OECOS – East: A study that should still be done!

Processes in HNLC Ecosystems

Remaining Unexplained

Charles Miller (Oregon State Univ.)

and many others

OECOS-East is (was?)

- Harold Batchelder Models
- Zanna Chase & Jay Cullen iron chemistry
- Timothy Cowles water column structure
- Michael Dagg Mesozooplankton grazing
- Deana Erdner phytoplankton iron physiology
- Moira Galbraith & David Mackas – mesozooplankton abundance

- Charles Miller copepod growth rates
- Karen Selph flow cytometric and microscopic phytoplankton systematics
- Suzanne Strom microzooplankton grazing
- Peter Strutton *in situ* instrumentation (drifters)
- Nicholas Welschmeyer primary production

Program Logo

A PICES Program

The issue in 1980's work in the subarctic Pacific:

What holds phytoplankton stocks within narrow limits?

Why are macronutrients never depleted?

A partial answer: IRON LIMITATION Martin and Fitzwater:

Iron added to water in jugs increases algal stocks.

The PICES Seeds (Tsuda et al.) and Series (Boyd et al.) Experiments:

Adding dissolved iron directly to the ocean induces blooms, usually diatoms.

We also know that nano-phytoplankton growth is *not* limited by iron availability, that protozoan grazing almost always keeps them from increasing past 0.6 mg chl/m³.

We do *not* know the details. How is protozoan grazing regulated? Why does protozoan grazing never remove all the nano-phytoplankton?

The OECOS-East suggestion:

The best clues are likely to come from study of the 'subseasonal' variation of phytoplankton stocks:

0.4 0.35 Chlorophyll, mg/m^3 0.3 0.25 0.2 19 points per day Red - 19 point moving average 0.15 70 130 140 60 80 90 100 110 120 150 March May Julian Day, 1996

Phil Boyd's Moored Fluormeter Data, Stn. P

What controls this variation?

Mostly Water-Column Physics?

Also: mesoscale variation + advection

Iron Control At All Points?

Predator-Prey Cycling?

A Trophic Cascade – Copepods (etc.) control protozoa?

MH = microheterotrophs = protozoa

OR All of those

How to find out?

1. Get more chlorophyll time series - learn more about the amplitude and periods of the variation. Learn the relationships to temperature and irradiance. More mooring data. Ammonia data needed.

How to find out?

- 2. Measure all the likely relevant variables through all cycle phases order 60 days:
 - vertical physics & mesoscale variation
 - iron availability (amount and forms)
 - nutrients (NH4, especially)
 - phytoplankton taxonomy & biomass (not just chlorophyll), vertical patterns, physiology (Flav/Ferr)
 - primary production rates light dependence
 - protozoa taxonomy, abundance (nanoflagellates to large ciliates & dinoflagellates)
 - protozoan grazing rates (e.g., dilution experiments)
 - Mesozooplankton stocks and feeding rates

Such a time-series is the **OECOS-East proposal.** It should still be done! It will tell us more about how nature works than more iron addition experiments.

Xie xie - 谢谢 Komapsumnida - 감사합니다 Domo arigato - どうもありがとう Spasibo - Спасибо Thanks - ۞₪☆☺♫♂∞

