A comparison of four techniques for stage-specific mortality rates of copepods

Hongsheng Bi' ${ }^{1}$, Mark Benfield ${ }^{2}$, Kenneth Rose ${ }^{2}$, Bill Peterson ${ }^{3}$ ${ }^{1}$ Oregon State University, Newport, OR 97365 ${ }^{2}$ Louisiana State University, Baton Rouge, LA 70803 ${ }^{3}$ NOAA Fisheries, Newport, OR 97365

"There were two bears yesterday and there are three bears today. Does this mean that one bear has been born or that 101 bears have been born and 100 have died?"

Wood (1994)

Introduction

- Very few papers on mortality (12 after 1996), while >100 on egg production and growth
- Difficulties in copepod stage-specific mortality estimation
- Short sampling interval necessary
- Temporal coverage, at least one generation
- Bias caused by gear selection
- Not feasible to track the same copepod population by Eulerian or Lagrangian measurements
- Mathematical problems: Recruitment - Death $=\Delta \mathrm{N}$
- Existence of solution
- Uniqueness of solution
- Stability

Study location

Production II

Study location

Study location

Sampling

- Target species: Clausocalamus furcatus
- March 18 - April 6

May 15 - June 9, 2003

- Samples taken every 12 hours

- 153- $\mu \mathrm{m}$ zooplankton net samples ($0-15 \mathrm{~m}$) with 3 replicates: enumerate to species and developmental stages
- 30-L Niskin water bottle (5, 15, 25m) with 3 replicates

Matrix projection population model

- Conceptual model

Egg production rate
 Mortality

- Mathematical model $\mathrm{N}_{\mathrm{t}}-\mathrm{N}_{\mathrm{t}-1}=\mathrm{R}-\mathrm{D}-\mathrm{M}$
E is egg production rate Pii: Probability of surviving and staying in the same stage
Gij: Probability of surviving and entering the next stage
$\left[\begin{array}{lllllllllllll}P_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & E \\ G_{21} & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & & & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \end{array}\right] \times\left[\begin{array}{l}N 1 \\ N 13\end{array}\right]_{t}\left[\begin{array}{l}N 1 \\ \\ N 13\end{array}\right]_{t+1}$

Matrix elements

- Egg production rates estimated from egg ratio method: 3.40 eggs female ${ }^{-1}$ day $^{-1}$ in March-April and 0.5 eggs female ${ }^{-1}$ day $^{-1}$ in May-June
- Stage-specific developmental times estimated from incubation experiments: 13-19 days
- $\mathrm{P}_{\mathrm{ii}}=\left(1-\mathrm{m}_{\mathrm{i}}\right) *(1-\Delta \mathrm{t} / \mathrm{D})$
- $\mathrm{G}_{\mathrm{ji}}=\left(1-\mathrm{m}_{\mathrm{i}}\right)^{*} \Delta \mathrm{t} / \mathrm{D}$
- $\left[\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3} \mathrm{~N}_{4} \cdots \cdots \cdot \mathrm{~N}_{12} \mathrm{~N}_{13}\right]_{\mathrm{t}}^{\prime}$: stage specific abundance at time t from field samples
- $\left[\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3} \mathrm{~N}_{4} \cdots \cdots \cdot \mathrm{~N}_{12} \mathrm{~N}_{13}\right]_{\mathrm{t}+1}$ ': stage specific abundance at time $t+1$ from field samples

 $0 \quad 0 \ddots \ddots, ~ 0 \quad 0$
 $0 \begin{array}{lllllllll}0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0 & 0\end{array} 0$ $0 \begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & \ddots & O & 0 & 0 & 0\end{array} 0$ $0 \begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & \ddots & \ddots & 0 & 0\end{array} 0$ $0 \begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0\end{array}$ $0 \begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0\end{array}$ $0 \begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots\end{array}, 00$ $0 \begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots & \ddots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\left[\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots\end{array}\right]$

N13

$\left[\begin{array}{c}{\left[\begin{array}{c}N 1 \\ \vdots \\ N 13\end{array}\right]}\end{array}\right]=$

N1

Overview on assumptions

- Mortality estimation techniques:
- Horizontal life table method (HLT)
- Time series of stage-specific abundances (cohort)
- Vertical life table method (VLT)
- Stable population
- Surface smooth method (SSM)
- Time series of stage-specific abundances
- Mortality rates change smoothly between consecutive stages
- Inverse matrix method with quadratic programming algorithm (IMM-Q) and nonlinear algorithm (IMM-N)
- Time series of stage-specific abundances
- Information on egg production rate and stage duration
- SSM and VLT are currently commonly used

Methods 1 \& 2: HLT \& VLT

Time (days)	NI	NII	NIII	NIV	NV		Total $\left(\mathrm{n} \mathrm{m}^{-3}\right)$
77.88	111	89	111	67	67	\ldots	1841
78.38	22	266	244	89	244	\ldots	3994
78.88	152	44	44	33	30	\ldots	2711
Mean	76	110	114	54	114	\ldots	3014

- Horizontal life table method

Mortality for NIII at $78.38=(244-33) / 244=0.86$
Notice the negative estimates

- Vertical life table method

Mortality for NIII=0.48

Method 3: SSM

Method 4 \& 5: IMM-Q and IMM-N

- Project population using stage-structured population model: $A_{t+1}=\beta \times A_{t}$
- IMM-Q: Find the best fit surface through quadratic programming algorithm
- IMM-N: Find the mortality rates best fit for
 observation data using Gauss-Levenberg-Marquardt algorithm (PEST)

Simulated case 1a \& 1b

- Mortality rates change smoothly between two consecutive stages (SSM)
- Population 1a was initialized with stable-age distribution (VLT)
- Population 1b was initialized with field abundances

Simulated case 1a \& 1b

- Mortality rates change smoothly between two consecutive stages (SSM)
- Population 1a was initialized with stable-age distribution (VLT)
- Population 1b was initialized with field abundances

Case 1b

Case 1b

Simulated case 2

- From case 1:
- HLT \& VLT fail
- SSM deviation in later stages
- Case 2:
- Mortality rates change relatively large

Simulated case 2

Field population: SSM

Field population: IMM-Q

Field population: IMM-N

March-April

Conclusions

- Stage-specific mortality estimation is problematic
- Different results from different methods reflect the uncertainty in copepod stage-specific mortality estimation
- IMM-N performed the best
- Eggs experienced high mortality rates in both March-April and May-June
- The adult stage had high mortality rate in both MarchApril and May-June
- Copepodite V had high mortality in March-April

Acknowledgements

- ChevronTexaco
- Michael Dagg, Robert Downer, Richard Shaw, and Dandina Rao
- Crew on South Timbalier 151
- Zooplankton lab at LSU: Sean Keenan, Harmon Brown and Malinda Sutor
- Zooplankton group at Hatfield Marine Science Center, Oregon State University: Jay Peterson, Linda O’Higgins, Leah Feinberg, Tracy Shaw, Cheryl Morgan, Jesse Lamb, Julie Keister, and Jennifer Menkel

