.01   |
| 14         | 24     | 10.4   | 0.15   | 0.01   | 17   | 75     | 41.6   | 4.04   | 0.84   |
| 14         | 25     | 10.4   | 0.12   | 0.01   | 17   | 76     | 42.3   | 6.06   | 0.96   |
| 14         | 26     | 12.3   | 0.19   | 0.01   | 17   | 77     | 49.2   | 7.30   | 1.21   |
| 14         | 27     | 15.6   | 0.33   | 0.03   | 17   | 78     | 22.1   | 0.78   | 0.18   |
| 14         | 28     | 10.4   | 0.11   | 0.01   | 17   | 79     | 22.4   | 0.82   | 0.19   |
| 14         | 29     | 31.4   | 3.04   | 0.56   | 17   | 80     | 17.8   | 0.47   | 0.12   |

| Site | Sample | Length | Whole  | Meat   | Site | Sample | Length | Whole  | Meat   |
|------|--------|--------|--------|--------|------|--------|--------|--------|--------|
|      | Number | (mm)   | Wt (g) | Wt (g) |      | Number | (mm)   | Wt (g) | Wt (g) |
| 14   | 30     | 28.7   | 2.06   | 0.47   | I7   | 81     | 42.6   | 4.54   | 0.98   |
| [4   | 31     | 30.3   | 2.25   | 0.50   | I7   | 82     | 21.5   | 0.82   | 0.17   |
| I4   | 32     | 27.3   | 1.98   | 0.43   | I7   | 83     | 15.9   | 0.40   | 0.09   |
| I4   | 33     | 27.4   | 1.75   | 0.40   | I7   | 84     | 18.4   | 0.43   | 0.10   |
| I4   | 34     | 12.0   | 0.16   | 0.01   | 17   | 85     | 35.8   | 2.48   | 0.56   |
| I4   | 35     | 11.0   | 0.20   | 0.01   | 17   | 86     | 40.4   | 3.84   | 0.92   |
| I4   | 36     | 40.3   | 5.47   | 1.28   | I7   | 87     | 18.9   | 0.48   | 0.12   |
| I4   | 37     | 16.3   | 0.44   | 0.06   | I7   | 88     | 41.9   | 3.73   | 1.01   |
| I4   | 38     | 37.0   | 3.75   | 0.88   | 17   | 89     | 47.3   | 6.07   | 1.49   |
| I4   | 39     | 27.7   | 1.82   | 0.32   | 17   | 90     | 14.3   | 0.28   | 0.06   |
| I4   | 40     | 29.5   | 2.22   | 0.48   | I7   | 91     | 13.3   | 0.24   | 0.04   |
| I4   | 41     | 22.6   | 0.95   | 0.17   | I7   | 92     | 12.0   | 0.18   | 0.04   |
| I4   | 42     | 11.9   | 0.18   | 0.02   | I7   | 93     | 34.8   | 2.69   | 0.63   |
| I4   | 43     | 33.9   | 3.35   | 0.71   | 17   | 94     | 30.0   | 1.83   | 0.48   |
| I4   | 44     | 20.3   | 0.75   | 0.09   | 17   | 95     | 30.3   | 2.04   | 0.54   |
| I4   | 45     | 22.5   | 0.95   | 0.16   | I7   | 96     | 33.9   | 2.32   | 0.51   |
| I4   | 46     | 14.0   | 0.28   | 0.03   | 17   | 97     | 20.5   | 0.85   | 0.25   |
| 14   | 47     | 13.3   | 0.22   | 0.03   | I7   | 98     | 26.6   | 1.18   | 0.33   |
| I4   | 48     | 14.0   | 0.27   | 0.02   | I7   | 99     | 31.0   | 1.63   | 0.43   |
| I4   | 49     | 20.8   | 0.75   | 0.11   | 17   | 100    | 45.5   | 5.42   | 1.73   |
| 14   | 50     | 10.0   | 0.14   | 0.01   |      |        |        |        |        |
| I4   | 51     | 21.0   | 0.90   | 0.15   |      |        |        |        |        |

•

Table 53 Species abundance (indivdiuals/sample) in macrobenthos samples from Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

and successive sectors

| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 811 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 9 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 13 \\ 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 4 & 13 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 2 & 19 & 8 & 11 & 4 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 & 1 & 2 & 2 & 6 & 10 & 4 & 13 & 9 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 219 & 8114 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $\begin{bmatrix} 4 & 13 \\ 6 & 5 & 5 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8114 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| $\begin{bmatrix} 4 & 13 \\ 6 & 5 & 5 & 2 & 3 & 42 & 19 \\ 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 2 & 4 & 13 \\ 6 & 5 & 5 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 3 \\ 2 & 2 & 2 & 3 & 3 & 3 & 1 & 25 & 2 & 1 \\ 2 & 3 & 3 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 1 & 26 & 34 & 34 & 16 & 5 & 54 & 10 & 4 & 56 & 34 & 10 & 4 & 56 & 34 & 10 & 4 & 56 & 34 & 10 & 4 & 56 & 34 & 10 & 4 & 56 & 34 & 10 & 4 & 56 & 36 & 43 & 10 & 4 & 56 & 56 & 34 & 10 & 26 & 43 & 10 & 56 & 56 & 56 & 56 & 56 & 56 & 56 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| $\begin{bmatrix} 2 & 4 & 13 \\ 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 811 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 \\ 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 2 & 4 & 13 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 4 & 13 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 4 & 13 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| $\begin{bmatrix} 2 & 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 4 & 13 & 6 & 5 & 5 & 2 & 3 & 42 & 19 & 8 & 11 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2       4       13       6       5       5       2       3       2       10       1       1       1       1       1       1       1       1       1       2       2       2       1       1       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 4 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 \\ 2 & 4 & 2 & 2 & 2 & 2 & 2 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 2 & 2 & 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 \\ 2 & 2 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 4 |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 3 & 3 \\ 2 & 1 & 1 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 39 & 12 & 52 & 27 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 39 & 12 & 52 & 27 \\ 28 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 39 & 12 & 52 & 27 \\ 28 & 9 & 8 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 62 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 62 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 62 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 & 38 & 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   |
| $\begin{bmatrix} 1 \\ 5 & 4 & 10 & 4 & 5 \\ 1 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{bmatrix} 1 \\ 5 & 4 & 10 & 4 & 5 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{bmatrix} 1 \\ 5 & 4 & 10 & 4 & 5 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 4 & 2 & 2 \\ 2 & 1 & 2 & 1 & 3 & 6 & 7 & 6 & 8 & 14 & 20 & 26 & 43 & 10 \\ 1 & 1 & 2 & 3 & 6 & 7 & 6 & 8 & 14 & 20 & 26 & 43 & 10 \\ 2 & 1 & 2 & 1 & 3 & 6 & 7 & 6 & 8 & 14 & 20 & 26 & 43 & 10 \\ 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 4 \\ 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 4 \\ 2 & 2 & 0 & 2 & 2 & 0 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 4 \\ 2 & 2 & 0 & 2 & 0 & 2 & 0 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 4 \\ 2 & 2 & 0 & 2 & 0 & 2 & 0 & 2 \\ 2 & 2 & 0 & 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 $ | $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 2 $ |     |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 $ | $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 $ | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ $ | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $\begin{bmatrix} 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 9 & 9 & 8 & 6 & 2 \\ 0 & 9 & 8 & 6 & 2 \\ 1 & 2 & 1 & 2 & 1 \\ 0 & 2 & 2 & 1 & 4 \\ 1 & 2 & 1 & 1 & 4 \\ 1 & 2 & 1 & 1 & 4 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 6 & 7 & 6 & 8 \\ 3 & 6 & 7 & 6 & 8 & 14 & 20 & 26 & 43 & 10 \\ 2 & 1 & 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 & 3 & 2 & 9 & 2 \\ 2 & 2 & 2 & 1 & 1 & 4 & 2 & 9 & 2 \\ 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 4 & 2 & 9 & 2 \\ 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 4 & 2 & 9 & 2 \\ 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 4 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 9 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 6 \\ 7 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 6 \\ 7 \\ 6 \\ 8 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 $                                                                                                                                                                                               | I   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 8 & 6 & 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} 1 & 1 & 2 & 1 & 9 & 8 & 6 & 2 \\ 1 & 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 2 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 4 & 4 & 10 & 12 \\ 2 & 1 & 1 & 4 & 4 & 10 & 12 \\ 2 & 1 & 1 & 4 & 4 & 10 & 12 \\ 1 & 1 & 2 & 2 & 0 & 1 \\ 1 & 1 & 2 & 2 & 0 & 1 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 8<br>9<br>1<br>5 2 1 1 5 2 2 1 4 4 10 12<br>1 2 1 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>9<br>1<br>5 2 1 1 5 2 2 1 4 4 10 12<br>1 2 1 1 4 2 9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>2<br>1<br>9<br>2<br>1<br>5<br>2<br>1<br>5<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{bmatrix} 8 \\ 9 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   |
| 9     1       1     5       1     5       1     2       1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9     1       1     5       1     5       1     2       1     2       1     2       2     1       2     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     1     5     2     1     5     2     4     4     10       1     1     2     2     2     2     2     3       1     1     2     2     2     2     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 1     5     2     1     5     2     1     4     10     12       1     2     1     1     2     1     1     4     10     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     5     2     1     5     2     1     4     10     12       1     2     2     1     1     2     1     4     10     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     1     5     2     1     1     1       2     3     2     1     1     2     4     4     10     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     1     5     1     5     1     4     1012       2     1     2     1     2     1     4     4     1012       1     1     2     2     2     1     4     2     9       1     1     1     2     2     2     1     1     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 1     5     2     1     5     2     1     4     10     12       1     1     2     1     1     4     10     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     5     2     1     1     5     2     1     4     10     12       1     2     1     2     1     1     4     4     10     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     5     2     1     5     2     4     10     12       2     1     2     1     2     1     4     0     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     5     1     5     2     4     4     10     12       2     1     1     2     2     1     1     4     10     12       1     1     2     2     2     1     1     4     2     9     2       1     1     1     2     2     2     1     1     4     2     9       1     1     1     2     2     2     2     1     1     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         2         1         4           2         9         2         9         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 1 1 4 2 9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2     1     2     1     4       1     1     2     2     2     2       1     1     69     2     4     4     2       1     1     1     2     2     2     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>1 1<br>1 1<br>1 1<br>2 2 2 2 1 1<br>2 2 2 2 1 1<br>3 3<br>2 3 2 4 4<br>2 2 2 2 1 1<br>2 3 3<br>2 4 4<br>2 3 2 4 4<br>2 3 2 4 1<br>2 4 4<br>2 5 5 1 1<br>2 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 2 2 2 2 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 2 2 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 2 2 2 2 1 1 3<br>69 12 4 4 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69         12         4         4         2         2         1         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69 12 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |
| 2<br>69 12 4 4<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 2 2 1 1 3<br>69 12 4 4 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69         12         4         4         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |

181

·

Table 53 Species abundance (indivdiuals/sample) in macrobenthos samples from Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

the second se

|     | Ξ.           |       |       |       |       |       |       |       |       | 1     |       |       |       |       |       |      |       |      |      |      | 7     |      |      |       |      |       |             | 1                |      |        |      | 1    |       |            |       |      |      | 0    |
|-----|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|------|------|------|-------|------|------|-------|------|-------|-------------|------------------|------|--------|------|------|-------|------------|-------|------|------|------|
| _   | Q            |       |       |       |       | ,     | -     |       |       |       |       |       |       |       |       |      | 2     |      | 1    |      |       |      |      |       | -    |       |             | 4                | -    |        | 2    |      |       |            |       |      |      |      |
| -50 | $\mathbf{C}$ |       |       |       |       |       |       |       |       |       |       |       |       |       |       | -    |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| ш   | В            |       |       |       |       |       |       |       |       |       |       |       |       | ŝ     |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      | 2     | -          |       |      | 2    | 0    |
|     | ¥            |       |       |       |       | 5     |       |       |       |       |       |       |       |       |       |      |       | 5    |      |      |       |      |      |       | -    |       |             |                  |      |        |      |      |       |            |       |      |      | 0    |
|     | Ē            | _     |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             | _                |      |        |      |      |       |            |       |      |      |      |
|     |              |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             | ç                | ı    |        |      |      |       |            |       |      |      |      |
| 6   |              | 10    |       |       |       |       |       |       |       |       |       | _     |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| B-4 | 0            | 4)    |       |       |       |       |       |       |       |       |       | -     |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             | ,<br>,           | ,    |        |      |      |       |            |       |      |      |      |
|     | В            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             | "                | ,    |        |      |      |       |            |       |      |      |      |
|     | ¥            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | Ξ            |       |       | 4     |       |       |       |       |       | 1     |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      | 0    |
|     | Q            |       |       |       |       |       |       | -     | Ļ     |       |       |       |       |       |       |      |       |      |      |      | -     |      |      |       | -    |       |             |                  |      | 5      |      |      |       |            |       |      |      |      |
| 48  | J            |       |       |       |       |       |       |       |       |       | -     |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      | _      |      |      |       |            |       |      |      | 0    |
| Å   | ~            |       |       |       |       | ~     |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | Щ.           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | <            |       |       |       |       | 2     |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      | 1    |       |      |       |             |                  |      |        |      |      |       |            |       | -    |      |      |
|     | E            |       |       |       |       | 2     |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| B   |              |       |       |       |       | _     |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| 4   |              |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| -   | B            |       |       | _     |       | n     |       |       |       |       |       |       | -     |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | V            |       |       |       |       | -     |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | Ξ            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      | -     | -    |      |       | ŝ    |       | <del></del> | _                |      | 1 3    |      |      |       |            |       |      |      | 0    |
| ∢   | 5            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      | _    | ~     | _    |      |       |      |       |             |                  |      | _      |      |      |       |            |       |      |      |      |
| 8-3 | 0            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      | _    | (.1   | -    |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| _   | В            |       | -     |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      | ļ    | -     | -    | 0    | -     |      |       |             | ŝ                |      | 1      | 1    |      |       |            |       |      |      |      |
|     | ¥            | -     |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      | -    | -     | -    |      |       | 4    |       | -           |                  |      | 0      | -    |      |       |            |       |      |      |      |
|     | H            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | Q            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| -38 | C            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
| B   | ~            |       |       | _     | _     |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | 2            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     |              |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     |              | (.)   |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        | -    |      |       |            |       |      |      |      |
| ~   | Q            |       |       |       |       |       |       |       |       |       |       |       |       |       | -     |      |       |      |      |      |       |      |      |       |      | -     |             |                  |      |        |      |      |       |            |       |      |      |      |
| II  | C            | Э     |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      | -     |      | ς    |       | Ξ    |       |             |                  |      | 1      |      |      |       |            |       |      |      |      |
| ģ   | ~            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     |              |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | •            | ~     |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      | _ ·  |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     |              |       |       |       |       |       |       |       |       |       |       |       |       |       | ala   |      |       |      |      |      |       |      | tyla |       |      |       |             |                  |      |        | vae  |      |       |            |       |      |      |      |
|     |              |       | srus  | s     |       | uis   |       |       |       |       |       |       |       |       | eph   |      |       |      | ha   | suis |       |      | dac  | :5    |      |       |             |                  | ata  | sula   | ano  |      | =     | ۲ <b>2</b> |       |      |      |      |
|     |              |       | cife  | licu  | peri  | guic  |       | d.1   | d.2   | id.3  | id.4  | id.5  | id.6  |       | croc  |      |       | ıda  | cant | ping |       |      | icro | odo   | ċ    |       |             |                  | cul  | COE    | gurj | sp.  | p. Ì  | p. ľ       | 'n.   | n    |      |      |
|     |              |       | voti  | mec   | 000   | perj  | nid.  | un    | un    | un    | un    | un    | un    | sp.   | mac   | eoa  | sp.   | scur | ona  | illa |       | sp.  | a m  | a po  | a sț |       | 12          | 4.3              | is o | lla e  | Ĩ    | E    | les s | les s      | les s | hur  |      |      |
|     |              | sp.   | tes   | ins   | ius   | ius ] | le u  | oda   | oda   | oda   | oda   | oda   | oda   | lla   | scal  | sca  | sca   | s se | ŭ    | ene  | þ.    | ntes | sdei | sdei  | edei | p. Y  | p. N        | d i              | t op | ipo    | idiu | idit | lod   | lod        | lod   | cant | sp.  |      |
|     | cies         | ella  | gari  | ssar  | sar   | ssar  | cida  | rop   | rop   | rop   | rop   | rop   | rop   | ino   | selis | silə | selis | oide | chi  | non  | ita s | syn  | ome  | ome   | ome  | tis s | tis s       | tis s            | chor | two    | chel | chel | loct  | loct       | loci  | n a( | -hoe | a    |
|     | be           | Mitr  | Mar   | Vase  | Vase  | Vass  | Vati  | Jast  | Jast  | Jast  | Gast  | Jast  | Jast  | [urt  | 4mJ   | ¥m,  | ₹m    | Aore | Ouli | Drch | Mel   | leu  | rot  | rot   | Prot | hot   | hot         | <sup>1</sup> hot | Sha  | Ves    | Jun  | Syn  | Mor   | Mor        | Mor   | Liro | Syr  | Vari |
|     | _≥<br>≥      | ×     | ~     | ~     | ~     | ~     | ~     | 0     | 0     | J     | 0     | J     | J     |       | 1     | ł    | ł     | 1    | Ι    | 0    | ~     | -    |      | H     | H    |       | -           |                  |      | -      |      |      | 1     | -          | _     |      | - 1  |      |
|     | amil         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |      |      |      |       |      |      |       |      |       |             | 100              |      |        |      |      |       |            |       |      |      |      |
|     | or f         | g     | a     | a     | a     | a     | a     | а     | g     | a     | a     | a     | a     | а     | dae   | dae  | dae   |      | ае   | dae  |       |      |      |       |      |       |             | 1                |      | dae    | idae | idae | idae  | idae       | idae  | e    |      |      |
|     | rder         | pod   | pod.  | pod   | pod.  | pod.  | pod   | isci  | isci | isci  | e    | srid | assi | lae   | dae  | ae   | ае    | эе   | ас    | ae          | ac               | lae  | roti   | roti | roti | roti  | roti       | roti  | iida | lae  |      |
|     | 55, OI       | strol | stroj | stroj | stroj | strol | hel   | npel | hel   | rida | loce | ian  | litio | usti | tid  | otida | tid  | otida | otidi       | otidi            | irid | dice   | dice | dice | dice  | dice       | dice  | lop  | onic |      |
|     | Clas         | Gas   | Ga£   | Gas   | Am    | Am   | Am    | ЧO   | Pod  | Lys  | Me    | Plei | Pho  | Phc   | Phc  | Phc   | Phc         | Phc              | Eus  | 0<br>e | 0eč  | Oe   | Oec   | 0e         | Oe    | Syı  | Tir  | 55   |
|     | -            |       |       |       |       | -     |       | -     | ,     |       |       |       |       |       | da    |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | •            |       |       |       |       |       |       |       |       |       |       |       |       |       | ipo   |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | tno.         |       |       |       |       |       |       |       |       |       |       |       |       |       | hqn   |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |
|     | Ģ            |       |       |       |       |       |       |       |       |       |       |       |       |       | An    |      |       |      |      |      |       |      |      |       |      |       |             |                  |      |        |      |      |       |            |       |      |      |      |

•

.

Table 53 Species abundance (indivdiuals/sample) in macrobenthos samples from Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

10.00

|             |                        |                              |    | Å | 11B |    |      | B-38 |       |        | B | 3A     |   | В    | -41B  |          | ġ | 48     |   |    | B-4(                                    | 6 |   | _      | 3-50 |      | · |
|-------------|------------------------|------------------------------|----|---|-----|----|------|------|-------|--------|---|--------|---|------|-------|----------|---|--------|---|----|-----------------------------------------|---|---|--------|------|------|---|
| Group       | Class, order or family | y Species                    | V  | B | C D | Э  | Ł    | B C  | DE    | V<br>I | В | C D    | E | ▲ B  | C D I | <b>V</b> | в | c D    | E | AB | с<br>                                   | D | E | B      | C    | D    |   |
| Tanaidacea  | Fam. indet.            | Species indet.               |    |   |     |    |      |      |       |        |   |        | - |      |       |          |   |        |   |    |                                         |   |   | _      | _    | -    |   |
| Isopoda     | Idoteidae              | Synidotea media              | -  |   |     | -  |      |      |       |        |   | -      |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
| Cumacea     | Leuconidae             | Eudorella pacifica           |    |   |     |    | 4    |      | 0     |        |   | Ι      |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Diastylidae            | Diastylus alaskensis         |    |   |     |    |      |      |       |        |   | Γ      | 0 |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Diastylidae            | Diastylus sp.                |    |   |     |    |      |      |       |        |   |        |   | -    |       |          |   |        |   |    |                                         |   |   |        |      | ŝ    |   |
| Copepoda    | Fam. indet.            | Species indet.               |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
| Decapoda    | Crangonidae            | Crangon sp.                  |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Pinnixidae             | Pinnixa rathbunae            |    |   |     |    |      | 1    | -     |        |   |        |   |      | 7     |          |   |        |   |    |                                         |   | 7 | 5<br>t | 6    | 6 1( |   |
|             | Hippolytidae           | Lebbeus sp.                  |    |   |     |    |      |      |       |        |   | 1      |   | 1 10 |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Hippolytidae           | Heptacarpus sp.              |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   | _  | _                                       |   |   |        |      |      |   |
| Leptostraca | Fam. gen. sp.          | Species indet.               |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
| Hyrudinea   | Piscicolidae           | Species indet.               |    |   |     |    | -    |      |       |        |   |        |   |      |       |          |   |        |   | -  | -                                       |   |   |        |      |      |   |
| Polychaeta  | Cirratulidae           | Chaetozone setosa            | 4  |   |     |    |      |      |       | 7      |   |        |   |      |       | 7        |   |        |   |    | -                                       |   | 7 | 7      | ŝ    | 4    |   |
|             | Cirratulidae           | Cossura modica               |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   | (1 | 2                                       | 4 |   |        |      |      |   |
|             | Cirratulidae           | Cossura sp.                  |    |   |     | -  |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Cirratulidae           | Tharyx multifilis            |    |   |     | -  | 65 4 | 0 45 | 24 45 |        |   |        |   | 1 6  | 5 2 . | 2        |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Cirratulidae           | Tharyx sp.                   |    |   |     |    |      |      |       |        |   |        |   |      |       | -        | - | ю<br>С |   |    | 0                                       |   | - |        |      |      |   |
|             | Ampharetidae           | Melinna ochotica             |    |   |     |    |      |      |       | •      |   |        |   |      |       | -        |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Ampharetidae           | Species indet.               |    |   |     |    |      |      |       |        |   | -      | - |      |       | -        | 1 | Γ      |   |    |                                         |   |   |        |      |      |   |
|             | Amphictenidae          | Cistenides granulata         |    |   |     |    |      |      |       |        |   |        |   |      |       | -        | • |        |   |    |                                         |   |   | 0)     | -    |      |   |
|             | Aphroditidae           | Species indet.               |    |   |     |    |      |      |       |        |   |        |   |      |       | -        |   |        |   |    |                                         |   |   |        |      | 5    |   |
|             | Aphroditidae           | Aphroditidae gen. indet.     |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   | -      |      |      |   |
|             | Maldanidae             | Euclyminae sp. indet.        | 12 | 4 | 4   |    |      |      |       |        |   |        |   |      |       |          |   |        |   | 2  | 8 14                                    | 4 | 4 |        |      |      |   |
|             | Maldanidae             | Praxillella affinis pacifica |    |   | 12  | 13 |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Maldanidae             | Praxillella gracilis         |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    | 1                                       |   |   |        |      |      |   |
|             | Maldanidae             | Species indet.               |    |   |     |    |      |      |       | -      | - | 4 2    |   |      |       |          |   |        | - |    |                                         |   |   | -      | 7    | -    |   |
|             | Maldanidae             | Micropodarka sp.???          |    |   |     |    |      |      |       |        |   |        | 7 |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Phyllodocidae          | Eulalia sp.                  | -  |   |     |    |      |      |       |        | 7 |        |   |      |       |          |   |        |   | _  | _                                       | 7 |   |        |      |      |   |
|             | Phyllodocidae          | Eulalia bilineata            |    |   |     |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Phyllodocidae          | Eteone sp.                   |    | - |     | -  |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Phyllodocidae          | Eteone longa                 |    |   |     |    |      | 1    |       |        |   |        |   |      |       |          | ŝ | 1      | _ |    |                                         |   |   |        |      |      |   |
|             | Phyllodocidae          | Phyllodoce sp. N 1           |    | I |     | 2  |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Phyllodocidae          | Phyllodoce sp. N 2           |    | 1 | -   |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   |        |      |      |   |
|             | Phyllodocidae          | Phyllodoce groenlandica      |    |   | ŝ   |    |      |      |       |        |   |        |   |      |       |          |   |        |   |    |                                         |   |   | -      | -    |      |   |
|             | Glyceridae             | Glycera capitata             | ŝ  | - | £   | ς  |      |      |       | ŝ      | ŝ | ī      | - |      |       | 9        |   |        |   | ŝ  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ∞ | 6 |        |      |      |   |
|             | Glyceridae             | Glycera sp.                  |    |   |     |    |      | -    |       |        |   |        |   |      |       |          | 7 | 7      | ~ |    |                                         |   |   | 4      | 4    | ŝ    |   |
|             | Goniadidae             | Glycinde armigera            | 7  | 7 | 7   | -  | 1    | 2 2  |       | 4      | 9 | 4<br>5 | 4 | 1 2  | -     | 1 2      | Э | 5      | - | ব  |                                         | S | 9 |        |      |      |   |
|             | Goniadidae             | Goniada maculata             |    |   |     |    |      |      |       |        |   |        | — |      |       |          |   |        |   | v  | ý                                       |   |   | -      | -    | 2    |   |

.

•

Table 53 Species abundance (indivdiuals/sample) in macrobenthos samples from Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|       |                        |                            |     | B | 11B   |    |    | ġ | -38 |     |   | Å  | 3A     |     |   | B-41 | в   |         |    | B-48 |   |          |      | B-4    | 6      |   |   | å    | 00 |    |
|-------|------------------------|----------------------------|-----|---|-------|----|----|---|-----|-----|---|----|--------|-----|---|------|-----|---------|----|------|---|----------|------|--------|--------|---|---|------|----|----|
| Group | Class, order or family | Species                    | ¥   | в | C D   | E  | Y  | в | 5   | OE  | ¥ | в  | -<br>- | D E | ¥ | B    | D   | E       | B  | C    | Q | ب        | AB   | -      | Q      | ы | Ā | 8    | Q  | E  |
|       | Lumbrineridae          | Lumbrineris luti           | 12  | 6 | 6 10  | 12 | 6  | 8 | S   | 8   | 9 | 11 | 9      | 3 6 |   |      | I   |         | ŝ  | 7    |   | <u>.</u> | 0 10 | 8      | ~      | × | - | ŝ    | 5  | 10 |
|       | Lumbrineridae          | Lumbrineris sp. N 1        | -   |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      | -      |        |   |   |      |    |    |
|       | Capitellidae           | Capitella capitata         |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Capitellidae           | Mediomastus sp.            |     | - | 2     | 1  |    |   |     |     |   | 1  |        |     |   | -    | -   |         |    |      |   |          |      |        | 4      | Ś |   | -    |    |    |
|       | Capitellidae           | Mediomastus californiensis | s   |   |       |    |    | 7 | Э   | 1 2 |   |    |        |     |   |      |     |         | I  |      |   |          | 5    | ন<br>ন | 5      |   |   |      |    |    |
|       | Capitellidae           | Heteromastus sp.           |     |   |       |    | -  |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Capitellidae           | Species indet.             |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      | -  |    |
|       | Nephtyidae             | Nephtys firruginea         | 9   | 4 | 6 3   | 12 |    |   |     | -   |   | -  | -      | 2 1 |   |      |     | 7       | Ξ. | 15   | 4 | 15       |      |        | -      |   |   | 4    |    | 9  |
|       | Nephtyidae             | Nephtys cornuta franciscar | mnu |   |       |    | 14 | 8 | ŝ   | 6 4 | - | 7  | ŝ      | 4   | ~ | 8 13 | ~   | 7       | 7  |      | 9 |          |      |        |        |   |   |      |    |    |
|       | Nephtyidae             | Nephtys cornuta cornuta    |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          | 8    | 7      | т<br>Э |   |   |      |    |    |
|       | Nephtyidae             | Nephtys longosetosa        |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        | 0      |   |   |      |    |    |
|       | Nephtyidae             | Nephtys sp. N 1            |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          | -    |        |        |   | ŝ |      |    |    |
|       | Nephtyidae             | Nephtys sp. N 2            |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          | 2    |        |        |   |   |      |    |    |
|       | Nereidae               | Nereis procera             |     |   |       |    |    |   |     |     |   |    |        | _   |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Onuphidae              | Onuphis sp.                | -   |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Opheliidae             | Ophelina acuminata         | 10  | 4 | 33 24 | 21 |    |   |     |     | m | S  | ŝ      | ~   |   |      |     | _       |    | ŝ    | 4 | ŝ        | _    |        | -      |   |   |      |    |    |
|       | Opheliidae             | Ophelina sp.               |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   | _    |    |    |
|       | Spionidae              | Prionospio lighti          | -   |   |       |    | -  |   |     |     | 2 | 4  | 4      | -   |   |      | -   | 2       |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Spionidae              | Prionospio steenstrupi     |     |   |       |    |    |   |     |     |   |    |        | ŝ   |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Spionidae              | Dipolydora sp.             |     |   | 1     | 2  | -  |   |     |     | 2 |    | ŝ      | _   |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Spionidae              | Species indet. N 1         |     |   |       |    | ×  | 0 | 5 1 | 5   |   |    |        |     | ξ | 5    | 9 1 | <u></u> | ŝ  | 7    | 7 | 4        |      |        |        |   |   |      |    | -  |
|       | Spionidae              | Species indet. N 2         |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   | -    |    |    |
|       | Spionidae              | Species indet. N 3         |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   | - | _    | 4  |    |
|       | Spionidae              | Species indet. N 4         |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   | _    |    |    |
|       | Spionidae              | Species indet. N 5         |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   | (° 1 |    |    |
|       | Spionidae              | Pigospio sp.               |     |   |       |    |    |   |     |     | Η |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Spionidae              | Prionospio sp.             |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      | -  | _  |
|       | Spionidae              | Spio sp.                   |     |   |       |    |    |   |     |     |   | -  |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Spionidae              | Spiophanes berkeleyorum    |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      | ( 1    | -      |   |   |      |    |    |
|       | Spionidae              | Spiophanes sp.             |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   | _    |    |    |
|       | Spionidae              | Laonice cirrata            |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        | -      | 7 |   |      |    |    |
|       | Sternaspidae           | Sternaspis scutata         | -   |   |       |    |    |   |     |     |   |    |        | 7   |   |      |     |         |    |      |   | •-       | 8    | ž      | 5 12   | 7 |   |      |    |    |
|       | Eunicidae              | Species indet.             |     |   | 5     |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Terebellidae           | Terebellides stroemi       |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         | -  |      |   |          |      |        | -      |   |   |      |    | -  |
|       | Terebellidae           | Terebellides sp.           |     |   |       |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    | 7  |
|       | Terebellidae           | Species indet.             |     |   | -     |    |    |   |     |     |   | -  |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Polynoidae             | Species indet.             |     |   | -     |    |    |   |     |     |   |    |        |     |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |
|       | Disomodae              | Disoma sp.                 |     |   |       | 7  |    |   |     |     | 4 | 4  |        | 3 2 |   |      |     |         |    |      |   |          |      |        |        |   |   |      |    |    |

Table 53Species abundance (indivdiuals/sample) in macrobenthos samples from Vancouver Harbour.Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|            |                        |                            | B-11B   |   |     | B-38  |   | B-3A | ė.  | 41B |    | B-48  |   |                                         | - | 3-49 |          |          | ģ | 50     |    |
|------------|------------------------|----------------------------|---------|---|-----|-------|---|------|-----|-----|----|-------|---|-----------------------------------------|---|------|----------|----------|---|--------|----|
| Group      | Class, order or family | Species                    | A B C D | Э | A B | C D ] | E | BCDE | A B | CDE | AB | с<br> | Ω | E                                       | B | C    | <u> </u> | <b>V</b> | B | D<br>D | E  |
|            | Sigalionidae           | Pholoe minuta              |         | 2 | -   |       | 7 | ŝ    |     |     | 7  |       |   |                                         |   |      |          |          |   |        |    |
|            | Hesionidae             | Species indet.             |         | 7 |     |       |   |      | 4   |     |    |       |   |                                         |   |      |          |          |   |        |    |
|            | Polynoidae             | Species indet.             |         | - |     |       |   | -    |     |     |    |       |   | -                                       |   |      |          |          |   | 2      |    |
|            | Pilargidae             | Pilargis sp.               |         |   |     |       | - |      |     |     | 7  | 5     | 7 |                                         |   |      |          |          |   |        |    |
|            | Pilargidae             | Species indet.             |         |   | 1   |       |   |      |     |     |    | -     |   |                                         |   | -    | -        |          |   |        |    |
|            | Dorvilleidae           | Dorvilea pseudorubrovitata |         |   |     |       |   |      |     |     |    |       |   |                                         |   |      |          |          |   |        |    |
|            | Dorvilleidae           | Dorvilea sp.               |         |   |     |       |   |      |     |     |    |       |   |                                         |   |      |          |          |   |        | -  |
|            | Dorvilleidae           | Species indet.             |         |   |     |       |   |      |     |     |    |       |   |                                         |   |      |          |          |   |        | 7  |
|            | Flabelligeridae        | Brada villosa              |         |   |     |       |   |      |     |     |    |       |   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |   |      |          |          |   |        |    |
|            | Sabellariidae          | Sabellaria sp. (?)         |         |   |     |       |   |      |     |     |    |       |   |                                         |   |      |          |          |   | I      | -  |
|            | Sabellidae             | Species indet.             |         |   |     |       |   |      |     |     |    |       |   |                                         |   |      |          |          |   | L      |    |
|            | Syllidae               | Exogone lourei             |         |   |     |       |   |      |     |     |    |       |   | <u>с</u>                                | ŝ |      |          |          |   |        |    |
|            | Syllidae               | Exogone sp.                |         |   |     |       | - |      |     |     |    |       |   |                                         |   |      |          |          |   |        |    |
|            | Syllidae               | Species indet.             |         |   |     |       |   |      |     |     |    |       |   |                                         |   | 0    |          | 2        | - | 5      | ć  |
|            | Orbiniidae             | Scoloplos armiger          |         |   |     |       | - | 1 1  |     |     |    |       |   | -                                       |   |      |          | 4        | 4 | 5      | ς. |
|            | Onuphidae              | Onuphis iridescens         |         |   |     |       |   |      |     |     |    |       |   | ~                                       | S |      |          |          |   |        | -  |
|            | Onuphidae              | Onuphis sp.                |         |   |     |       |   |      |     |     |    |       |   |                                         |   |      |          |          |   | -      |    |
|            | Oweniidae              | Owenia fusiformis          |         |   |     |       |   |      |     |     |    |       |   | -                                       |   |      |          |          |   |        |    |
| Ophiuroide | ca Amphiuridae         | Amphipholis kochii         |         | - |     | ŝ     | 2 |      |     |     | _  |       |   |                                         |   |      | -        |          |   |        |    |

A, B, C, D, E refer to individual grab samples. Five grab samples were collected and examined at each site.

.

•

|             |                      |                        |       |       | B-11B |          |       |       |       | B-38  |       |            |
|-------------|----------------------|------------------------|-------|-------|-------|----------|-------|-------|-------|-------|-------|------------|
| Group       | Class, order or fami | ly Species             | V     | в     | C     | <b>D</b> | Е     | A     | в     | C     | D     | E<br>0.019 |
|             | Lineidae             | Cerebratulus sp.       |       |       |       |          | 0.35  |       |       |       |       |            |
|             | Lineidae             | Lineus sp.             |       |       |       |          |       |       |       |       |       |            |
|             | Amphiporidae         | Amphiporus sp.         |       |       |       |          |       |       |       | 0.013 |       |            |
|             | Tubulanidae          | Tubulanus sp.          |       |       |       |          |       |       |       |       |       |            |
| Sipuncula   | Golfingiidae         | Species indet.         |       |       |       |          |       |       |       |       |       | 0.04       |
| Ctenophora  | Fam. gen. indet.     | Species indet.         |       |       |       |          |       |       |       |       |       |            |
| Brachiopoda | ו Fam. indet.        | Species indet.         |       |       |       |          |       |       |       |       |       |            |
| Mollusca    | Scaphopoda           | Species indet.         |       |       |       |          |       |       |       |       |       |            |
|             | Scaphopoda           | Dentalium pretiosum    |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Acila castrensis       |       |       |       |          |       |       |       |       |       | 0.314      |
|             | Bivalvia             | Axinopsida serricata   | 0.031 | 0.054 | 0.058 |          | 0.226 | 0.138 | 0.084 | 0.122 | 0.034 | 0.049      |
|             | Bivalvia             | Bivalvia unid.1        |       |       |       |          |       |       | 0.086 |       | 0.032 |            |
|             | Bivalvia             | Bivalvia unid.2        | 0.028 |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Bivalvia unid.3        |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Bivalvia unid.4        |       | 0.021 |       |          | 0.018 |       |       |       |       |            |
|             | Bivalvia             | Bivalvia unid.5        |       |       |       |          | 0.03  |       |       |       |       |            |
|             | Bivalvia             | Bivalvia unid.6        | 0.024 |       |       | 0.022    |       |       |       |       |       |            |
|             | Bivalvia             | Bivalvia unid.7        |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Bivalvia unid.8        |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Cardiomya aldroydi     |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Compsomyax subdiaphana |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Lucina nuttali         | 0.352 | 0.066 |       | 0.064    |       |       |       |       |       |            |
|             | Bivalvia             | Lyonsia sp.            |       |       |       |          | 0.036 |       |       |       |       |            |
|             | Bivalvia             | Macoma calcarea        |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Macoma carlottensis    |       |       | 0.07  |          |       |       | 0.504 |       | 0.511 | 0.372      |
|             | Bivalvia             | Macoma elimata         |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Macoma nasuta          |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Nucula sp.             |       |       |       |          |       |       |       |       |       |            |
|             | Bivalvia             | Nucula tenuis          |       |       |       |          |       |       |       |       | 0.089 |            |
|             |                      |                        |       |       |       |          |       |       |       |       |       |            |

,

Biomass (g/sample) of macrobenthos collected in Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan Table 54

- ----

the state of

| Group     | Class, order or family | Species                  | A     |
|-----------|------------------------|--------------------------|-------|
|           | Bivalvia               | Nuculana hamata          |       |
|           | Bivalvia               | Tellina capenteri        |       |
|           | Bivalvia               | Tellina nuculoides       |       |
|           | Bivalvia               | Thyasira flexuosa        |       |
|           | Bivalvia               | Transenella tantilla     |       |
|           | Bivalvia               | Yoldia amygalea          |       |
|           | Bivalvia               | Yoldia hyperborea        |       |
|           | Gastropoda             | Cylichna sp.             |       |
|           | Gastropoda             | Mitrella sp.             | 0.234 |
|           | Gastropoda             | Margarites voticiferus   |       |
|           | Gastropoda             | Nasssarius medicus       |       |
|           | Gastropoda             | Nasssarius cooperi       |       |
|           | Gastropoda             | Nasssarius perpinguis    |       |
|           | Gastropoda             | Naticidae unid.          |       |
|           | Gastropoda             | Gastropoda unid.1        |       |
|           | Gastropoda             | Gastropoda unid.2        |       |
|           | Gastropoda             | Gastropoda unid.3        |       |
|           | Gastropoda             | Gastropoda unid.4        |       |
|           | Gastropoda             | Gastropoda unid.5        |       |
|           | Gastropoda             | Gastropoda unid.6        |       |
|           | Gastropoda             | Turbonilla sp.           |       |
| Amphipoda | Ampeliscidae           | Ampelisca macrocephala   |       |
|           | Ampeliscidae           | Ampelisca eoa            |       |
|           | Ampeliscidae           | Ampelisca sp.            |       |
|           | Aoridae                | Aoroides secunda         |       |
|           | Podoceridae            | Dulichia monacantha      |       |
|           | Lysianassidae          | Orchomenella pinguis     |       |
|           | Melitidae              | Melita sp.               |       |
|           | Pleustidae             | Pleusymtes sp.           |       |
|           | Photidae               | Protomedeia microdactyla |       |

|            |       |       |       |                |  |       | <br> |       |
|------------|-------|-------|-------|----------------|--|-------|------|-------|
| Γ.         |       |       |       | 0.184          |  |       |      |       |
| 8          |       |       |       |                |  |       |      |       |
| B-30       |       | 2.432 |       |                |  |       |      |       |
| а          | ł     |       |       | 0.453<br>0.025 |  |       |      |       |
| •          | 4     |       |       |                |  |       |      |       |
| Ē          | 1     | 0.028 | 0.417 |                |  |       |      |       |
|            | 0.614 |       |       |                |  | 0.015 |      |       |
| B-11B<br>C | )     |       | 0.552 |                |  |       | 0.05 | 0.015 |
| g          |       | 0.254 |       |                |  |       |      |       |
| v          | •     |       | 0.234 |                |  |       |      |       |

- --- Ballin

Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|       | Е                     |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 |                    |                      |               |                |             | 0.003             |              |                 |                |                |                   |                |
|-------|-----------------------|--------------------|-----------------|----------------|----------------|----------------|-----------------|----------------------|----------------------|-------------------------|------------------|---------------------|---------------------|-----------------|------------------|-------------|---------|----------------|-----------------|--------------------|----------------------|---------------|----------------|-------------|-------------------|--------------|-----------------|----------------|----------------|-------------------|----------------|
| ~     | D                     |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 | 0.004              |                      |               |                |             |                   |              |                 |                |                |                   |                |
| B-38  | С                     |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 |                    |                      |               |                |             | 0.02              |              |                 |                |                |                   |                |
|       | в                     |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 |                    |                      |               |                |             | 0.012             |              |                 |                |                |                   |                |
|       | A                     |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 | 0.012              |                      |               |                | 0.05        |                   |              |                 |                | 0.003          |                   |                |
|       | Е                     |                    |                 |                |                |                |                 |                      |                      | 0.001                   |                  |                     |                     |                 |                  |             |         |                | 0.009           |                    |                      |               |                |             |                   |              |                 |                |                |                   |                |
|       | D                     |                    |                 | 0.005          |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 |                    |                      |               |                |             |                   |              |                 |                |                |                   |                |
| B-11B | C                     |                    | 0.03            |                |                |                |                 |                      | 0.006                |                         |                  |                     |                     |                 |                  |             |         |                |                 |                    |                      |               |                |             |                   |              |                 |                |                |                   |                |
|       | В                     |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         |                |                 |                    |                      |               |                |             |                   |              |                 |                |                |                   |                |
|       | ¥                     |                    |                 |                |                |                |                 |                      | 0.011                |                         |                  |                     |                     |                 |                  |             |         |                | 0.012           |                    |                      |               |                |             |                   |              |                 |                |                | 0.011             |                |
|       | y Species             | Protomedeia popovi | Protomedeia sp. | Photis sp. N 1 | Photis sp. N 2 | Photis sp. N 3 | Harpinia sp.    | Rhachotropis oculata | Westwoodilla coecula | Synchelidium gurjanovae | Synchelidium sp. | Monoculodes sp. N 1 | Monoculodes sp. N 2 | Monoculodes sp. | Tiron acanthurus | Syrrhoe sp. | Varia   | Species indet. | Synidotea media | Eudorella pacifica | Diastylus alaskensis | Diastylus sp. | Species indet. | Crangon sp. | Pinnixa rathbunae | Lebbeus sp.  | Heptacarpus sp. | Species indet. | Species indet. | Chaetozone setosa | Cossura modica |
|       | Class, order or famil | Photidae           | Photidae        | Photidae       | Photidae       | Photidae       | Phoxocephalidae | Eusiridae            | Oedicerotidae        | Oedicerotidae           | Oedicerotidae    | Oedicerotidae       | Oedicerotidae       | Oedicerotidae   | Synopiidae       | Tironidae   | <u></u> | Fam. indet.    | Idoteidae       | Leuconidae         | Diastylidae          | Diastylidae   | Fam. indet.    | Crangonidae | Pinnixidae        | Hippolytidae | Hippolytidae    | Fam. gen. sp.  | Piscicolidae   | Cirratulidae      | Cirratulidae   |
|       | Group                 |                    |                 |                |                |                |                 |                      |                      |                         |                  |                     |                     |                 |                  |             |         | Tanaidacea     | Isopoda         | Cumacea            |                      |               | Copepoda       | Decapoda    |                   |              |                 | Leptostraca    | Hyrudinea      | Polychaeta        |                |

-----

| <b>Siomass (g/sample) of macrobenthos collected</b> | n Vancouver Harbour.                         |
|-----------------------------------------------------|----------------------------------------------|
|                                                     | biomass (g/sample) of macrobenthos collected |

and was included in

Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|       |                      |                              |       |       | B-11B |       |       |       |       | B-38  |       |       |
|-------|----------------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Group | Class, order or fami | ily Species                  | ¥     | в     | С     | D     | ы     | ¥     | В     | C     | D     | Э     |
|       | Cirratulidae         | Cossura sp.                  |       |       |       |       | 0.003 |       |       |       |       |       |
|       | Cirratulidae         | Tharyx multifilis            |       |       |       |       | 0.008 | 0.35  | 0.3   | 0.3   | 0.25  | 0.29  |
|       | Cirratulidae         | Tharyx sp.                   |       |       |       |       |       |       |       |       |       |       |
|       | Ampharetidae         | Melinna ochotica             |       |       |       |       |       |       |       |       |       |       |
|       | Ampharetidae         | Species indet.               |       |       |       |       |       |       |       |       |       |       |
|       | Amphictenidae        | Cistenides granulata         |       |       |       |       |       |       |       |       |       |       |
|       | Aphroditidae         | Species indet.               |       |       |       |       |       |       |       |       |       |       |
|       | Aphroditidae         | Aphroditidae gen. indet.     |       |       |       |       |       |       |       |       |       |       |
|       | Maldanidae           | Euclyminae sp. indet.        | 0.5   | 0.04  | 0.025 |       |       |       |       |       |       |       |
|       | Maldanidae           | Praxillella affinis pacifica |       |       |       | 0.28  | 0.34  |       |       |       |       |       |
|       | Maldanidae           | Praxillella gracilis         |       |       |       |       |       |       |       |       |       |       |
|       | Maldanidae           | Species indet.               |       |       |       |       |       |       |       |       |       |       |
|       | Maldanidae           | Micropodarka sp.???          |       |       |       |       |       |       |       |       |       |       |
|       | Phyllodocidae        | Eulalia sp.                  | 0.002 |       |       |       |       |       |       |       |       |       |
|       | Phyllodocidae        | Eulalia bilincata            |       |       |       |       |       |       |       |       |       |       |
|       | Phyllodocidae        | Eteone sp.                   |       | 0.005 |       |       | 0.001 |       |       |       |       |       |
|       | Phyllodocidae        | Eteone longa                 |       |       |       |       |       |       | 0.002 |       |       |       |
|       | Phyllodocidae        | Phyllodoce sp. N 1           |       | 0.008 |       |       | 0.005 |       |       |       |       |       |
|       | Phyllodocidae        | Phyllodoce sp. N 2           |       | 0.018 | 0.001 |       |       |       |       |       |       |       |
|       | Phyllodocidae        | Phyllodoce groenlandica      |       |       |       | 0.08  |       |       |       |       |       |       |
|       | Glyceridae           | Glycera capitata             | 3.3   | 0.1   |       | 0.08  | 0.09  |       |       |       |       |       |
|       | Glyceridae           | Glycera sp.                  |       |       |       |       |       |       |       | 0.012 |       |       |
|       | Goniadidae           | Glycinde armigera            | 0.08  | 0.024 |       | 0.04  | 0.025 | 0.025 | 0.022 | 0.03  |       | 0.016 |
|       | Goniadidae           | Goniada maculata             |       |       |       |       |       |       |       |       |       |       |
|       | Lumbrineridae        | Lumbrineris luti             | 0.09  | 0.09  | 0.08  | 0.08  | 0.1   | 0.035 | 0.03  | 0.03  | 0.1   | 0.025 |
|       | Lùmbrineridae        | Lumbrineris sp. N 1          | 1.95  |       |       |       |       |       |       |       |       |       |
|       | Capitellidae         | Capitella capitata           |       |       |       |       |       |       |       |       |       |       |
|       | Capitellidae         | Mediomastus sp.              | •     | 0.01  | 0.015 | 0.015 | 0.008 |       |       |       |       |       |
|       | Capitellidae         | Mediomastus californiensis   |       |       |       |       |       |       | 0.05  | 0.003 | 0.025 | 0.025 |
|       | Capitellidae         | Heteromastus sp.             |       |       |       |       |       | 0.006 |       |       |       |       |

189

|       |                     |                              |       |      | B-11B |       |      |       |       | B-3   | ~     |       |
|-------|---------------------|------------------------------|-------|------|-------|-------|------|-------|-------|-------|-------|-------|
| Group | Class, order or fam | ily Species                  | ¥     | В    | С     | D     | ы    | Y     | B     | C     | Q     | Э     |
|       | Capitellidae        | Species indet.               |       |      |       |       |      |       |       |       |       |       |
|       | Nephtyidae          | Nephtys firruginea           | 0.12  | 0.02 | 0.1   | 0.03  | 0.04 |       |       |       |       | 0.07  |
|       | Nephtyidae          | Nephtys cornuta franciscanum |       |      |       |       |      | 0.018 | 0.015 | 0.018 | 0.025 | 0.012 |
|       | Nephtyidae          | Nephtys cornuta cornuta      |       |      |       |       |      |       |       |       |       |       |
|       | Nephtyidae          | Nephtys longosetosa          |       |      |       |       |      |       |       |       |       |       |
|       | Nephtyidae          | Nephtys sp. N 1              |       |      |       |       |      |       |       |       |       |       |
|       | Nephtyidae          | Nephtys sp. N 2              |       |      |       |       |      |       |       |       |       |       |
|       | Nereidae            | Nereis procera               |       |      |       |       |      |       |       |       |       |       |
|       | Onuphidae           | Onuphis sp.                  | 0.1   |      |       |       |      |       |       |       |       |       |
|       | Opheliidae          | Ophelina acuminata           | 0.11  | 0.11 | 0.3   | 0.18  | 0.1  |       |       |       |       |       |
|       | Opheliidae          | Ophelina sp.                 |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Prionospio lighti            | 0.015 |      |       |       |      | 0.005 |       |       |       |       |
|       | Spionidae           | Prionospio steenstrupi       |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Dipolydora sp.               |       |      |       | 0.001 | 0.01 | 0.005 |       |       |       |       |
|       | Spionidae           | Species indet. N 1           |       |      |       |       |      | 1.15  | 0.018 | 0.45  | 0.8   |       |
|       | Spionidae           | Species indet. N 2           |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Species indet. N 3           |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Species indet. N 4           |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Species indet. N 5           |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Pigospio sp.                 |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Prionospio sp.               |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Spio sp.                     |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Spiophanes berkeleyorum      |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Spiophanes sp.               |       |      |       |       |      |       |       |       |       |       |
|       | Spionidae           | Laonice cirrata              |       |      |       |       |      |       |       |       |       |       |
|       | Sternaspidae        | Sternaspis scutata           | 0.008 |      |       |       |      |       |       |       |       |       |
|       | Eunicidae           | Species indet.               |       |      | 0.7   |       |      |       |       |       |       |       |
|       | Terebellidae        | Terebellides stroemi         |       |      |       |       |      |       |       |       |       |       |
|       | Terebellidae        | Terebellides sp.             |       |      |       |       |      |       |       |       |       |       |
|       | Terebellidae        | Species indet.               |       |      | 0.01  |       |      | 0.004 |       |       |       |       |

a labor of

|       | E                        |                |            |               |                |                |              |                | 0.006                      |              |                |                 |                    |                |                |             |                |                   |                    |             |                   | 01                    |
|-------|--------------------------|----------------|------------|---------------|----------------|----------------|--------------|----------------|----------------------------|--------------|----------------|-----------------|--------------------|----------------|----------------|-------------|----------------|-------------------|--------------------|-------------|-------------------|-----------------------|
|       | D                        |                |            |               |                |                |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
| B-38  | С                        |                |            |               |                |                |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   | 0.25                  |
|       | В                        |                |            |               |                |                |              | 0.002          |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
|       | A                        |                |            | 0.008         |                |                |              | 0.01           |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
|       | Ы                        |                | 0.002      | 0.006         | 0.01           | 0.002          |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   | 0.045                 |
|       | D                        | 0.005          |            |               |                |                |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
| B-11B | C                        |                |            |               |                |                |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
|       | в                        |                |            |               |                |                |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
|       | A                        |                |            |               |                |                |              |                |                            |              |                |                 |                    |                |                |             |                |                   |                    |             |                   |                       |
|       | ily Species              | Species indet. | Disoma sp. | Pholoe minuta | Species indet. | Species indet. | Pilargis sp. | Species indet. | Dorvilea pseudorubrovitata | Dorvilea sp. | Species indet. | Brada villosa   | Sabellaria sp. (?) | Species indet. | Exogone lourei | Exogone sp. | Species indet. | Scoloplos armiger | Onuphis iridescens | Onuphis sp. | Owenia fusiformis | Amnhinholis kochii    |
|       | roup Class, order or fam | Polynoidae     | Disomodae  | Sigalionidae  | Hesionidae     | Polynoidae     | Pilargidae   | Pilargidae     | Dorvilleidae               | Dorvilleidae | Dorvilleidae   | Flabelligeridae | Sabellariidae      | Sabellidae     | Syllidae       | Syllidae    | Syllidae       | Orbiniidae        | Onuphidae          | Onuphidae   | Oweniidae         | htincidea Amphincidae |

|             |                        |                        |       |       | B-3A  |      |
|-------------|------------------------|------------------------|-------|-------|-------|------|
| Group       | Class, order or family | Species                | A     | В     | C     | D    |
| Nemertinea  | Callineridae           | Callinera sp.          |       | 0.006 |       |      |
|             | Lineidae               | Cerebratulus sp.       |       |       |       |      |
|             | Lineidae               | Lineus sp.             |       |       |       |      |
|             | Amphiporidae           | Amphiporus sp.         |       |       |       |      |
|             | Tubulanidae            | Tubulanus sp.          |       |       |       |      |
| Sipuncula   | Golfingiidae           | Species indet.         |       |       | 0.05  |      |
| Ctenophora  | Fam. gen. indet.       | Species indet.         |       |       |       |      |
| Brachiopoda | t Fam. indet.          | Species indet.         |       |       |       |      |
| Mollusca    | Scaphopoda             | Species indet.         |       |       |       |      |
|             | Scaphopoda             | Dentalium pretiosum    |       |       |       |      |
|             | Bivalvia               | Acila castrensis       |       |       |       |      |
|             | Bivalvia               | Axinopsida serricata   | 0.28  | 0.101 | 0.08  | 0.15 |
|             | Bivalvia               | Bivalvia unid.1        |       | 0.005 |       |      |
|             | Bivalvia               | Bivalvia unid.2        |       |       |       |      |
|             | Bivalvia               | Bivalvia unid.3        | 0.039 |       |       |      |
|             | Bivalvia               | Bivalvia unid.4        | 0.043 |       |       |      |
|             | Bivalvia               | Bivalvia unid.5        |       |       |       |      |
|             | Bivalvia               | Bivalvia unid.6        |       |       |       |      |
|             | Bivalvia               | Bivalvia unid.7        |       |       |       |      |
|             | Bivalvia               | Bivalvia unid.8        |       |       |       |      |
|             | Bivalvia               | Cardiomya aldroydi     |       |       |       |      |
|             | Bivalvia               | Compsomyax subdiaphana |       |       |       |      |
|             | Bivalvia               | Lucina nuttali         |       |       |       |      |
|             | Bivalvia               | Lyonsia sp.            |       |       |       |      |
|             | Bivalvia               | Macoma calcarea        |       |       |       |      |
|             | Bivalvia               | Macoma carlottensis    |       | 0.247 | 0.295 | 0.21 |
|             | Bivalvia               | Macoma elimata         | 5.104 |       |       |      |
|             | Bivalvia               | Macoma nasuta          | 4.035 |       |       |      |
|             | Bivalvia               | Nucula sp.             |       |       |       |      |
|             | Bivalvia               | Nucula tenuis          |       |       |       |      |
|             |                        |                        |       |       |       |      |

| Ы                 |       |                |       | 1.112 |
|-------------------|-------|----------------|-------|-------|
| Ð                 |       |                | 0.006 |       |
| B-41B<br>C        | 0.015 |                |       |       |
| В                 | 0.04  |                |       | 0.126 |
| ¥                 |       |                | 0.04  | 0.328 |
| E                 | 0.04  | 0.06           |       | 0.102 |
| Q                 |       | 0.153          |       | 0.217 |
| B-3A<br>C         | 0.05  | 0.08           |       | 0.295 |
| <b>B</b><br>0.006 |       | 0.101<br>0.005 | ,     | 0.247 |
| ¥                 |       | 0.28           | 0.045 | 5.104 |

-----

control of same

----

|           |                        |                          |       |       | B-3A  |
|-----------|------------------------|--------------------------|-------|-------|-------|
| Group     | Class, order or family | Species                  | A     | В     | C     |
|           | Bivalvia               | Nuculana hamata          |       |       |       |
|           | Bivalvia               | Tellina capenteri        |       |       |       |
|           | Bivalvia               | Tellina nuculoides       |       |       |       |
|           | Bivalvia               | Thyasira flexuosa        |       |       |       |
|           | Bivalvia               | Transenella tantilla     | 0.301 | 0.094 | 0.054 |
|           | Bivalvia               | Yoldia amygalea          |       |       |       |
|           | Bivalvia               | Yoldia hyperborea        |       |       |       |
|           | Gastropoda             | Cylichna sp.             |       |       |       |
|           | Gastropoda             | Mitrella sp.             | 0.16  |       |       |
|           | Gastropoda             | Margarites voticiferus   |       | 0.006 |       |
|           | Gastropoda             | Nasssarius medicus       |       |       |       |
|           | Gastropoda             | Nasssarius cooperi       |       |       |       |
|           | Gastropoda             | Nasssarius perpinguis    |       |       |       |
|           | Gastropoda             | Naticidae unid.          |       |       |       |
|           | Gastropoda             | Gastropoda unid.1        |       |       |       |
|           | Gastropoda             | Gastropoda unid.2        |       |       |       |
|           | Gastropoda             | Gastropoda unid.3        |       |       |       |
|           | Gastropoda             | Gastropoda unid.4        |       |       |       |
|           | Gastropoda             | Gastropoda unid.5        |       |       |       |
|           | Gastropoda             | Gastropoda unid.6        |       |       |       |
|           | Gastropoda             | Turbonilla sp.           |       |       |       |
| Amphipoda | Ampeliscidae           | Ampelisca macrocephala   |       |       |       |
|           | Ampeliscidae           | Ampelisca eoa            |       |       |       |
|           | Ampeliscidae           | Ampelisca sp.            |       |       |       |
|           | Aoridae                | Aoroides secunda         |       |       |       |
|           | Podoceridae            | Dulichia monacantha      |       |       |       |
|           | Lysianassidae          | Orchomenella pinguis     | 0.003 | 0.001 | 0.003 |
|           | Melitidae              | Melita sp.               | 0.008 | 0.001 | 0.017 |
|           | Pleustidae             | Pleusymtes sp.           | 0.002 | 0.001 | 0.001 |
|           | Photidae               | Protomedeia microdactyla |       | 0.011 |       |

|            |       |      |       |       |       | <br>  |                         |
|------------|-------|------|-------|-------|-------|-------|-------------------------|
| E          |       |      |       | 0.544 |       |       |                         |
| Q          |       |      |       | 0.176 |       |       |                         |
| B-41B<br>C |       |      |       | 0.066 |       |       |                         |
| В          | 0.12  |      | 0.34  | 0.787 | 0.042 |       |                         |
| A          |       |      |       | 0.201 |       |       |                         |
| E          | 0.066 |      |       |       |       |       |                         |
| D          |       |      |       |       |       |       | 0.003<br>0.001          |
| B-3A<br>C  | 0.054 |      |       |       |       | 0.003 | 0.017<br>0.001          |
| В          | 0.094 |      | 0.006 |       |       | 0.001 | 0.001<br>0.001<br>0.011 |
| ¥          | 0.301 | 0.16 |       |       |       | 0.003 | 0.008<br>0.002          |

Table 54

-----

# Biomass (g/sample) of macrobenthos collected in Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|             |                        |                         |       |       | B-3A  |       |      |
|-------------|------------------------|-------------------------|-------|-------|-------|-------|------|
| Group       | Class, order or family | / Species               | A     | в     | C     | D     | Н    |
|             | Photidae               | Protomedeia popovi      |       | 0.012 |       |       |      |
|             | Photidae               | Protomedeia sp.         | 0.015 |       |       |       | 00.0 |
|             | Photidae               | Photis sp. N 1          |       |       | 0.001 |       |      |
|             | Photidae               | Photis sp. N 2          | 0.001 |       |       | 0.02  |      |
|             | Photidae               | Photis sp. N 3          |       | 0.003 |       | 0.001 |      |
|             | Phoxocephalidae        | Harpinia sp.            |       |       |       |       |      |
|             | Eusiridae              | Rhachotropis oculata    |       |       |       |       |      |
|             | Oedicerotidae          | Westwoodilla coecula    | 0.008 | 0.006 | 0.015 | 0.005 | 0.01 |
|             | Oedicerotidae          | Synchelidium gurjanovae | 0.001 | 0.001 |       |       |      |
|             | Oedicerotidae          | Synchelidium sp.        |       |       |       |       |      |
|             | Oedicerotidae          | Monoculodes sp. N 1     |       |       |       |       |      |
|             | Oedicerotidae          | Monoculodes sp. N 2     |       |       |       |       |      |
|             | Oedicerotidae          | Monoculodes sp.         |       |       |       |       |      |
|             | Synopiidae             | Tiron acanthurus        |       |       |       |       |      |
|             | Tironidae              | Syrrhoe sp.             |       |       |       |       |      |
|             | <u></u>                | Varia                   |       |       |       |       | 0.0  |
| Tanaidacea  | Fam. indet.            | Species indet.          |       |       |       |       | 0.00 |
| Isopoda     | Idoteidae              | Synidotea media         |       |       | 0.03  |       |      |
| Cumacea     | Leuconidae             | Eudorella pacifica      |       |       |       | 0.011 |      |
|             | Diastylidae            | Diastylus alaskensis    |       |       |       | 0.01  | 0.00 |
|             | Diastylidae            | Diastylus sp.           |       |       |       |       |      |
| Copepoda    | Fam. indet.            | Species indet.          |       |       |       |       |      |
| Decapoda    | Crangonidae            | Crangon sp.             |       |       |       |       |      |
|             | Pinnixidae             | Pinnixa rathbunae       |       |       |       |       |      |
|             | Hippolytidae           | Lebbeus sp.             |       |       | 0.012 |       |      |
|             | Hippolytidae           | Heptacarpus sp.         |       |       |       |       |      |
| Leptostraca | Fam. gen. sp.          | Species indet.          |       |       |       |       |      |
| Hyrudinea   | Piscicolidae           | Species indet.          |       |       |       |       |      |
| Polychaeta  | Cirratulidae           | Chaetozone setosa       | 0.012 |       |       |       |      |
|             | Cirratulidae           | Cossura modica          |       |       |       |       |      |

| A<br>.015          | <b>B</b><br>0.012       | B-3A<br>C | Q                      | E<br>0.006 | A     | В    | B-41B<br>C | Q   | ы |
|--------------------|-------------------------|-----------|------------------------|------------|-------|------|------------|-----|---|
| .000<br>008<br>001 | 0.003<br>0.006<br>0.001 | 0.015     | 0.02<br>0.001<br>0.005 | 0.015      |       |      |            |     |   |
|                    |                         | 0.03      | 0.0                    | 0.001      | 0.001 |      |            |     |   |
| .012               |                         | 0.012     |                        |            | 0.003 | 0.92 |            | 0.2 |   |

------

-----

|       |                      | -            |                   |              |                  |                |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             |                   |                  |                  |                     |                    |                 |                            |                    |
|-------|----------------------|--------------|-------------------|--------------|------------------|----------------|----------------------|----------------|--------------------------|-----------------------|------------------------------|----------------------|----------------|---------------------|---------------|-------------------|---------------|---------------|--------------------|--------------------|-------------------------|------------------|-------------|-------------------|------------------|------------------|---------------------|--------------------|-----------------|----------------------------|--------------------|
|       | 되                    |              | 0.01              |              | _                | _              |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             | 0.018             |                  |                  |                     |                    |                 |                            |                    |
|       | D                    |              | 0.025             |              |                  |                |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             |                   |                  | 0.01             |                     |                    | 0.008           |                            |                    |
| B-41B | C                    |              | 0.012             |              |                  |                |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             | 0.02              |                  |                  |                     |                    | 0.005           |                            |                    |
|       | В                    |              | 0.02              |              |                  |                |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             | 0.12              |                  |                  |                     |                    | 0.015           |                            |                    |
|       | A                    |              | 0.002             |              |                  |                |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             | 0.05              |                  |                  |                     |                    |                 |                            |                    |
|       | ন                    |              |                   |              |                  | 0.012          |                      |                |                          |                       |                              |                      | ·              | 0.05                |               |                   |               |               |                    |                    |                         | 0.018            |             | 0.04              |                  | 0.07             |                     |                    |                 |                            |                    |
|       | D                    |              |                   |              |                  | 0.07           |                      |                |                          |                       |                              |                      | 0.015          |                     |               |                   |               |               |                    |                    |                         |                  |             | 0.15              |                  | 0.022            |                     |                    |                 |                            |                    |
| B-3A  | C                    |              |                   |              |                  |                |                      |                |                          |                       |                              |                      | 0.05           |                     |               |                   |               |               |                    |                    |                         | 0.05             |             | 0.05              |                  | 0.06             |                     |                    |                 |                            |                    |
|       | В                    |              |                   |              |                  |                |                      |                |                          |                       |                              |                      | 0.02           |                     | 0.003         |                   |               |               |                    |                    |                         | 0.092            |             | 0.038             |                  | 0.055            |                     | 0.002              | 0.015           |                            |                    |
|       | Α                    |              |                   |              |                  |                |                      |                |                          |                       |                              |                      | 0.005          |                     |               |                   |               |               |                    |                    |                         | 0.25             |             | 0.05              |                  | 0.02             |                     |                    |                 |                            |                    |
|       | lly Species          | Cossura sp.  | Tharyx multifilis | Tharyx sp.   | Melinna ochotica | Species indet. | Cistenides granulata | Species indet. | Aphroditidae gen. indet. | Euclyminae sp. indet. | Praxillella affinis pacifica | Praxillella gracilis | Species indet. | Micropodarka sp.??? | Eulalia sp.   | Eulalia bilineata | Eteone sp.    | Eteone longa  | Phyllodoce sp. N 1 | Phyllodoce sp. N 2 | Phyllodoce groenlandica | Glycera capitata | Glycera sp. | Glycinde armigera | Goniada maculata | Lumbrineris luti | Lumbrineris sp. N 1 | Capitella capitata | Mediomastus sp. | Mediomastus californiensis | - Heteromastus sp. |
|       | Class, order or fami | Cirratulidae | Cirratulidae      | Cirratulidae | Ampharetidae     | Ampharetidae   | Amphictenidae        | Aphroditidae   | Aphroditidae             | Maldanidae            | Maldanidae                   | Maldanidae           | Maldanidae     | Maldanidae          | Phyllodocidae | Phyllodocidae     | Phyllodocidae | Phyllodocidae | Phyllodocidae      | Phyllodocidae      | Phyllodocidae           | Glyceridae       | Glyceridae  | Goniadidae        | Goniadidae       | Lumbrineridae    | Lumbrineridae       | Capitellidae       | Capitellidae    | Capitellidae               | Capitellidae       |
|       | Group                |              |                   |              |                  |                |                      |                |                          |                       |                              |                      |                |                     |               |                   |               |               |                    |                    |                         |                  |             |                   |                  |                  |                     |                    |                 |                            |                    |

.

.

|       |                     |                              |       |       | B-3A  |       |       |       |       | B-41B |       |       |
|-------|---------------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Group | Class, order or fam | uly Species                  | ¥     | В     | С     | D     | Н     | A     | В     | С     | D     | Э     |
|       | Capitellidae        | Species indet.               |       |       |       |       |       |       |       |       |       | 0.011 |
|       | Nephtyidae          | Nephtys firruginea           |       | 0.019 | 0.03  | 0.025 | 0.02  |       |       |       |       |       |
|       | Nephtyidae          | Nephtys cornuta franciscanum | 0.003 | 0.002 | 0.015 | 0.01  | 0.012 | 0.022 | 0.025 | 0.03  | 0.025 | 0.021 |
|       | Nephtyidae          | Nephtys cornuta cornuta      |       |       |       |       |       |       |       |       |       |       |
|       | Nephtyidae          | Nephtys longosetosa          |       |       |       |       |       |       |       |       |       |       |
|       | Nephtyidae          | Nephtys sp. N 1              |       |       |       |       |       |       |       |       |       |       |
|       | Nephtyidae          | Nephtys sp. N 2              |       |       |       |       |       |       |       |       |       |       |
|       | Nereidae            | Nereis procera               |       |       |       | 0.005 |       |       |       |       |       |       |
|       | Onuphidae           | Onuphis sp.                  |       |       |       |       |       |       |       |       |       |       |
|       | Opheliidae          | Ophelina acuminata           | 0.011 | 0.009 | 0.03  | 0.05  |       |       |       |       |       |       |
|       | Opheliidae          | Ophelina sp.                 |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Prionospio lighti            | 0.018 | 0.015 | 0.023 | 0.002 |       |       |       | 0.003 | 0.01  | 0.008 |
|       | Spionidae           | Prionospio steenstrupi       |       |       |       |       | 0.009 |       |       |       |       |       |
|       | Spionidae           | Dipolydora sp.               | 0.012 |       | 0.012 | 0.003 |       |       |       |       |       |       |
|       | Spionidae           | Species indet. N 1           |       |       |       |       |       | 0.04  | 0.05  | 0.65  | 0.15  | 0.1   |
|       | Spionidae           | Species indet. N 2           |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Species indet. N 3           |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Species indet. N 4           |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Species indet. N 5           |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Pigospio sp.                 | 0.002 |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Prionospio sp.               |       |       |       |       |       |       |       | 0.003 |       |       |
|       | Spionidae           | Spio sp.                     |       | 0.005 |       |       |       |       |       |       |       |       |
|       | Spionidae           | Spiophanes berkeleyorum      |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Spiophanes sp.               |       |       |       |       |       |       |       |       |       |       |
|       | Spionidae           | Laonice cirrata              |       |       |       |       |       |       |       |       |       |       |
|       | Sternaspidae        | Sternaspis scutata           |       |       |       | 0.018 |       |       |       |       |       |       |
|       | Eunicidae           | Species indet.               |       |       |       |       |       |       |       |       |       |       |
|       | Terebellidae        | Terebellides stroemi         |       |       |       |       |       |       |       |       |       |       |
|       | Terebellidae        | Terebellides sp.             |       |       |       |       |       |       |       |       |       |       |
|       | Terebellidae        | Species indet.               | 0.37  | 0.15  |       |       |       |       |       |       |       |       |

-

Construction of American

|            |                      |                            |       |       | B-3A  |       |      |   |      | B-41B |   |   |
|------------|----------------------|----------------------------|-------|-------|-------|-------|------|---|------|-------|---|---|
| Group      | Class, order or fami | ly Species                 | A     | В     | С     | D     | Э    | A | В    | C     | D | Ы |
|            | Polynoidae           | Species indet.             |       |       |       |       |      |   |      |       |   |   |
|            | Disomodae            | Disoma sp.                 | 0.05  | 0.004 | 0.008 | 0.004 | 0.02 |   |      |       |   |   |
|            | Sigalionidae         | Pholoe minuta              | 0.01  |       |       | 0.011 |      |   |      |       |   |   |
|            | Hesionidae           | Species indet.             |       |       |       |       |      |   | 0.04 |       |   |   |
|            | Polynoidae           | Species indet.             |       |       | 0.002 |       |      |   |      |       |   |   |
|            | Pilargidae           | Pilargis sp.               |       |       |       |       |      |   |      |       |   |   |
|            | Pilargidae           | Species indet.             |       |       |       |       |      |   |      |       |   |   |
|            | Dorvilleidae         | Dorvilea pseudorubrovitata |       |       |       |       |      |   |      |       |   |   |
|            | Dorvilleidae         | Dorvilea sp.               |       |       |       |       |      |   |      |       |   |   |
|            | Dorvilleidae         | Species indet.             |       |       |       |       |      |   |      |       |   |   |
|            | Flabelligeridae      | Brada villosa              |       |       |       |       |      |   |      |       |   |   |
|            | Sabellariidae        | Sabellaria sp. (?)         |       |       |       |       |      |   |      |       |   | • |
|            | Sabellidae           | Species indet.             |       |       |       |       |      |   |      |       |   |   |
|            | Syllidae             | Exogone lourei             |       |       |       |       |      |   |      |       |   |   |
|            | Syllidae             | Exogone sp.                | 0.002 |       |       |       |      |   |      |       |   |   |
|            | Syllidae             | Species indet.             |       |       |       |       |      |   |      |       |   |   |
|            | Orbiniidae           | Scoloplos armiger          | 0.001 | 0.012 | 0.001 |       |      |   |      |       |   |   |
|            | Onuphidae            | Onuphis iridescens         |       |       |       |       |      |   |      |       |   |   |
|            | Onuphidae            | Onuphis sp.                |       |       |       |       |      |   |      |       |   |   |
|            | Oweniidae            | Owenia fusiformis          |       |       |       |       |      |   |      |       |   |   |
| Ophiuroide | ea Amphiuridae       | Amphipholis kochii         | 0.05  |       |       |       |      |   |      |       |   |   |

|             |                       |                        |      |      | B-48 |      |      |      |      | B-49 |      |      |      |      | B-50 |        |       |
|-------------|-----------------------|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|
| Group       | Class, order or famil | y Species              | ¥    | В    | U    | D    | ы    | Y    | В    | C    | D    | н    | A    | В    | C    | D      | Ε     |
| Nemertinea  | Callineridae          | Callinera sp.          |      |      |      | 0.03 |      | 0.01 |      |      |      |      |      |      |      |        |       |
|             | Lineidae              | Cerebratulus sp.       |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Lineidae              | Lineus sp.             |      |      |      |      |      |      | 0.12 | 0.02 |      |      |      |      |      |        |       |
|             | Amphiporidae          | Amphiporus sp.         |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Tubulanidae           | Tubulanus sp.          |      |      |      |      |      |      |      | 0    |      |      |      |      |      |        |       |
| Sipuncula   | Golfingiidae          | Species indet.         |      |      |      | 0.06 | 0.01 |      |      |      |      |      |      | 0    | 0    | 0.05 ( | .002  |
| Ctenophora  | Fam. gen. indet.      | Species indet.         |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
| Brachiopoda | Fam. indet.           | Species indet.         |      |      |      |      |      |      |      |      |      |      | 0.2  |      |      |        |       |
| Mollusca    | Scaphopoda            | Species indet.         |      |      |      |      |      | 0.03 |      |      |      |      |      |      |      |        |       |
|             | Scaphopoda            | Dentalium pretiosum    |      |      |      |      |      |      |      |      |      | 0.18 |      |      |      |        |       |
|             | Bivalvia              | Acila castrensis       | 0.45 |      |      |      |      | 6.59 | 10.9 | 4.22 | 14   | 11.3 |      | 1.41 | -    | 0.03   | .058  |
|             | Bivalvia              | Axinopsida serricata   | 1.45 | 1.28 | 0.73 | 1.27 | 0.82 | 0.9  | 1.87 | 2.09 | 1.45 | 0.31 | Ĩ    | 0.16 | 0.12 | ).33 ( | 0.026 |
|             | Bivalvia              | Bivalvia unid.1        |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Bivalvia unid.2        |      |      |      |      |      |      |      |      |      |      | 0.01 |      |      |        |       |
|             | Bivalvia              | Bivalvia unid.3        |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Bivalvia unid.4        |      |      |      |      |      |      |      |      |      |      |      | -    | 0.23 | 0.2    |       |
|             | Bivalvia              | Bivalvia unid.5        | 0.24 | 0.41 | 0.23 | 0.53 | 0.3  |      | 0.06 |      | 0.05 | 0.06 |      |      |      |        |       |
|             | Bivalvia              | Bivalvia unid.6        |      |      |      |      |      | 0.62 | 0.69 | 0.89 | 0.44 | 0.35 |      |      |      |        |       |
|             | Bivalvia              | Bivalvia unid.7        |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Bivalvia unid.8        |      |      |      |      |      |      |      |      |      |      |      |      |      | 0      | .227  |
|             | Bivalvia              | Cardiomya aldroydi     |      |      |      |      |      |      |      |      |      |      |      |      | 0.3  |        |       |
|             | Bivalvia              | Compsomyax subdiaphana |      |      |      |      |      | 43.2 | 58.9 | 15.3 | 55.4 | 50.3 |      |      |      |        |       |
|             | Bivalvia              | Lucina nuttali         |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Lyonsia sp.            |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Macoma calcarea        | 0.38 | 2.81 | 2.77 | 1.47 | 3.01 | 0.63 | 11.3 | 1.02 | 1.77 | 0.43 |      |      |      |        |       |
|             | Bivalvia              | Macoma carlottensis    |      |      |      |      |      |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Macoma elimata         |      |      |      | 0.33 | 0.14 |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Macoma nasuta          |      |      |      |      | 0.13 |      |      |      |      |      |      |      |      |        |       |
|             | Bivalvia              | Nucula sp.             |      |      |      |      |      |      |      |      |      |      |      |      | -    | 0.01   |       |
|             | Bivalvia              | Nucula tenuis          |      | 0.13 | 0.08 | 0.05 | 0.06 | 0.26 | 0.11 | 0.1  | 0.06 | 0.16 | -    | 0.12 | 0.43 | ).42   |       |

- -----

man shad with a

| Table 54                                     |
|----------------------------------------------|
| Biomass (g/sample) of macrobenthos collected |
| in Vancouver Harbour.                        |

Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|      | Э                     |                 | 0.072             |                    |                   |                      |                 |                   |              |              |                        |                    |                    |                       |                 |                   |                   | 0.019             |                   |                   |                   |                |                        |               |               |                  |                     |                      | 0.01       |                |                          |
|------|-----------------------|-----------------|-------------------|--------------------|-------------------|----------------------|-----------------|-------------------|--------------|--------------|------------------------|--------------------|--------------------|-----------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|------------------------|---------------|---------------|------------------|---------------------|----------------------|------------|----------------|--------------------------|
|      | D                     |                 | 0.53              |                    | 0.21              |                      |                 |                   | 0.01         |              |                        |                    |                    |                       | 0.01            |                   |                   |                   |                   |                   |                   |                |                        |               | 0             |                  | 0                   |                      | 0          |                |                          |
| B-50 | C                     |                 | 0.34              |                    |                   |                      |                 |                   |              |              |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   |                |                        | 0             | 0.05          |                  |                     |                      |            |                |                          |
|      | в                     |                 |                   |                    |                   | 0.02                 |                 |                   |              | 0.1          |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   | 0.03           |                        |               |               |                  |                     |                      |            |                |                          |
|      | ¥                     |                 |                   |                    |                   |                      |                 |                   |              |              |                        |                    |                    | 0.5                   |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               | 0.01             |                     |                      |            |                |                          |
|      | Э                     | 0.13            |                   |                    |                   |                      |                 |                   |              | 0.01         |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | D                     | 0.04            |                   |                    |                   |                      |                 |                   |              |              |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
| B-49 | U                     | 0.07            |                   |                    |                   |                      |                 |                   |              | 0.12         |                        |                    |                    |                       |                 |                   |                   |                   |                   | 0.13              |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | B                     |                 |                   |                    |                   |                      |                 | 0.64              |              |              |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | A                     | 0.2             |                   |                    |                   |                      |                 |                   |              |              |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | Э                     |                 |                   |                    | 0.02              |                      |                 |                   |              |              |                        | 2.22               |                    |                       |                 |                   |                   | 0.1               |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | D                     |                 |                   |                    | 0.01              |                      |                 |                   |              |              |                        |                    |                    |                       |                 | 0.1               | 0.14              |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      | 0          |                |                          |
| B-48 | C                     | 0.04            |                   |                    | 0.0               |                      |                 |                   |              |              |                        |                    |                    |                       |                 |                   |                   |                   | 0.11              |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | В                     |                 |                   |                    | 0.06              |                      |                 |                   |              |              |                        |                    |                    | 0.06                  |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                |                          |
|      | A                     |                 |                   |                    | 0.2               |                      |                 |                   |              |              |                        |                    |                    | 0.18                  |                 |                   |                   |                   |                   |                   |                   |                |                        |               |               |                  |                     |                      |            |                | 0.01                     |
|      | y Species             | Nuculana hamata | Tellina capenteri | Tellina nuculoides | Thyasira flexuosa | Transenella tantilla | Yoldia amygalea | Yoldia hyperborea | Cylichna sp. | Mitrella sp. | Margarites voticiferus | Nasssarius medicus | Nasssarius cooperi | Nasssarius perpinguis | Naticidae unid. | Gastropoda unid.1 | Gastropoda unid.2 | Gastropoda unid.3 | Gastropoda unid.4 | Gastropoda unid.5 | Gastropoda unid.6 | Turbonilla sp. | Ampelisca macrocephala | Ampelisca eoa | Ampelisca sp. | Aoroides secunda | Dulichia monacantha | Orchomenella pinguis | Melita sp. | Pleusymtes sp. | Protomedeia microdactyla |
|      | Class, order or famil | Bivalvia        | Bivalvia          | Bivalvia           | Bivalvia          | Bivalvia             | Bivalvia        | Bivalvia          | Gastropoda   | Gastropoda   | Gastropoda             | Gastropoda         | Gastropoda         | Gastropoda            | Gastropoda      | Gastropoda        | Gastropoda        | Gastropoda        | Gastropoda        | Gastropoda        | Gastropoda        | Gastropoda     | a Ampeliscidae         | Ampeliscidae  | Ampeliscidae  | Aoridae          | Podoceridae         | Lysianassidae        | Melitidae  | .Pleustidae    | Photidae                 |
|      | Group                 | I               |                   |                    |                   |                      |                 |                   |              |              |                        |                    |                    |                       |                 |                   |                   |                   |                   |                   |                   |                | Amphipod               |               |               |                  |                     |                      |            |                |                          |

:

|             |                        |                         |      |   | B-48   |     |          |   | ш      | -49 |      |     |     | ш   | -50   |     |
|-------------|------------------------|-------------------------|------|---|--------|-----|----------|---|--------|-----|------|-----|-----|-----|-------|-----|
| Group       | Class, order or family | v Species               | A    | в | C      | D   | ы        | A | В      | c   | Q    | E I | A   | В   | C     | Ω   |
| ſ           | Photidae               | Protomedeia popovi      |      |   |        | 0   | 101      |   |        |     |      |     |     |     |       |     |
|             | Photidae               | Protomedeia sp.         |      |   |        | 0   |          |   |        |     |      |     | 0   |     |       | 0   |
|             | Photidae               | Photis sp. N 1          |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Photidae               | Photis sp. N 2          |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Photidae               | Photis sp. N 3          |      |   |        |     | 0        |   |        |     |      |     |     |     |       |     |
|             | Phoxocephalidae        | Harpinia sp.            |      |   |        |     |          | Ŭ | 0.02 ( | 01  | 0 0  | .01 |     |     | 0     | .01 |
|             | Eusiridae              | Rhachotropis oculata    |      |   |        |     |          |   |        |     |      |     |     |     | 0     | .02 |
|             | Oedicerotidae          | Westwoodilla coecula    |      |   | 0.01 ( | .01 |          |   |        |     |      |     |     |     |       |     |
|             | Oedicerotidae          | Synchelidium gurjanovae |      |   |        |     | <u> </u> |   |        |     |      |     | 0   |     |       | 0   |
|             | Oedicerotidae          | Synchelidium sp.        |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Oedicerotidae          | Monoculodes sp. N 1     |      |   |        |     |          |   |        |     |      |     | 0   | .03 |       |     |
|             | Oedicerotidae          | Monoculodes sp. N 2     |      |   |        |     |          |   |        |     |      |     |     | 0   |       |     |
|             | Oedicerotidae          | Monoculodes sp.         |      |   |        |     | <u></u>  |   |        |     |      |     |     | 0   | 01    |     |
|             | Synopiidae             | Tiron acanthurus        | 0.01 |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Tironidae              | Syrrhoe sp.             |      |   |        |     |          |   |        |     |      |     |     | 0   |       |     |
|             |                        | Varia                   |      |   | 0      |     | 0        |   |        |     |      |     | 0   | 0   |       |     |
| Tanaidacea  | Fam. indet.            | Species indet.          |      |   |        |     |          |   |        |     |      | 0   | .01 |     | 0     | .01 |
| Isopoda     | Idoteidae              | Synidotea media         |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
| Cumacea     | Leuconidae             | Eudorella pacifica      |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Diastylidae            | Diastylus alaskensis    |      |   |        |     |          |   |        |     |      |     | 0   |     |       |     |
|             | Diastylidae            | Diastylus sp.           |      |   |        |     |          |   |        |     |      |     |     |     | 0     | .06 |
| Copepoda    | Fam. indet.            | Species indet.          |      |   |        |     |          |   |        |     |      |     | 0   |     |       |     |
| Decapoda    | Crangonidae            | Crangon sp.             |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Pinnixidae             | Pinnixa rathbunae       |      |   |        |     |          |   |        |     |      |     | 0   | 0   | 0 0   | .03 |
|             | Hippolytidae           | Lebbeus sp.             |      |   |        |     |          |   |        |     |      |     |     |     |       |     |
|             | Hippolytidae           | Heptacarpus sp.         |      |   |        |     |          | 0 | .05    |     |      |     |     |     |       |     |
| Leptostraca | Fam. gen. sp.          | Species indet.          |      |   |        |     |          |   |        |     |      |     |     | 0   | .01   |     |
| Hyrudinea   | Piscicolidae           | Species indet.          |      |   |        |     |          | 0 |        | 0   |      |     |     |     |       |     |
| Polychaeta  | Cirratulidae           | Chaetozone setosa       | 0.01 |   |        |     |          |   | 0      | 01  | 0    | .01 | 0   | .01 | .02 0 | .03 |
|             | Cirratulidae           | Cossura modica          |      |   |        |     |          | Ŭ | .02    | Ŭ   | 0.03 |     |     |     |       |     |

0.044

0.002

Э

-

0.002

0.05 0.012

0.003

0.003

### Biomass (g/sample) of macrobenthos collected in Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan Table 54

|       |                        |                              |      |      | B-48 |      |      |      |               |
|-------|------------------------|------------------------------|------|------|------|------|------|------|---------------|
| Group | Class, order or family | y Species                    | A    | В    | C    | D    | Э    | A    |               |
|       | Cirratulidae           | Cossura sp.                  |      |      |      |      |      |      |               |
|       | Cirratulidae           | Tharyx multifilis            |      |      |      |      |      |      |               |
|       | Cirratulidae           | Tharyx sp.                   | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |      |               |
|       | Ampharetidae           | Melinna ochotica             | 0.04 |      |      |      |      |      |               |
|       | Ampharetidae           | Species indet.               | 0.01 | 0    |      | 0.02 |      |      |               |
|       | Amphictenidae          | Cistenides granulata         | 0.04 |      |      |      |      |      |               |
|       | Aphroditidae           | Species indet.               | 0.01 |      |      |      |      |      |               |
|       | Aphroditidae           | Aphroditidae gen. indet.     |      |      |      |      |      |      |               |
|       | Maldanidae             | Euclyminae sp. indet.        |      |      |      |      |      | 0.02 | $\sim$        |
|       | Maldanidae             | Praxillella affinis pacifica |      |      |      |      |      |      |               |
|       | Maldanidae             | Praxillella gracilis         |      |      |      |      |      |      |               |
|       | Maldanidae             | Species indet.               |      |      |      |      | 0.05 |      |               |
|       | Maldanidae             | Micropodarka sp.???          |      |      |      |      |      |      |               |
|       | Phyllodocidae          | Eulalia sp.                  |      |      |      |      |      |      | -             |
|       | Phyllodocidae          | Eulalia bilineata            |      |      | 0.01 |      |      |      |               |
|       | Phyllodocidae          | Eteone sp.                   |      |      |      |      |      |      |               |
|       | Phyllodocidae          | Eteone longa                 |      | 0.04 |      | 0.04 |      |      |               |
|       | Phyllodocidae          | Phyllodoce sp. N 1           |      |      |      |      |      |      |               |
|       | Phyllodocidae          | Phyllodoce sp. N 2           |      |      |      |      |      |      |               |
|       | Phyllodocidae          | Phyllodoce groenlandica      |      |      |      |      |      |      |               |
|       | Glyceridae             | Glycera capitata             | 1.3  |      |      |      |      | 0.08 | $\sim$        |
|       | Glyceridae             | Glycera sp.                  |      | 2.1  | 4.25 | 0.22 |      |      |               |
|       | Goniadidae             | Glycinde armigera            | 0.1  | 0.02 | 0.02 | 0.1  | 0.08 | 0.23 |               |
|       | Goniadidae             | Goniada maculata             |      |      |      |      |      |      |               |
|       | Lumbrineridae          | Lumbrineris luti             | 0.01 | 0.1  | 0.12 |      | 0.02 | 0.6  | $\overline{}$ |
|       | Lumbrineridae          | Lumbrineris sp. N 1          | 0.4  |      |      |      |      |      |               |
|       | Capitellidae           | Capitella capitata           |      |      |      |      |      |      |               |
|       | Capitellidae           | Mediomastus sp.              |      |      |      |      |      |      |               |
|       | Capitellidae           | Mediomastus californiensis   |      | 0.03 |      |      |      | 0    | -             |
|       | Capitellidae           | Heteromastus sp.             |      |      |      |      |      |      |               |

|      | Ы |      |                      |      | 0.05 |      |      |      | 1100 | 0.01        | 0.055<br>0.055 |              |
|------|---|------|----------------------|------|------|------|------|------|------|-------------|----------------|--------------|
|      | D |      |                      | 10.0 | 0.02 |      |      |      |      | + 0.0       | 0.03           |              |
| B-50 | C |      | 0.02                 |      | 0.03 |      |      | 0.01 | 70 0 | 00          | 0.04           | 0            |
|      | В |      |                      | 0    | 0.03 |      |      | 0.02 | 000  | 0.00        | 0.01           |              |
|      | V |      | 0.02                 | 0.01 |      |      |      |      |      |             | 0.02<br>0.02   |              |
|      | Ы | 0.01 |                      | 0.03 |      |      |      |      | 0.21 | 0.1         | 0.02           | 0.03         |
|      | D |      |                      | 0.03 |      | 0.02 |      |      | 0.1  | 0.07        | 0.03           | 0.01<br>0.03 |
| B-49 | C | 0    |                      | 0.08 | 0.02 |      |      |      | 0.36 | 0.03        | $0.07 \\ 0.14$ | 0.01         |
|      | в |      |                      | 0.02 |      | 0.01 |      |      | 0.05 |             | 0.2            | 0.02         |
|      | ¥ |      |                      | 0.02 |      |      |      |      | 0.08 | 0.23        | 0.6            | 0            |
|      | ы | 0.01 |                      |      | 0.05 |      |      |      |      | 0.08        | 0.02           |              |
|      | D | 0.01 | 0.02                 |      |      |      | 0.04 |      |      | 0.1         |                |              |
| B-48 | C | 0.02 |                      |      |      | 0.01 |      |      | 204  | 0.02        | 0.12           |              |
|      | в | 0.01 | 0                    |      |      |      | 0.04 |      | ć    | 2.1<br>0.02 | 0.1            | 0.03         |
|      | V | 0.01 | 0.01<br>0.01<br>0.04 | 10.0 |      |      |      |      | 1.3  | 0.1         | 0.01<br>0.4    |              |

201

.

|      | E                  |                | 0.041              |                              |                         |                     |                 |                 |                |             |                    |              |                   |                        |                | 0.012              |                    |                    |                    |                    |              | 0.008          |           |                         |                |                 |                    |                | 0.12                 | 0.045            |                |
|------|--------------------|----------------|--------------------|------------------------------|-------------------------|---------------------|-----------------|-----------------|----------------|-------------|--------------------|--------------|-------------------|------------------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|----------------|-----------|-------------------------|----------------|-----------------|--------------------|----------------|----------------------|------------------|----------------|
|      | D                  | 0.02           |                    |                              |                         |                     |                 |                 |                |             |                    |              |                   |                        |                |                    |                    | 0.02               |                    |                    |              | 0              |           |                         |                |                 |                    |                |                      |                  |                |
| B-50 | C                  |                | 0.03               |                              |                         |                     |                 |                 |                |             |                    | 0.01         |                   |                        |                |                    | 0                  | 0.01               | 0                  | 0.02               |              |                |           |                         |                |                 |                    |                |                      |                  |                |
|      | В                  |                | 0.02               |                              |                         |                     |                 |                 |                |             |                    | 0            |                   |                        |                |                    |                    |                    |                    |                    |              |                |           |                         | 0.01           |                 |                    |                |                      |                  |                |
|      | ×                  |                |                    |                              |                         |                     | 0.02            |                 |                |             |                    |              |                   |                        |                |                    |                    | 0.01               |                    |                    |              |                |           |                         |                | var - 11.1 a    |                    |                |                      |                  |                |
|      | Э                  |                | 0.03               |                              |                         |                     |                 |                 |                |             |                    |              |                   |                        |                |                    |                    |                    |                    |                    |              | 0.01           |           |                         |                | 2.4             | 0.8                |                |                      |                  |                |
|      | D                  |                | 0.02               |                              | 0.01                    | 0.03                |                 |                 |                |             | 0.01               |              |                   |                        |                |                    |                    |                    |                    |                    |              |                |           | 0.01                    |                | 0.03            | 0.47               |                | 0.32                 |                  |                |
| B-49 | c                  |                |                    |                              | 0.02                    |                     |                 |                 |                |             |                    |              |                   |                        |                |                    |                    |                    |                    |                    |              |                |           | 0.01                    |                |                 | 0.75               |                | 0.04                 |                  |                |
|      | В                  |                |                    |                              | 0.03                    |                     |                 | 0.04            |                |             | 0                  |              |                   |                        |                |                    |                    |                    |                    |                    |              |                |           |                         |                |                 | 0.5                |                |                      |                  |                |
|      | ¥                  |                |                    |                              | 0.3                     |                     | 1.02            |                 |                |             |                    |              |                   |                        |                |                    |                    |                    |                    |                    |              |                |           |                         |                | 0.75            | 0.7                |                |                      |                  |                |
|      | E                  |                | 0.36               |                              |                         |                     |                 |                 |                |             | 0.01               |              |                   |                        |                | 0.2                |                    |                    |                    |                    |              |                |           |                         |                |                 |                    |                |                      |                  |                |
|      | D                  |                | 0.11               | 0.02                         |                         |                     |                 |                 |                |             | 0.02               |              |                   |                        |                | 0.1                |                    |                    |                    |                    |              |                |           |                         |                |                 |                    |                |                      |                  |                |
| B-48 | U                  |                | 0.35               |                              |                         |                     |                 |                 |                |             | 0.02               |              |                   |                        |                | 0.05               |                    |                    |                    |                    |              | 0.01           |           |                         |                |                 | 0.01               |                |                      |                  |                |
|      | В                  |                | 0.26               | 0.01                         |                         |                     |                 |                 |                |             |                    |              |                   |                        |                | 0.29               |                    |                    |                    |                    |              |                |           |                         |                |                 |                    |                | 0.21                 |                  |                |
|      | Ł                  | 0.01           | 0.4                |                              |                         |                     |                 |                 |                |             | 0                  |              |                   |                        |                | 0.15               |                    |                    |                    |                    |              |                |           |                         | 0.01           |                 |                    |                |                      |                  |                |
|      | mily Species       | Species indet. | Nephtys firruginea | Nephtys cornuta franciscanum | Nephtys cornuta cornuta | Nephtys longosetosa | Nephtys sp. N 1 | Nephtys sp. N 2 | Nereis procera | Onuphis sp. | Ophelina acuminata | Ophelina sp. | Prionospio lighti | Prionospio steenstrupi | Dipolydora sp. | Species indet. N 1 | Species indet. N 2 | Species indet. N 3 | Species indet. N 4 | Species indet. N 5 | Pigospio sp. | Prionospio sp. | Spio sp.  | Spiophanes berkeleyorum | Spiophanes sp. | Laonice cirrata | Sternaspis scutata | Species indet. | Terebellides stroemi | Terebellides sp. | Species indet. |
|      | Class, order or fa | Capitellidae   | Nephtyidae         | Nephtyidae                   | Nephtyidae              | Nephtyidae          | Nephtyidae      | Nephtyidae      | Nereidae       | Onuphidae   | Opheliidae         | Opheliidae   | Spionidae         | Spionidae              | Spionidae      | Spionidae          | Spionidae          | Spionidae          | Spionidae          | Spionidae          | Spionidae    | Spionidae      | Spionidae | Spionidae               | Spionidae      | Spionidae       | Sternaspidae       | Eunicidae      | Terebellidae         | Terebellidae     | Terebellidae   |
|      | Group              | e              |                    |                              |                         |                     |                 |                 |                |             |                    |              |                   |                        |                |                    |                    |                    |                    |                    |              |                |           |                         |                |                 |                    |                |                      |                  |                |

Table 54

# Biomass (g/sample) of macrobenthos collected in Vancouver Harbour. Investigators: Dr. Jong Jeel Je and Dr. Tatyana Belan

|           |                      |                            |      |      | B-48 |      |      |      |      | 3-49 |       |          |       | н     | 3-50  |     |      |
|-----------|----------------------|----------------------------|------|------|------|------|------|------|------|------|-------|----------|-------|-------|-------|-----|------|
| Group     | Class, order or fami | ly Species                 | V    | в    | C    | D    | ы    | A    | в    | C    | D     | Э        | A     | В     | C     | D   | E    |
|           | Polynoidae           | Species indet.             |      |      |      |      |      |      |      |      |       |          |       |       |       |     |      |
|           | Disomodae            | Disoma sp.                 |      |      | 0.2  |      |      |      |      |      |       |          |       |       |       |     |      |
|           | Sigalionidae         | Pholoe minuta              | 0.01 |      |      |      | 0.01 |      |      |      |       |          |       |       |       |     |      |
|           | Hesionidae           | Species indet.             |      |      |      |      |      |      |      |      |       |          |       |       |       |     |      |
|           | Polynoidae           | Species indet.             |      |      |      |      |      | 0.01 |      |      |       |          |       | 0     | .01   |     |      |
|           | Pilargidae           | Pilargis sp.               | 0    | 0.27 | 0.02 | 0.03 | 0.01 |      |      |      |       |          |       |       |       |     |      |
|           | Pilargidae           | Species indet.             |      |      | 0.01 |      | 0.01 |      |      | 0.01 | 0.02  |          |       |       |       |     |      |
|           | Dorvilleidae         | Dorvilea pseudorubrovitata |      |      |      |      |      |      |      |      |       |          |       |       |       |     |      |
|           | Dorvilleidae         | Dorvilea sp.               |      |      |      |      |      |      |      |      |       |          |       |       |       | 0   | .008 |
|           | Dorvilleidae         | Species indet.             |      |      |      |      |      |      |      |      |       |          |       |       |       | 0   | .012 |
|           | Flabelligeridae      | Brada villosa              |      |      |      |      |      | 0.1  |      |      |       |          |       |       |       |     |      |
|           | Sabellariidae        | Sabellaria sp. (?)         |      |      |      |      |      |      |      |      |       |          |       | 0     | .02   |     | 0.04 |
|           | Sabellidae           | Species indet.             |      |      |      |      |      |      |      |      |       |          |       | 0     | .03   |     |      |
|           | Syllidae             | Exogone lourei             |      |      |      |      |      | 0.05 | 0.06 |      |       |          |       |       |       |     |      |
|           | Syllidae             | Exogone sp.                |      |      |      |      |      |      |      |      |       |          |       |       |       |     |      |
|           | Syllidae             | Species indet.             |      |      |      |      |      |      |      | 0.02 | Ŭ     | .01      |       | 0     | .02   | 0   | .007 |
|           | Orbiniidae           | Scoloplos armiger          |      |      |      |      | 0.02 |      |      |      |       | <u> </u> | .25 0 | .19 0 | .13 0 | .03 | .026 |
|           | Onuphidae            | Onuphis iridescens         |      |      |      |      |      | 0.39 | 0.38 |      | 0     | ).36     |       |       |       |     | 0.2  |
|           | Onuphidae            | Onuphis sp.                |      |      |      |      |      |      |      |      |       |          |       |       | 0     | .28 |      |
|           | Oweniidae            | Owenia fusiformis          |      |      |      |      | 0.02 |      |      |      |       |          |       |       |       |     |      |
| Ophiuroid | ea Amphiuridae       | Amphipholis kochii         |      | 0.05 | 0.05 | 0.15 |      | 0.23 |      |      | 0.1 ( | 0.01     |       |       |       |     |      |
| •         |                      |                            |      |      |      |      |      |      |      |      |       |          |       |       |       |     |      |

. •

.

### Table 55

•

### Harmful Algal Bloom Study: Wet weight, dry weight, and average lethal time of mice

injected with an extraction of shellfish samples.

Investigator: Dr. Tian Yan

| Sample | e Genus      | Species        | Collectio | on Site | Wet Weight | Dry Weight | Ratio   | <b>Average Lethal</b> |
|--------|--------------|----------------|-----------|---------|------------|------------|---------|-----------------------|
| Numbe  | er           |                | Date      |         | (g)        | (g)        | (ww/dw) | time (hours)          |
| 1      | Mytilus      | trossulos      | 5/27/99   | I1      | 94.1       | 16         | 5.9     | 12                    |
| 2      | Mytilus      | trossulos      | 5/27/99   | 11      | 83.4       | 14.5       | 5.8     | 1.5                   |
| 3      | Clinocardium | nuttallii      | 5/27/99   | B49     | 20.5       | 3          | 6.8     | nm                    |
| 4      | Mytilus      | trossulos      | 5/28/99   | I3A     | 103.6      | 17.5       | 5.9     | 12                    |
| 5      | Mytilus      | trossulos      | 5/28/99   | I3A     | 89.5       | 14.8       | 6       | 24                    |
| 6      | Mytilus      | trossulos      | 5/29/99   | I5B     | 101.4      | 22.2       | 4.5     | nm                    |
| 7      | Mytilus      | trossulos      | 5/29/99   | I5B     | 106.5      | 26         | 4       | nm                    |
| 8      | Mytilus      | trossulos      | 5/29/99   | 16      | 78.3       | 16.5       | 4.7     | nm                    |
| 9      | Mytilus      | trossulos      | 5/29/99   | 16      | 76.5       | 15.7       | 4.9     | nm                    |
| 10     | Ruditapes    | philippinarium | 1 5/29/99 | 16      | 90.1       | 17.2       | 5.2     | nm                    |
| 11     | Clinocardium | nuttallii      | 5/29/99   | T38     | 117.7      | 18.9       | 8.1     | nm                    |
| 12     | Clinocardium | nuttallii      | 5/29/99   | T38     | 29.6       | 4.2        | 7       | nm                    |
| 13     | Yoldia       | sp.            | 5/29/99   | T38     | 5.3        | 0.9        | 5.9     | nm                    |
| 14     | Mytilus      | trossulos      | 5/30/99   | I4      | 117.1      | 8.9        | 6.2     | >24                   |
| 15     | Mytilus      | trossulos      | 5/30/99   | I4      | 97.3       | 17.2       | 5.7     | >24                   |
| 16     | Venerupis    | staninea       | 5/30/99   | 14      | 98.3       | 16.1       | 6.1     | nm                    |
| 17     | Venerupis    | staninea       | 5/30/99   | 14      | 93.7       | 16         | 5.9     | nm                    |
| 18     | Mytilus      | trossulos      | 6/1/99    | I2A     | 97.3       | 14.9       | 6.5     | >24                   |
| 19     | Mytilus      | trossulos      | 6/1/99    | I2A     | 98         | 15.2       | 6.4     | 1.1                   |
| 20     | Mytilus      | trossulos      | 6/2/99    | 17      | 81.9       | 16.9       | 4.8     | nm                    |
| 21     | Mytilus      | trossulos      | 6/2/99    | 17      | 56.7       | 11.3       | 5       | nm                    |

nm = no mouse mortality

### Table 56

Harmful Algal Bloom Study: Concentrations of Paralytic Shellfish Poison measured. Investigator: Dr. Tian Yan

| Sample* | Sample Type     | Average Lethal | <b>PSP</b> in Extract  | <b>PSP</b> in Mussel      |
|---------|-----------------|----------------|------------------------|---------------------------|
|         |                 | time           | (eqv. STX microg/ml) ( | (eqv. STX microg/100g ww) |
| STX     | 0.294 microg/ml | 9.5 min        |                        |                           |
| [1      | mussel          | 16.5 h         | 0.15-0.2               | 15-20                     |
| I2A     | mussel          | 12 h           | 0.15-0.2               | 15-20                     |
| STX     | 0.147 microg/ml | 15 h           |                        |                           |
| I3A     | mussel          | 18 h           | < 0.15                 | <15                       |
| I4      | mussel          | >24 hr**       | < 0.15                 | <15                       |

\*sample refers to reference material (STX) or to the site where mussels were collected. \*\*(>24hr) showed classical PSP symptoms, such as paralyzed legs, slow but deep respiration, and trembling head, yet the mouse survived after 24 h.

STX = saxitoxin PSP = Paralytic shellfish poison

### Table 57 Harmful Algal Bloom Study: Artemia Assay Results Investigator: Dr. Tian Yan

| Site | Date    | Result |
|------|---------|--------|
| I1   | 5/27/99 | -      |
| I2A  | 6/1/99  | -      |
| I3A  | 5/28/99 | +      |
| I4   | 5/30/99 | -      |
| 15b  | 5/29/99 | -      |
| 16   | 5/29/99 | -      |
| 17   | 6/2/99  | -      |

- = negative result

+ = swimming behavior of Artemia was inhibited, and the 24h LC50 of Artemia was about 50%.